Supplementary Information

Azide Alkyne Cycloaddition Facilitated by Hexanuclear Rhenium Chalcogenide Cluster Complexes

Stanley A. Knott[†], Jeffrey N. Templeton[†], Jessica L. Durham[†], Angela M. Howard[†], Robert McDonald[‡], and Lisa F. Szczepura[†]*
[†]Department of Chemistry, Illinois State University, Normal, IL 61790-4160
[‡]Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2

Table of Contents

Alternative Synthesis of [Re ₆ Se ₈ (PEt ₃) ₅ (py)](BF ₄).		S 2
Figure S1.	400 MHz ¹ H NMR spectrum taken at 24 h of the reaction mixture,	
	in $CDCl_{3}$, containing $[Re_6Se_8(PEt_3)_5(L1)](BF_4)$ and $BnBr$.	S 3
Figure S2.	162 MHz ³¹ P NMR spectra recorded at different time intervals of the	
	reaction mixture, in CDCl ₃ , containing [Re ₆ Se ₈ (PEt ₃) ₅ (L1)](BF ₄)	
	and BnBr.	S 4
Figure S3.	400 MHz ¹ H NMR spectrum taken at 24 h of the reaction mixture	
	containing [Re ₆ Se ₈ (PEt ₃) ₅ (L1)](BF ₄) and MeI in CDCl ₃ .	S 5
Figure S4.	162 MHz ³¹ P NMR spectra recorded in CDCl ₃ at different time intervals	
	of the reaction mixture containing $[Re_6Se_8(PEt_3)_5(L1)](BF_4)$ and MeI.	S 6
Figure S5.	400 MHz 1 H NMR spectrum (in CDCl ₃) of product isolated from the 2 h	
	(100 $^{\circ}$ C) reaction of [Re ₆ Se ₈ (PEt ₃) ₄ (N ₃) ₂] and DMAD.	S 7
Figure S6.	162 MHz 31 P NMR spectrum (in CDCl ₃) of product isolated from the	
	2 h (100 $^{\circ}$ C) reaction of [Re ₆ Se ₈ (PEt ₃) ₄ (N ₃) ₂] and DMAD.	S 8
Figure S7.	Ge(ATR) IR spectrum of cis -[Re ₆ Se ₈ (PEt ₃) ₄ (N ₃) ₂].	S 9
Figure S8.	Ge(ATR) IR spectrum of cis -[Re ₆ Se ₈ (PEt ₃) ₄ (L1) ₂].	S 10
Figure S9.	Ge(ATR) IR spectrum of $[Re_6Se_8(PEt_3)_5(N_3)](BF_4)$.	S 11
Figure S10.	Ge(ATR) IR spectrum of $[Re_6Se_8(PEt_3)_5(L1)](BF_4)$.	S12

Alternative synthesis of [Re₆Se₈(PEt₃)₅(py)](BF₄)₂. [Re₆Se₈(PEt₃)₅I]I (500.3 mg, 0.193 mmol) was dissolved in 18 mL CH₂Cl₂ in a Schlenk flask. Separately, 140.2 mg of AgBF₄ (0.720 mmol) was dissolved in 3.4 mL pyridine. The solutions were combined, covered with aluminum foil, and stirred at room temperature for 3 h. The solvent was removed in vacuo. The solid was dissolved in CH₂Cl₂, filtered through Celite and dripped into Et₂O to afford a crude solid. This solid was purified via column chromatography on a silica gel column eluting with a 1:1 CH₂Cl₂/CH₃CN solvent mixture and reduced to dryness. The product was dissolved in minimal CH₂Cl₂ and precipitated in Et₂O to afford the pure product (495.6 mg, 99% yield). ¹H NMR (500 MHz, CDCl₃, ppm): 9.26 (2H, d, -NC₅H₅), 7.88 (1H, t, -NC₅H₅), 7.37 (2H, t, -NC₅H₅), 2.16 (30H, m, -CH₂CH₃), 1.09 (45H, m, -CH₂CH₃). ³¹P NMR (202.5 MHz, CDCl₃, ppm): -26.35, -29.33.

Figure S1. 400 MHz ¹H NMR spectrum taken at 24 h of the reaction mixture,

in CDCl₃, containing [Re₆Se₈(PEt₃)₅(L1)](BF₄) and BnBr (unreacted BnBr appears at 4.42 ppm).

Figure S2. 162 MHz ³¹P NMR spectra recorded at different time intervals of the reaction mixture, in CDCl₃, containing $[Re_6Se_8(PEt_3)_5(L1)](BF_4)$ and BnBr.

Figure S3. 400 MHz ¹H NMR spectrum taken at 24 h of the reaction mixture

containing [Re₆Se₈(PEt₃)₅(L1)](BF₄) and MeI in CDCl₃.

Figure S4. 162 MHz 31 P NMR spectra recorded in CDCl₃ at different time intervals

of the reaction mixture containing $[Re_6Se_8(PEt_3)_5(L1)](BF_4)$ and MeI.

Figure S5. 400 MHz ¹H NMR spectrum (in CDCl₃) of product isolated from the 2 h (100 $^{\circ}$ C) reaction of [Re₆Se₈(PEt₃)₄(N₃)₂] and DMAD.

Figure S6. 162 MHz ³¹P NMR spectrum (in CDCl₃) of product isolated from the 2 h (100 °C) reaction of $[Re_6Se_8(PEt_3)_4(N_3)_2]$ and DMAD.

Figure S7. Ge(ATR) IR spectrum of *cis*-[Re₆Se₈(PEt₃)₄(N₃)₂].

Figure S8. Ge(ATR) IR spectrum of *cis*-[Re₆Se₈(PEt₃)₄(L1)₂].

Figure S9. Ge(ATR) IR spectrum of [Re₆Se₈(PEt₃)₅(N₃)](BF₄).

Figure S10. Ge(ATR) IR spectrum of [Re₆Se₈(PEt₃)₅(L1)](BF₄).