Supporting Information

Chiral ruthenium(II) complexes with phenolic hydroxyl groups as dual poisons of topoisomerases I and IIα

Pingyu Zhang, Jinquan Wang, Huaiyi Huang, Liping Qiao, Liangnian Ji and Hui Chao*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail:<u>ceschh@mail.sysu.edu.cn.</u>

Scheme S1. Synthetic routes of ligands.

Fig. S1. CD spectra of ruthenium(II) complexes Δ -1 (black) and Λ -1 (red); Δ -2 (black) and Λ -2 (red); Δ -3 (black) and Λ -3 (red); Δ -4 (black) and Λ -4 (red) in H₂O, [Ru] = 50 μ M.

Fig. S2. Absorption spectra of ruthenium(II) complexes Δ -1 and Λ -1; Δ -2 and Λ -2; Δ -3 and Λ -3; Δ -4 and Λ -4. Arrows indicate the change in absorbance upon increasing the DNA concentration. ([Ru] = 10 μ M, [DNA] = 0-170 μ M).

Fig. S3. Effect of increasing amounts of ethidium bromide (EB), [Ru(bpy)3]2+, Ru(II) complexes (Δ -1 and Λ -1; Δ -2 and Λ -2; Δ -3 and Λ -3; Δ -4 and Λ -4) on the relative viscosity of calf thymus DNA at 29±0.1 °C. The total concentration of DNA is 0.25 mM.

Fig. S4. Kinetics of cytotoxicity responsed for Ru(II) complexes in cells monitored by the xCELLigence System. Δ -1 and Λ -1 in Hep-G2 (5,000 cells/well) were plated in 16-well strips for the RT-CES cytotoxicity assay. Downward arrows mean the time of complexes addition.

Fig. S5. Hep-G2 cells were stained by AO/EB and observed under fluorescence microscope: (C) Hep-G2 cells without treatment; in the presence of Ru(II) complexes Δ -1 and Λ -1 incubated at 37 °C and 5% CO₂ for 24 h and 48 h. Arrows pointed to the cells representing certain cell viable status: L—the live cells, A—the apoptotic cells, and N—the necrotic cells.

Fig. S6. Ru(II) complexes Δ -1 and Λ -1 induced apoptotic cell death were examined by Annexin V/PI assay. Hep-G2 cells were treated with different concentrations of Ru(II) complexes for 48 h.

~ .	λ / nm					
Complex	Free	Bound	$\Delta\lambda$ / nm	Н%	$K_b \times 10^5 M^{-1}$	
Δ-1	460	463	3	23.7	9.6	
Λ-1	460	464	4	24.2	9.0	
Δ-2	458	459	1	10.7	5.1	
Λ-2	459	460	1	10.0	4.8	
Δ-3	457	459	1	13.7	5.7	
Λ-3	457	460	3	12.2	4.5	
Δ-4	457	460	3	14.7	5.5	
Λ-4	458	460	2	13.7	3.7	

Table S1. Electronic spectra, hypochromism (H%) and DNA-binding constants K_b of Ru(II) complexes.

Table S2. Ruthenium concentrations determined in hypoxic cells after 1 h, 2 h and 4 h of exposure to 40 μ M Δ -1 and Λ -1 by ICP-MS.^a

		Ru(pg/cell)					
Time		Whole cell	Nuclues	Cytoplasm	Mitochondrion	Cytoplsma matrix	
Δ-1	1 h	5.401±0.51	3.708±0.26	1.668±0.16	1.207±0.09	0.460 ± 0.01	
	2 h	6.710±0.31	4.702±0.11	1.982±0.13	1.416±0.14	0.548±0.01	
	4 h	7.947±0.14	5.406±0.06	2.470±0.19	1.802±0.13	0.607 ± 0.04	
Λ-1	1 h	3.922±0.39	2.619±0.41	1.222±0.23	1.001±0.10	0.320±0.05	
	2 h	5.339±0.10	3.456±0.31	1.833±0.34	1.402 ± 0.02	0.484±0.02	
	4 h	7.380±0.17	5.281±0.25	2.013±0.17	1.643±0.12	0.490±0.01	

^aData are presented as mean values±standard deviations, and cell viability is assessed after 48 h of incubation.

Complex	μM	Red (%)	Green (%)	red/green ratio
Control	0	89.4	10.6	8.43
Δ-1	25	79.8	20.2	3.95
	50	47.5	52.5	0.90
Λ-1	25	74.8	25.2	2.96
	50	48.7	51.3	0.94

Table S3. JC-1 red/green ratio signals of Hep-G2 cells after 12 h of incubation.

References

- 1 M. T. Carter, M. Rodriguez and A. J. Bard, J. Am. Chem. Soc., 1989, 111, 8901-8911.
- 2 J. B. Chaires, N. Dattagupta and D. M. Crothers, *Biochem.*, 1982, **21**, 3933–3940.