Supporting Information

Chiral recognition of amino acid esters by a novel oxalic amide-linked bisporphyrin

Jiaxun Jiang, ^a Zhiqiang Feng, Baozhen Liu, Chuanjiang Hu, ^{*a,b} Yong Wang*

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China

^b State Key Laboratory & Coordination Chemistry Institute, Nanjing University, Nanjing 210093, P. R. China

Tel.: +86-25-65880903 Fax: +86-25-65880903 E-mail: <u>cjhu@suda.edu.cn</u>

Figure S1. Circular dichroism spectra of a solution of compound **1** (3.4×10^{-6} M) and 400 equivalents of (a) L- (solid line) and D- (dash line) alanine ethyl ester, (b) L-(solid line) and D-(dash line) valine ethyl ester in methylene dichloride at 25 °C.

Figure S2. UV-visible spectral changes of compound $1(3.0 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of D-Phe-OEt as the host: guest molar ratio changes from 1:0 to 1:167.5 at 25°C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S3. UV-visible spectral changes of compound $1(3.2 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of D-Ala-OEt as the host: guest molar ratio changes from 1:0 to 1:167.5 at 25 °C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S4. UV-visible spectral changes of compound $1(2.4 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of L-Ala-OEt as the host: guest molar ratio changes from 1:0 to 1:250 at 25 °C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S5. UV-visible spectral changes of compound $1(2.4 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of D-Leu-OEt as the host: guest molar ratio changes from 1:0 to 1:250 at 25°C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S6. UV-visible spectral changes of compound $1(3.2 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of L-Leu-OEt as the host: guest molar ratio changes from 1:0 to 1:167.5 at 25 °C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S7. UV-visible spectral changes of compound $1(3.2 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of D-Phg-OEt as the host: guest molar ratio changes from 1:0 to 1:167.5 at 25°C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S8. UV-visible spectral changes of compound $1(3.2 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of L-Phg-OEt as the host: guest molar ratio changes from 1:0 to 1:167.5 at 25 °C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S9. UV-visible spectral changes of compound $1(2.4 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of D-Val-OEt as the host: guest molar ratio changes from 1:0 to 1:250 at 25 °C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S10. UV-visible spectral changes of compound $1(3.2 \times 10^{-6} \text{ M})$ in methylene dichloride upon addition of L-Val-OEt as the host: guest molar ratio changes from 1:0 to 1:167.5 at 25 °C. Arrows indicate absorbance changes with increasing guest concentrations.

Figure S11. Circular dichroism spectra of a solution of compound **1** (3.4×10^{-6} M) and from 1:2 to 1:300 equivalents of (a) D- alanine ethyl ester, (b) L- alanine ethyl ester in methylene dichloride at 25 °C.

Figure S12. Circular dichroism spectra of a solution of compound 1 (3.4×10^{-6} M) and from 1:4 to 1:300 equivalents of (a) D- valine ethyl ester, (b) L- valine ethyl ester in methylene dichloride at 25 °C.

Figure S13. Circular dichroism spectra of a solution of compound **1** (3.4×10^{-6} M) and from 1:4 to 1:300 equivalents of (a) D- leucine ethyl ester, (b) L- leucine ethyl ester in methylene dichloride at 25 °C.

Figure S14. Circular dichroism spectra of a solution of compound **1** (3.4×10^{-6} M) and from 1:4 to 1:300 equivalents of (a) D- phenyl alanine ethyl ester, (b) L- phenyl alanine ethyl ester in methylene dichloride at 25 °C.

Figure S15. Circular dichroism spectra of a solution of compound 1 $(3.4 \times 10^{-6} \text{M})$ and from 1:4 to 1:300 equivalents of (a) D- phenylglycine ethyl ester, (b) L-phenylglycine ethyl ester in methylene dichloride at 25 °C.

Figure S16. UV-vis spectrum of complex formed between compound **1** and L-Phe-OEt. (black line), calculated UV-vis curve at the B3LYP/6-31G* level (dash line), and oscillator strengths for the different transitions (gray bars).

Figure S17. Selected HOMO and LUMO orbital plots at the B3LYP/6-31G* level.

Figure S18. Mass spectrum of the compound 1.

Figure S19. Mass spectrum of the compound 2.

Table S1. Selected bond distances for the calculated structure of complex $1 \cdot (L-Phe-OEt)_2$

bond	distance (Å)	
Zn(1)-N(55)	2.1754	
Zn(1)-N(2)	2.0865	
Zn(1)-N(3)	2.0857	
Zn(1)-N(4)	2.0906	
Zn(1)-N(5)	2.0946	
Zn(108)-N(109)	2.0976	
Zn(108)-N(110)	2.0833	
Zn(108)-N(111)	2.0794	
Zn(108)-N(112)	2.0997	
Zn(108)-N(162)	2.1717	
N(55)O(165)	3.2065	
N(162)O(58)	3.0654	

Orbital	Character	Calcd/n	f^a	Exptl/nm
Excitations		m		
HOMO-2	$\pi \rightarrow \pi^*$	394	1.8540	422
→LUMO+3				
HOMO-3	$\pi \rightarrow \pi^*$			
→LUMO				
HOMO-3	$\pi \rightarrow \pi^*$	392	0.3055	
→LUMO+1				
HOMO-2	*			
→LUMO+3	$n \rightarrow n$			
HOMO-2	$\pi \rightarrow \pi^*$	390	1.0245	
→LUMO+2				
HOMO-4	π→π*,	382	0.2986	
\rightarrow LUMO+2	MLCT			
HOMO-5	$\pi \rightarrow \pi^*$,			
→LUMO	MLCT			
HOMO-4	$\pi \rightarrow \pi^*$,	377	0.0570	416
→LUMO+3	MLCT			
HOMO-5	$\pi \rightarrow \pi^*$,			
→LUMO+1	MLCT	376	0 1 1 2 2	
HOMO-4	$\pi \rightarrow \pi^*$,	570	0.1133	
→LUMO+3	MLCT			

Table S2 Main Experimental and Calculated Optical Transitions

^aOscillator strength