Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/materials

Supporting Information

Single Crystal Growth of the Novel $Mn_2(OH)_2SO_3$, $Mn_2F(OH)SO_3$, and $Mn_5(OH)_4(H_2O)_2[SO_3]_2[SO_4]$ Compounds through the Hydrothermal Method

Hamdi Ben Yahia,* Masahiro Shikano,* and Hironori Kobayashi

5 Received (in XXX, XXX) Xth XXXXXXXX 2012, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Electronic Supplementary Information (ESI)

10 Table S1

B.V.S. before introducing the H atoms		B.V.S. after introducing the H atoms			
Atom	B.V.S.	Atom	B.V.S.	Charge	
Mn1	1.920(5)	Mn1	1.911(5)	+2	
Mn2	1.983(4)	Mn2	1.985(4)	+2	
Mn3	2.042(4)	Mn3	2.044(4)	+2	
S1	4.126(12)	S1	4.128(12)	+4	
S2	4.090(12)	S2	4.086(12)	+4	
S 3	6.36(2)	S 3	6.38(2)	+6	
01	1.763(8)	01	2.178(16)	-2	
O2	2.005(7)	O2	2.004(6)	-2	
03	2.017(6)	O3	2.015(6)	-2	
O4	1.929(9)	O4	1.931(9)	-2	
05	1.682(16)	05	2.35(2)	-2	
O6	2.029(10)	O6	2.029(10)	-2	
O7	1.938(10)	07	1.939(10)	-2	
O8	0.344(2)	08	1.91(5)	-2	
		H8a	0.77(4)	+1	
		H8b	1.02(3)	+1	
O9	1.127(3)	09	1.83(3)	-2	
		H9	0.91(3)	+1	
O10	1.184(3)	O10	1.93(2)	-2	
		H10	0.95(2)	+1	
011	1.099(4)	011	1.85(3)	-2	
		H11	0.75(3)	+1	

B.V. = $e^{(r0-r)/b}$ with the following parameters: b = 0.37, r_0 (S^{IV}–O) = 1.644, and r_0 (Mn^{II}–O) = 1.790 Å. ^{15, 16}

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Table S2. Anisotropic displacement parameters (Å ²) for for Mn ₂ (OH) ₂ SO ₃ , Mn ₂ F(OH)SO ₃ , and Mn ₅ (OH) ₄ (H ₂ O) ₂ [SO ₃] ₂ [SO ₄]. The
anisotropic displacement factor exponent takes the form: $-2\pi^2[(ha^*)^2U_{11}++2hka^*b^*U_{12}]$.

Atom				$\frac{1}{U}$		II			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Mn ₂ (OII	0.0110(4)	0.0201(4)	0.0121(4)	0.0002(3)	0.0007(3)	0.0015(3)			
S	0.0110(4)	0.0201(4) 0.0125(8)	0.0121(4) 0.0120(7)	-0.0002(3)	0.0007(3)	-0.0013(3)			
01	0.0119(6) 0.015(3)	0.0133(8)	0.0120(7)	0	-0.0008(0)	0			
01	0.013(3)	0.021(2)	0.017(2)	0 0022(15)	0.0003(18)	0 0022(12)			
02 02h	0.0123(17) 0.0118(17)	0.0191(17) 0.0167(10)	0.0154(14) 0.0162(15)	-0.0055(15)	-0.0008(12)	-0.0022(12)			
<u>Ma E(0)</u>	0.0116(17)	0.0107(19)	0.0102(13)	0.0014(10)	-0.0012(12)	-0.0000(14)			
$Mn_2F(OH)SO_3$									
Mn	0.0093(7)	0.0158(7)	0.0094(8)	-0.0005(6)	0.0018(6)	-0.0006(7)			
5	0.0081(14)	0.0066(14)	0.011/(19)	0	-0.0015(14)	0			
01	0.013(5)	0.011(4)	0.016(5)	0	0.014(4)	0			
02	0.009(3)	0.014(3)	$0.00^{7}(4)$	-0.004(2)	-0.001(3)	0.002(3)			
O3h/F	0.009(3)	0.028(3)	0.012(3)	0.001(3)	-0.001(2)	-0.002(3)			
Mn ₅ (OH	$_{4}(H_{2}O)_{2}[SO_{3}]_{2}[SO_{3}]_{2}[SO_{3}]_{3}$	$[\mathbf{J}_4]$							
Mn1	0.0148(2)	0.0195(2)	0.0115(3)	0	-0.00018(19)	0			
Mn2	0.01267(19)	0.0177(2)	0.0170(2)	-0.00077(10)	-0.00246(16)	-0.00040(11)			
Mn3	0.0194(2)	0.0186(2)	0.0125(2)	-0.00111(11)	-0.00063(17)	0.00100(11)			
S1	0.0109(3)	0.0185(3)	0.0116(3)	0	-0.0015(3)	0			
S2	0.0157(3)	0.0168(3)	0.0098(3)	0	-0.0026(3)	0			
S 3	0.0117(3)	0.0196(3)	0.0162(4)	0	-0.0020(3)	0			
01	0.0100(8)	0.0270(10)	0.0161(11)	0	-0.0010(8)	0			
O2	0.0136(6)	0.0203(7)	0.0283(9)	-0.0020(5)	-0.0011(6)	0.0057(6)			
03	0.0314(8)	0.0202(7)	0.0140(8)	-0.0054(6)	-0.0015(7)	0.0002(6)			
O4	0.0286(10)	0.0181(8)	0.0105(11)	0	-0.0027(9)	0			
O5	0.0236(11)	0.0444(13)	0.0329(15)	0	0.0058(11)	0			
O6	0.0139(9)	0.0200(9)	0.0319(14)	0	-0.0012(10)	0			
O7	0.0222(7)	0.0511(11)	0.0478(13)	0.0071(8)	0.0021(9)	0.0320(11)			
08	0.0402(13)	0.0465(12)	0.0388(14)	0.0199(9)	0.0020(11)	0.0078(9)			
O9	0.0137(6)	0.0185(6)	0.0162(8)	-0.0004(6)	-0.0016(6)	-0.0013(6)			
O10	0.0108(8)	0.0222(9)	0.0132(10)	0	0.0001(8)	0			
011	0.0118(8)	0.0214(9)	0.0155(10)	0	0.0009(8)	0			

Fig. S1. EDX analysis of the single crystals investigated on the diffractometer.

5

10

Fig. S2. The XRPD pattern of $Mn_5(OH)_4(H_2O)_2[SO_3]_2[SO_4]$ sample obtained from hydrothermal synthesis.

Fig. S3. Details of the connectivity between Mn1O₅, Mn2O₆, and Mn3O₆ polyhedra.

Fig. S4. Final observed, calculated and difference plots for synchrotron X-ray powder diffraction refinement ($\lambda = 0.5001$ Å) of Mn₂(OH)FSO₃.

⁵ "High resolution X-ray powder diffraction measurements were performed for Mn₂(OH)FSO₃. The data were collected on BL19B2 at SPring-8 (with the approval of the Japan Synchrotron Radiation Research Institute (Proposal No. 2011A1795)) at room temperature over the 2θ angle range 0° $\leq 2\theta \leq$ 78° with a step size of 0.01° ($\lambda = 0.5001$ Å). Full pattern matching refinements were performed with the Jana2006 program package. The backgrounds were estimated by a Legendre function, and the peak shapes were described by a pseudo-Voigt function. Asymmetry and preferential orientation parameters have been also refined using Simpson and March-Dallase functions, respectively. Then the single crystal structure of Mn₂(OH)₂SO₃was used as starting model for the Rietveld refinement (Figure S4). After introducing OH/F statistical disorder, the reliability factors dropped to *Rp* = 0.0401, *R_{wp}* = 0.0595, and *R_B* = 0.0459, confirming the accuracy of the model. Furthermore, the careful comparison to the obtained atomic positions to those from Mn₂(OH)FSO₃ single crystal refinement did not show any significant difference except for the proton atom which showed a slight shift of the *x* coordinate (Table 2)."