Supporting Information

Asymmetric Zinc(II) Complexes as Functional and Structural Models for Phosphoesterases

Lena J. Daumann, Laurene Marty, Gerhard Schenk, and Lawrence R. Gahan

Figure S1. Mass spectrum of $[Zn_2(CH_3L4)(CH_3COO)_2]PF_6$ in MeOH (a) and MeCN (b). Inset with red numbers shows the calculated isotope pattern for the major (identified) ion peak.

Figure S2 Mass spectrum of $[Zn_2(CH_3L5)(CH_3COO)_2]PF_6$ in MeOH (a) and MeCN (b). Inset with red numbers shows the calculated isotope pattern for the major peak.

Figure S3 a) Mass spectrum of $[Zn_2(CH_3L4)(CH_3COO)_2]PF_6$ in the presence of 1 eq. diphenylphosphate in MeCN. Final concentration of complex and substrate were both 10 μ M. b) Mass spectrum of $[Zn_2(CH_3L5)(CH_3COO)_2]PF_6$ in the presence of 1 eq. diphenylphosphate in MeCN. Final concentration of complex and substrate were both 10 μ M.

Figure S4 Aromatic region of CH₃HL4 and its zinc complex.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S8 31 P-NMR spectra of [Zn₂(CH₃L4)(CH₃COO)₂]PF₆ measured in CD₃CN in the presence of a) one equivalent DPP, b) two equivalents DPP and c) five equivalents DPP.

Figure S9 The ¹H-NMR spectrum of a) CH_3HL5 ; b) $[Zn_2(CH_3L5)(CH_3OO)_2]^+$ and c) $[Zn_2(CH_3L5)(CH_3OO)_2]^+ + 1$ equivalent DPP; d) $[Zn_2(CH_3L5)(CH_3OO)_2]^+ + 2$ equivalents DPP; e) $[Zn_2(CH_3L5)(CH_3OO)_2]^+ + 5$ equivalents DPP

Figure S10 31 P-NMR spectra of $[Zn_2(CH_3L5)(CH_3OO)_2]^+$ in CD₃CN the presence of a) 1 equivalent DPP, b) 2 equivalents DPP c) 5 equivalents DPP at room temperature.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S11 The ¹H-NMR spectrum in D₂O:CD₃CN (1:1) of a) CH₃HL5; b) CH₃HL5 + 1 eq. $Zn(OAc)_2$; c) CH₃HL5 + 2 eq. $Zn(OAc)_2$; d) CH₃HL5 + 3 eq. $Zn(OAc)_2$; e) CH₃HL5 + 3 eq. $Zn(OAc)_2$; + 1 eq. DPP; f) CH₃HL5 + 3 eq. $Zn(OAc)_2$; + 2 eq. DPP; g) [CH₃HL5 + 3 eq. $Zn(OAc)_2$; + 3 eq. DPP.

Figure S12 IR spectra of plain MR and [Zn₂(CH3L4)(CH₃COO)₂]⁺ immobilized on MR

Figure S13 XPS survey spectra of MR (left) and MR treated with Zn(CH₃COO)₂ (right)

Figure S14 XPS survey spectrum of MR-CH₃HL4