Supporting Information

A 3D porous metal-organic framework containing nanotubes based on the multiple helices

Lei Hou,* Li-Na Jia, Wen-Juan Shi, Li-Yun Du, Jiang Li, Yao-Yu Wang* and Qi-Zhen Shi

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi'an 710069 (P. R. China). Email: lhou2009@nwu.edu.cn; wyaoyu@nwu.edu.cn, Tel: 86 29 88302604

Experimental

Materials and Measurements

All solvents and starting materials for synthesis were purchased commercially. Infrared spectra were obtained in KBr discs on a Nicolet Avatar 360 FTIR spectrometer in the 400-4000 cm⁻¹ region. Elemental analyses of C, H and N were determined with a Perkin-Elmer 2400C Elemental Analyzer. Thermalgravimetric analyses (TGA) were carried out in nitrogen stream using a Netzsch STA 449C equipment at a heating rate of 10 °C/min. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 ADVANCE X-ray powder diffractometer (Cu K α , 1.5418 Å).

Synthesis of Complex $[Co_2(bpdc)_{1.5}(Hbpz)] \cdot (DMF) \cdot (CH_3CN) \cdot (H_2O)$ (1). a mixture of $Co(CH_3COO)_2 \cdot 4H_2O$ (0.050 g, 0.20 mmol), H_2bpdc (0.072 g, 0.30 mmol) and H_2bpz (0.038g, 0.20 mmol) in DMF (5mL) and CH_3CN (5mL) was placed in a Teflon-lined stainless steel vessel (15 mL), which was heated at 160 °C for 72 h, then cooled to room temperature at a rate of 5 °C/h. Finally, prism purple crystals of 1 were obtained, which were isolated by

washing with DMF, and dried in vacuo (Yield: about 10 mg). Anal. Calcd for C₃₆H₃₇Co₂N₆O₈: C, 50.08; H, 4.66; N, 10.51%. Found: C, 50.14; H, 4.59; N, 10.46%. IR (KBr, cm⁻¹): 3426(vs), 2930(m), 2214(w), 1658(s), 1608(s), 1540(s), 1400(vs), 1259(w), 1172(w), 1039(m), 843(m), 768(m), 681(m).

Sorption Measurements

The sorption isotherms were measured using a Micrometrics ASAP 2020M instrument at different temperatures. The samples were activated in a quartz tube and dried under vacuum at 120 °C for 5 h to remove the solvent molecules prior to measurements.

Crystallography

Diffraction data were collected with a Mo K α radiation ($\lambda = 0.71073$ Å) on a Bruker-AXS SMART CCD area detector diffractometer. Absorption corrections were carried out utilizing SADABS routine.¹ The structure was solved by the direct methods and refined by full-matrix least-squares refinements based on $F^{2,2}$ All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were added to their geometrically ideal positions. **1** contains highly disordered solvent molecules, which can not be identified form the difference Fourier map. So the SQUEEZE routine³ was applied to remove the contributions to the scattering from the solvents. The reported refinement is of the guest-free structure using the *.hkp file produced by the SQUEEZE routine. The final formula was determined by combining single-crystal structures, elemental microanalyses and TGA. Relevant crystallographic data is listed in Table S1. Selected bond lengths and angles are given in Table S2.

References

- 1 Bruker. SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconson, USA, 2002.
- 2 G. M. Sheldrick, *SHELXL-97, program for the refinement of the crystal structures*. University of Göttingen, Germany, 1997.
- 3 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.

complex	1		
formula	$C_{31}H_{25}Co_2N_4O_6$		
formula weight	667.41		
<i>T</i> (K)	296(2)		
crystal system	tetragonal		
space group	$I4_1/a$		
<i>a</i> (Å)	43.939(10)		
<i>c</i> (Å)	8.5387(19)		
$V(\text{\AA}^3)$	16485(6)		
Z	16		
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.076		
$\mu (\mathrm{mm}^{-1})$	0.841		
reflns collected/unique	42861/8089		
R _{int}	0.0503		
R_1^a (>2 σ /all data)	0.0345 / 0.0492		
wR_2^a (>2 σ /all data)	0.0930 / 0.0977		
GOF	1.002		
^{<i>a</i>} $R_1 = \Sigma F_0 - F_c / \Sigma F_0 ; wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}.$			

Table 1. Crystallographic Data and Structural Refinements for $\mathbf{1}^{a}$

Table S2. Selected Bond Leng	ths (Å) and l	Bond Angles	(°) for 1 ^{<i>a</i>}

Co(1)-O(1)	1.9669(17)	$O(1)-Co(1)-O(3)^{\#1}$	101.85(8)
$Co(1)-O(3)^{\#1}$	1.9705(16)	O(5)-Co(1)-N(1)	115.22(8)
Co(1)-O(5)	1.9207(17)	O(1)-Co(1)-N(1)	108.65(8)
Co(1)-N(1)	1.9890(17)	$O(3)^{\#1}-Co(1)-N(1)$	114.72(7)
Co(2)-O(2)	1.9419(16)	O(2)-Co(2)-O(4) ^{#1}	103.62(7)
$Co(2)-O(4)^{\#1}$	1.9660(16)	O(2)-Co(2)-N(2)	117.19(8)
Co(2)-N(2)	1.9933(17)	$O(4)^{\#1}$ -Co(2)-N(2)	111.64(7)
$Co(2)-N(3)^{\#2}$	2.0223(18)	$O(2)-Co(2)-N(3)^{#2}$	107.63(8)
O(5)-Co(1)-O(1)	102.22(9)	$O(4)^{\#1}-Co(2)-N(3)^{\#2}$	106.67(7)
O(5)-Co(1)-O(3) ^{#1}	112.38(8)	N(2)-Co(2)-N(3) ^{#2}	109.47(7)

^{*a*}Symmetry codes: #1 y-3/4, -x+5/4, z-3/4; #2 -y+5/4, x+1/4, -z+5/4.

Fig. S1 Coordination fashions of bpdc²⁻ and Hbpz⁻ ligands.

Fig. S2 a) Each $[Co_2(CO_2)_2(Hbpz)]_4$ molecular building block (MBB) connecting adjacent eight MBBs through twelve bpdc²⁻ linkers. b) The 3-fold interpenetrated 3D structure of **1** along the *c* axis, featuring the superposed stacks, and adjacent nanotubes exhibiting opposite chirality. c) A coplanar square ring comprised of four Co₂ clusters, two bpdc-II, and two Hbpz⁻, which has a large windows (sizes ca.11.5 × 7.5 Å²), and enables two bpdc-I from other two frameworks to traverse.

Fig. S3 a) Right- and left-handed helix-I generated through the linkage of Co_2 clusters with bpdc-I and Hbpz⁻ ligands, possessing the shared bpdc-I ligands between two helices. b) Right- and left-handed helix-II based on Co_2 clusters and bpdc-II.

Fig. S4 a) 3-fold right-handed nanotubular helix-I and b) left-handed nanotubular hexis-II in in a single framework, and c) three helix-I cycling one helix-II by sharing Co_2 dimers to generate a "3+1" type quadruple helices.

Fig. S5 The nanotubular architectures in **1** generated through the parallel associations of triple left-handed (a) and nonuple right-handed helical chains, respectively.

Fig. S6 The double-walled nanotube created through nonuple and triple helices with opposite chirality in **1**.

Fig. S7 Two opposite chiral double-walled nanotubes with twelvefold helices in 1.

Fig. S8 a) The single 5-connected zfy topology net, and b) its 3-fold interpenetrated fashion in **1**.

Fig. S9 The distorted pyramidal geometry of 5-conncted Co_2 cluster in 1, resulting from the significant torsion of Hbpz⁻ ligands.

Fig. S10 The N–H···O hydrogen bonding interactions (H···O = 1.959 Å, N···O = 2.795 Å, < N–H···O = 153.15°) between pyrazole –NH groups and uncoordinated carboxylate O atoms in the [Co₂(CO₂)₂(Hbpz)]₄ MBBs from adjacent frameworks, which contribute to stabilize the framework of **1**.

Fig. S11 TGA plots of the as-synthesized and desolvated 1 under N₂ atmosphere.

Fig. S12 FTIR spectra of the as-synthesized and desolvated 1. In the spectrum of the as-synthesized 1, the weak peak at 2214 cm⁻¹ and strong peak at 1658 cm⁻¹ are designated to

the C=N and C=O characteristic stretching peaks of the solvent CH_3CN and DMF molecules, respectively. Heating the sample at 120 °C for 5 h under vacuum, the absence of peak at around 1660 cm⁻¹ in the IR spectrum of desolvated **1** indicates the complete removal of nonvolatile DMF solvents.

Fig. S13 PXRD patterns of **1** simulated from the X-ray single-crystal structure, as-synthesized, desolvated (120 °C) and heated (400 °C) samples, reflecting highly crystalline even heated at 400 °C.

Calculation of sorption heat for CO₂ uptake using Virial 2 model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad \qquad Q_{\rm st} = -R \sum_{i=0}^{m} a_i N^i$$

The above equation was applied to fit the combined CO_2 isotherm data for **1** at 273.15 and 293.15 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S14 CO₂ adsorption isotherms for 1 with fitting by Virial 2 model. Fitting results: a0 = -3316.04238, a1 = 20.39141, a2 = 0.14961, b0 = 15.45207, b1 = -0.0987. Chi² = 0.00788, R² = 0.99591.