Electronic Supplementary Information

Naphthalene-thiophene hybrid molecule as a fluorescent AND logic gate with Zn²⁺ and OAc⁻ ions as inputs: Cell imaging and computational studies

Debasis Karak,^{*a*} Sudipta Das,^{*a*} Sisir Lohar,^{*a*} Arnab Banerjee,^{*a*} Animesh Sahana,^{*a*} Ipsit Hauli,^{*b*} Subhra Kanti Mukhopadhyay,^{*b*} Damir A. Safin,^{*c*} Maria G. Babashkina,^{*c*} Michael Bolte,^{*d*} Yann Garcia^{*c*} and Debasis Das^{*a*}

^a Department of Chemistry, The University of Burdwan, Burdwan, 713104, West Bengal, India. Fax: +91 342 2530452; Tel: +91 342 2533913; E-mail: ddas100in@yahoo.com

^b Department of Microbiology, The University of Burdwan, Burdwan 713104, India

^c Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047 2330; Tel: +32(0) 1047 2831; E-mail: damir.safin@ksu.ru

^d Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany

Fig. S1 FTIR spectrum of HL.

Fig. S2 QTOF-MS⁺ spectrum of HL.

Fig. S3 Variation of the emission intensity of the [L–Zn(OAc)₂] system with time.

Fig. S4 QTOF-MS⁺ spectrum of the **[ZnL(OAc)]** complex.

Fig. S6 Determination of the detection limit of $Zn(OAc)_2$ by **HL** (0.1 μ M, EtOH–H₂O (1:1, v/v), 0.1 M HEPES buffer, pH 7.4, $\lambda_{em} = 448$ nm). Emission intensity of **HL** is plotted as a function of $Zn(OAc)_2$ (1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 μ M), normalized between the minimum and maximum emission intensities. The point at which the best fitted line crosses the abscissa by extrapolation is LOD.

Table S1 Selected bond lengths (Å) and bond angles (°) for HL

Bond lengths					
O(1)–C(12)	1.264(3)	C(12)–C(13)	1.447(3)	C(18)–C(19)	1.369(4)
N(1)–C(1)	1.308(3)	C(13)–C(14)	1.345(4)	C(19)–C(20)	1.405(3)
N(1)–C(2)	1.470(3)	C(14)–C(15)	1.425(4)	C(21)–C(25)	1.606(3)
C(1)–C(11)	1.402(3)	C(15)–C(16)	1.409(3)	C(21)–S(22)	1.615(3)
C(2)–C(21)	1.502(3)	C(15)-C(20)	1.417(3)	S(22)-C(23)	1.544(4)
C(11)–C(12)	1.436(3)	C(16)–C(17)	1.360(4)	C(23)–C(24)	1.320(6)
C(11)–C(20)	1.456(3)	C(17)–C(18)	1.399(4)	C(24)–C(25)	1.535(4)
Bond angles					
C(1)–N(1)–C(2)	123.5(2)	C(13)-C(14)-C(15)	122.7(2)	C(19)-C(20)-C(11)	123.92(19)
N(1)-C(1)-C(11)	124.9(2)	C(16)-C(15)-C(20)	120.0(2)	C(15)-C(20)-C(11)	118.9(2)
N(1)-C(2)-C(21)	113.77(19)	C(16)-C(15)-C(14)	121.0(2)	C(2)–C(21)–C(25)	124.1(2)
C(1)-C(11)-C(12)	118.9(2)	C(20)-C(15)-C(14)	119.0(2)	C(2)–C(21)–S(22)	124.1(2)
C(1)-C(11)-C(20)	120.5(2)	C(17)-C(16)-C(15)	121.4(2)	C(25)-C(21)-S(22)	111.76(16)
C(12)-C(11)-C(20)	120.60(19)	C(16)-C(17)-C(18)	118.7(2)	C(23)–S(22)–C(21)	97.96(18)
O(1)-C(12)-C(11)	122.9(2)	C(19)-C(18)-C(17)	121.4(2)	C(24)-C(23)-S(22)	115.8(3)
O(1)-C(12)-C(13)	119.8(2)	C(18)-C(19)-C(20)	121.3(2)	C(23)-C(24)-C(25)	116.0(3)
C(11)-C(12)-C(13)	117.2(2)	C(19)-C(20)-C(15)	117.2(2)	C(24)-C(25)-C(21)	98.44(19)
C(14)-C(13)-C(12)	121.6(2)				

Table S2 Selected bond lengths (Å) and bond angles (°) for $[H_3L_2]ClO_4$

Bond lengths					
S(1)–C(16)	1.704(2)	C(10)–C(11)	1.406(3)	C(4A)–C(5A)	1.412(3)
S(1)–C(13)	1.714(2)	C(12)–C(13)	1.492(3)	C(5A)–C(6A)	1.366(3)
O(1)–C(1)	1.302(2)	C(13)–C(14)	1.389(3)	C(6A)–C(7A)	1.392(4)
N(1)–C(11)	1.298(2)	C(14)–C(15)	1.448(3)	C(7A)–C(8A)	1.371(3)
N(1)–C(12)	1.470(2)	C(15)–C(16)	1.345(3)	C(8A)–C(9A)	1.420(3)
C(1)–C(10)	1.420(2)	S(1A)–C(16A)	1.660(3)	C(9A)–C(10A)	1.457(3)
C(1)–C(2)	1.429(3)	S(1A)–C(13A)	1.720(2)	C(10A)–C(11A)	1.416(3)
C(2)–C(3)	1.348(3)	O(1A)–C(1A)	1.311(2)	C(12A)–C(13A)	1.496(3)
C(3)–C(4)	1.430(3)	N(1A)-C(11A)	1.291(3)	C(13A)–C(14A)	1.533(3)
C(4)–C(5)	1.407(3)	N(1A)-C(12A)	1.464(3)	C(14A)–C(15A)	1.480(3)
C(4)–C(9)	1.417(3)	C(1A)–C(10A)	1.417(3)	C(15A)–C(16A)	1.339(4)
C(5)–C(6)	1.368(3)	C(1A)–C(2A)	1.421(3)	Cl(1)–O(13)	1.404(2)
C(6)–C(7)	1.397(3)	C(2A)–C(3A)	1.351(3)	Cl(1)–O(11)	1.4141(18)
C(7)–C(8)	1.373(3)	C(3A)–C(4A)	1.426(3)	Cl(1)–O(12)	1.4260(16)
C(8)–C(9)	1.410(3)	C(4A)–C(9A)	1.410(3)	Cl(1)–O(14)	1.4372(19)
C(9)–C(10)	1.449(3)				
Bond angles					
C(16)–S(1)–C(13)	91.99(10)	N(1)-C(12)-C(13)	110.98(16)	C(4A)C(9A)C(8A)	117.36(19)
C(11)–N(1)–C(12)	123.98(17)	C(14)-C(13)-C(12)	126.83(19)	C(4A)-C(9A)-C(10A)	119.07(17)
O(1)-C(1)-C(10)	120.38(16)	C(14)–C(13)–S(1)	112.67(14)	C(8A)-C(9A)-C(10A)	123.57(19)
O(1)–C(1)–C(2)	120.76(16)	C(12)–C(13)–S(1)	120.49(16)	C(11A)-C(10A)-C(1A)	120.63(17)
C(10)–C(1)–C(2)	118.86(16)	C(13)-C(14)-C(15)	109.23(17)	C(11A)–C(10A)–C(9A)	119.61(17)
C(3)-C(2)-C(1)	120.60(17)	C(16)-C(15)-C(14)	114.19(18)	C(1A)-C(10A)-C(9A)	119.63(17)
C(2)-C(3)-C(4)	122.72(17)	C(15)-C(16)-S(1)	111.92(15)	N(1A)-C(11A)-C(10A)	127.09(18)
C(5)-C(4)-C(9)	120.17(17)	C(16A)–S(1A)–C(13A)	92.12(12)	N(1A)-C(12A)-C(13A)	111.15(16)
C(5)-C(4)-C(3)	121.22(17)	C(11A)–N(1A)–C(12A)	123.96(18)	C(12A)-C(13A)-C(14A)	124.28(18)
C(9)-C(4)-C(3)	118.60(17)	O(1A)-C(1A)-C(10A)	119.62(17)	C(12A)–C(13A)–S(1A)	121.92(16)
C(6)-C(5)-C(4)	121.04(18)	O(1A)-C(1A)-C(2A)	121.11(16)	C(14A)–C(13A)–S(1A)	113.75(15)
C(5)-C(6)-C(7)	119.06(18)	C(10A)-C(1A)-C(2A)	119.27(17)	C(15A)-C(14A)-C(13A)	101.79(17)
C(8)–C(7)–C(6)	121.12(19)	C(3A)-C(2A)-C(1A)	120.73(18)	C(16A)–C(15A)–C(14A)	117.6(2)
C(7)–C(8)–C(9)	121.22(18)	C(2A)-C(3A)-C(4A)	122.47(19)	C(15A)–C(16A)–S(1A)	114.7(2)
C(8)-C(9)-C(4)	117.27(17)	C(9A)-C(4A)-C(5A)	120.22(19)	O(13)-Cl(1)-O(11)	112.01(18)
C(8)-C(9)-C(10)	123.86(16)	C(9A)-C(4A)-C(3A)	118.80(18)	O(13)-Cl(1)-O(12)	109.30(14)
C(4)-C(9)-C(10)	118.87(16)	C(5A)-C(4A)-C(3A)	121.0(2)	O(11)-Cl(1)-O(12)	109.98(12)
C(11)-C(10)-C(1)	119.96(16)	C(6A)-C(5A)-C(4A)	120.9(2)	O(13)-Cl(1)-O(14)	108.27(19)
C(11)-C(10)-C(9)	119.81(16)	C(5A)–C(6A)–C(7A)	119.3(2)	O(11)-Cl(1)-O(14)	108.85(13)
C(1)-C(10)-C(9)	120.21(16)	C(8A)–C(7A)–C(6A)	121.3(2)	O(12)-Cl(1)-O(14)	108.34(12)
N(1)-C(11)-C(10)	125.48(17)	C(7A)-C(8A)-C(9A)	120.9(2)		

	D–H···A	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠(DHA)
HL	$N(1)-H(1)\cdots O(1)$	0.92(4)	1.84(4)	2.596(3)	139(3)
$[H_3L_2]ClO_4$	$N(1)-H(1)\cdots O(1)$	0.81(3)	1.93(3)	2.579(2)	137(2)
	$N(1A)-H(1A)\cdots O(1A)$	0.82(3)	2.02(3)	2.630(2)	131(2)
	O(1A)-H(1O)····O(1)	1.17(4)	1.29(4)	2.4511(17)	179(3)

Table S3. Hydrogen bond lengths (Å) and angles (°) for HL and $[H_3L_2]ClO_4$

Table S4. Relevant bond lengths (Å) and angles (°) for **[ZnL(OAc)]**, obtained using the 6-31G basis set (atom numbering refers to Fig. 14)

Bond lengths					
Zn(15)–N(3)	1.95	Zn(15)–O(18)	2.06	C(1)–N(3)	1.32
Zn(15)-O(39)	1.89	Zn(15)-O(17)	2.10	O(39)–C(25)	1.32
Bond angles					
O(39)–Zn(15)–O(18)	123.74	O(39)–Zn(15)–N(3)	96.50	O(17)–Zn(15)–O(18)	64.48
N(3)-Zn(15)-O(18)	128.73	N(3)-Zn(15)-O(17)	117.20	O(39)–Zn(15)–O(17)	127.31

Table S5. Summary of the Natural Population Analysis (NPA) for HL

Atom	No	Charge	Core	Valence	Rydberg	Total
С	1	-0.22610	1.99900	4.21557	0.01153	6.22610
С	2	-0.23748	1.99898	4.22865	0.00986	6.23748
С	3	-0.01145	1.99894	4.00208	0.01042	6.01145
С	4	-0.08235	1.99891	4.07235	0.01109	6.08235
С	5	-0.20491	1.99897	4.19528	0.01066	6.20491
С	6	-0.25496	1.99899	4.2443	0.01168	6.25496
Η	7	0.24382	0.00000	0.75515	0.00102	0.75618
Η	8	0.22863	0.00000	0.77010	0.00127	0.77137
С	9	-0.21602	1.99891	4.20481	0.0123	6.21602
С	10	-0.17795	1.99897	4.16876	0.01022	6.17795
Η	11	0.24102	0.00000	0.75770	0.00129	0.75898
Η	12	0.24476	0.00000	0.75426	0.00098	0.75524
С	13	-0.28065	1.99893	4.26852	0.0132	6.28065
С	14	0.42623	1.99895	3.54884	0.02598	5.57377
Η	15	0.24394	0.00000	0.75471	0.00134	0.75606
Η	16	0.25697	0.00000	0.74121	0.00182	0.74303
0	17	-0.65548	1.99979	6.65195	0.00374	8.65548
С	18	0.11902	1.99908	3.86724	0.01465	5.88098
Н	19	0.22797	0.00000	0.77068	0.00136	0.77203
Ν	20	-0.56068	1.99922	5.55152	0.00994	7.56068
С	21	-0.29988	1.99904	4.28795	0.01289	6.29988
Н	22	0.25426	0.00000	0.74368	0.00206	0.74574
Н	23	0.26791	0.00000	0.72998	0.00211	0.73209
С	24	-0.19492	1.99885	4.18080	0.01527	6.19492
С	25	-0.28455	1.99875	4.27428	0.01153	6.28455
S	26	0.34053	9.99934	5.64639	0.01374	15.65947
С	27	-0.27975	1.99888	4.26883	0.01204	6.27975
Н	28	0.26870	0.00000	0.72964	0.00166	0.73130
С	29	-0.39437	1.99894	4.38343	0.01200	6.39437
Н	30	0.25952	0.00000	0.73972	0.00076	0.74048
Н	31	0.26528	0.00000	0.73404	0.00067	0.73472
Н	32	0.47294	0.00000	0.52145	0.00561	0.52706
To	tal	0.00000	45.98144	93.76387	0.25469	140.00000

Table S6. Summary of the Natural Population Analysis (NPA) for [ZnL(OAc)]

Atom	No	Charge	Core	Valence	Rydberg	Total
С	1	0.13199	1.99916	3.84887	0.01999	5.86801
Н	2	0.21075	0.00000	0.78707	0.00218	0.78925
Ν	3	-0.72784	1.99938	5.70013	0.02833	7.72784
С	4	-0.31512	1.99901	4.29810	0.01801	6.31512
Н	5	0.24847	0.00000	0.74929	0.00224	0.75153
Н	6	0.27382	0.00000	0.72361	0.00258	0.72618
С	7	-0.20233	1.99882	4.18747	0.01603	6.20233
С	8	-0.27952	1.99875	4.26910	0.01166	6.27952
S	9	0.37377	9.99932	5.61105	0.01586	15.62623
С	10	-0.28713	1.99888	4.27613	0.01211	6.28713
Н	11	0.25245	0.00000	0.74664	0.00091	0.74755
С	12	-0.39507	1.99895	4.38381	0.01232	6.39507
Н	13	0.25756	0.00000	0.74167	0.00078	0.74244
Н	14	0.26622	0.00000	0.73309	0.00069	0.73378
Zn	15	1.58550	17.99821	10.34388	0.07241	28.4145
С	16	0.75458	1.99942	3.19315	0.05285	5.24542
0	17	-0.77000	1.99980	6.76505	0.00516	8.77000
0	18	-0.78165	1.9998	6.77630	0.00555	8.78165
С	19	-0.79258	1.99914	4.78757	0.00587	6.79258
Н	20	0.26929	0.00000	0.72949	0.00122	0.73071
Н	21	0.27324	0.00000	0.72584	0.00092	0.72676
Н	22	0.26529	0.00000	0.73332	0.00138	0.73471
С	23	-0.20120	1.99888	4.19054	0.01179	6.20120
С	24	-0.00837	1.99895	3.99907	0.01035	6.00837
С	25	0.42250	1.99881	3.55354	0.02515	5.57750
С	26	-0.23865	1.99898	4.22991	0.00977	6.23865
С	27	-0.08136	1.99892	4.07138	0.01106	6.08136
С	28	-0.27480	1.99893	4.26322	0.01265	6.27480
С	29	-0.22406	1.99900	4.21348	0.01158	6.22406
Н	30	0.23027	0.00000	0.76841	0.00132	0.76973
С	31	-0.20326	1.99897	4.19358	0.01071	6.20326
С	32	-0.17289	1.99896	4.16368	0.01024	6.17289
Н	33	0.26203	0.00000	0.73618	0.00179	0.73797
С	34	-0.25245	1.99898	4.24178	0.01169	6.25245
Н	35	0.24471	0.00000	0.75427	0.00102	0.75529
Н	36	0.24213	0.00000	0.75659	0.00127	0.75787
Н	37	0.24619	0.00000	0.75249	0.00132	0.75381
Н	38	0.24601	0.00000	0.75302	0.00098	0.75399
0	39	-0.84849	1.99977	6.83997	0.00874	8.84849
Tot	tal	0.00000	71.97779	127.59174	0.43047	200.00000