The molecular, electronic, bonding, and photophysical

features of the $[(c-Pt_3)Tl(c-Pt_3)]^+$ inorganic

metallocenes

Athanassios C. Tsipis* and George N. Gkekas

Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece, E-mail: attsipis@uoi.gr

S2

Table of Contents

Complete list of reference 14.	S 3
Figure S1. 3D contour plots of the bonding MOs related with $Pt_3 \cdots Tl^+ \cdots Pt_3$ covalent interactions.	S4
Figure S2. 3D contour plots of the MOs involved in the electronic transitions of the absorption spectra of the	;
$\{ [Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl) \}^+$ clusters at the B3LYP/LANL2TZ(f)(Pt)U6-31G(d,p)(E) level.	S5
Table S1. Structural changes of selected structural parameters of the $\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)\}^+$ sandwiches,	,
upon $S_0 \rightarrow T_1$ excitation, calculated at the B3LYP/LANL2TZ(f)(Pt) \cup 6-31G(d,p)(E) level.	S 6
Table S2. Absolute difference between the structural changes of selected structural parameters of the	;
$\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)\}^+$ sandwiches and $\{[Pt_3(\mu_2-L)_3(L')_3](\mu_6-Tl)\}^+$ half-sandwiches, upon S ₀)
\rightarrow T ₁ excitation, calculated at the B3LYP/LANL2TZ(f)(Pt) \cup 6-31G(d,p)(E) level.	S7
Table S3. Cartesian coordinates and energetic results of the $\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)]\}^+$ sandwich-type)
clusters at the B3LYP/LANL2TZ(f)(Pt) \cup 6-31G(d,p)(E) level.	S8-18

List of authors in Ref. 14

Gaussian 09, Revision A.02, Frisch, M. J.; Schlegel, H. B.; Scusseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millan, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda. R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2009

Fig. S1 3D contour plots of the bonding MOs related with Pt₃…Tl⁺…Pt₃ covalent interactions.

Fig. S2 3D contour plots of the MOs involved in the electronic transitions of the absorption spectra of the $\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)]\}^+$ clusters at the B3LYP/LANL2TZ(f)(Pt)U6-31G(d,p)(E) level.

Table S1. Structural changes of selected structural parameters of the $\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)\}^+$ sandwiches, upon $S_0 \rightarrow T_1$ excitation, calculated at the B3LYP/LANL2TZ(f)(Pt) \cup 6-31G(d,p)(E) level.^a

Parameter	1	2	3	4	5	6
Pt ₁ -Pt ₂	0.005	-0.009	-0.012	-0.009	-0.028	-0.108
Pt ₂ -Pt ₃	0.016	-0.02	-0.012	-0.428	-0.03	-0.136
Pt ₃ -Pt ₁	-0.018	-0.016	-0.012	0.184	-0.017	-0.074
Pt-L ₁	-0.01	-0.002	0.004	-0.024	-0.004	0.009
Pt-L ₂	0.004	0.003	0.003	0.009	-0.014	-0.004
Pt-L ₃	0.002	-0.023	0.002	-0.04	-0.015	0.028
Pt_1-X_1	0.074	-0.083	-0.02	-0.121	-0.048	-0.046
Pt_2-X_1	-0.117	0.06	0.009	0.009	-0.038	-0.011
Pt ₂ -X ₂	-0.097	0.017	-0.018	-0.036	-0.022	-0.036
Pt ₃ -X ₂	0.051	-0.009	0.009	-0.028	-0.041	-0.129
Pt ₃ -X ₃	-0.013	0.042	-0.018	0.134	-0.026	0.002
Pt ₁ -X ₃	0.027	-0.099	0.008	-0.015	-0.017	0.054
Cd-Tl	0.078	-0.223	0.3	0.5	1.167	0.703
<Pt ₁ -Pt ₂ -Pt ₃	-0.7	0	0	7	0.3	1
<Pt ₂ -Pt ₃ -Pt ₁	0.2	0.2	0	-7.3	-0.1	0
<Pt ₂ -Pt ₁ -Pt ₃	0.5	-0.1	0	0.3	-0.2	-1
<pt-x<sub>1-Pt</pt-x<sub>	1.3	0.2	-0.2	-5.2	0.7	-2.3
$< X_1$ -Pt- X_2	6.1	-3.6	1.4	8.7	-5.9	-2.1
$< X_1$ -Pt-L ₁	-0.7	-0.7	9.1	4.1	2.5	1.8
<tl-cd-pt1< td=""><td>-17.3</td><td>3.2</td><td>0.2</td><td>-2.6</td><td>9.7</td><td>-20.8</td></tl-cd-pt1<>	-17.3	3.2	0.2	-2.6	9.7	-20.8

^a Positive sign means increase while negative sign means decrease of the structural parameter.

Table S2. Absolute difference between the structural changes of selected structural parameters of the $\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)\}^+$ sandwiches and $\{[Pt_3(\mu_2-L)_3(L')_3](\mu_3-Tl)\}^+$ half-sandwiches, upon $S_0 \rightarrow T_1$ excitation, calculated at the B3LYP/LANL2TZ(f)(Pt) \cup 6-31G(d,p)(E) level.^a

Parameter	1	2	3	4	5	6
Pt ₁ -Pt ₂	0.004	0.003	0.063	0.009	0.049	0.101
Pt ₂ -Pt ₃	0.007	0.018	0.035	0.419	0.014	0.028
Pt ₃ -Pt ₁	0.009	0.076	0.088	0.135	0.024	0.036
Pt-L ₁	0.008	0.008	0.004	0.005	0.012	0.004
Pt-L ₂	0.002	0.008	0.007	0.011	0.011	0.011
Pt-L ₃	0.000	0.008	0.015	0.002	0.002	0.027
Pt_1-X_1	0.062	0.001	0.107	0.060	0.022	0.035
Pt ₂ -X ₁	0.105	0.015	0.075	0.047	0.012	0.040
Pt ₂ -X ₂	0.085	0.058	0.084	0.017	0.034	0.007
Pt ₃ -X ₂	0.039	0.073	0.162	0.026	0.027	0.109
Pt ₃ -X ₃	0.001	0.47	0.055	0.063	0.008	0.043
Pt_1-X_3	0.015	0.079	0.054	0.016	0.039	0.016
Cd-Tl	0.194	0.008	0.600	0.39	0.104	0.499
<Pt ₁ -Pt ₂ -Pt ₃	0.7	2.1	0.0	5.5	0.1	0.6
<Pt ₂ -Pt ₃ -Pt ₁	0.2	0.8	1.0	1.4	0.7	1.7
<Pt ₂ -Pt ₁ -Pt ₃	0.5	1.0	1.5	7.1	0.2	1.1
<pt-x<sub>1-Pt</pt-x<sub>	1.1	0.8	3.3	4.9	13	1.4
$< X_1$ -Pt- X_2	5.2	7.7	3.8	5.0	5.3	22.9
$< X_1$ -Pt-L ₁	0.6	2.3	9.025	2.0s	1.5	6.6
<tl-cd-pt1< td=""><td>17.3</td><td>12.3</td><td>0.153</td><td>9.5</td><td>2.9</td><td>10.3</td></tl-cd-pt1<>	17.3	12.3	0.153	9.5	2.9	10.3

Table S3. Cartesian coordinates and energetic results of the $\{[Pt_3(\mu_2-L)_3(L')_3]_2(\mu_6-Tl)]\}^+$ sandwich-type clusters at the B3LYP/LANL2TZ(f)(Pt) \cup 6-31G(d,p)(E) level.

	1
Pt	-1.4309523655 0.9508380498 -2.2778883604
Pt	-0.1319075362 -1.1690464981 -3.4347748765
Pt	1.3029807354 0.9419837613 -2.4212572759
0	-3.2128072739 -1.1845526415 -3.6443278952
0	2.9270589803 -1.2699431576 -3.8502703396
0	0.0048344384 3.5144097278 -1.3166250206
0	-0.1894873409 -3.916950797 -4.7890211964
0	4.0184293399 2.2303290602 -1.8253166783
0	-4.0369208145 2.2922339021 -1.3871751369
С	-2.188852744 -0.7623407951 -3.295061768
С	3.0062830586 1.7516519313 -2.0498598432
С	-0.0093091525 2.4275414988 -1.7314349687
С	1.9457704703 -0.7998892437 -3.443215395
С	-0.1672037412 -2.8922517236 -4.286177153
С	-3.0671802986 1.7912052878 -1.7245122378
Tl	-0.172327554 -0.9834369318 -0.048568264
Pt	-0.3448901346 1.5025053966 2.4837736913
Pt	-0.934099773 -1.0931582954 3.1594256763
Pt	1.6358911294 -0.393798075 2.5243675588
0	-3.2696225928 0.9284650194 3.2931012292
0	1.2275866978 -3.2435902533 3.6681912604
0	2.5108487427 2.5026757895 1.8816248269
0	-3.0147468297 -3.1928303087 3.9666813719
0	4.5755196408 -1.1456744416 2.1005945593
0	-1.2694834907 4.3875873464 2.0248194186
С	-2.1674226505 0.6328125241 3.0734920898
С	3.4798759842 -0.8655834411 2.2617229465
С	1.7091167374 1.6970081931 2.1276074503
С	0.8477060739 -2.2123737448 3.2928749257
С	-2.2400783199 -2.4089690659 3.6679256445
С	-0.9231114164 3.312948926 2.1939377601

Thermal correction to Energy= 0.142719	
Thermal correction to Enthalpy= 0.143664	
Thermal correction to Gibbs Free Energy= 0.000322	2
Sum of electronic and zero-point Energies= -2077.1	67235
Sum of electronic and thermal Energies= -2077.12	23429
Sum of electronic and thermal Enthalpies= -2077.1	22484
Sum of electronic and thermal Free Energies= -2077	.265826

	2
T1	0.008646448 0.9891912478 -0.052472736
Pt	2.6024054329 -0.1036429568 -1.4123632688
Pt	2.1972579747 -1.3245848997 0.9728514255
Pt	3.0682009181 1.2465754847 0.8969864856
P	2.6604962762 -0.1676548717 -3.7068138791
P	1 6550897397 -3 1863297906 2 2078341837
P	3 7858480842 3 1148378578 2 0215762969
0	1 7419438977 -3 0693883912 -1 5328707537
õ	2 8236478505 -0 0232129799 3 7075462374
õ	3 9542373318 2 6756526908 -1 6961910537
C	2 0074297979 -2 0762283533 -0 9653081785
C	2.0074227777 2.0702203555 0.2035001705
C	3 455720157 1 8107568912 -1 0860685141
C Dt	-2 5050664431 0.0067877143 1.4300010730
Γt Dt	-3.0620170202 1.2701/31301 -0.06057/5268
Γt Dt	-2.2571066818 -1.3123416402 -0.8598865462
P.	-2 61/64/907/3 0 21/11/29608 3 7230170553
P.	-3 7/866/5/72 3 0759565337 -2 2230795288
P.	-1 7734186117 -3 2726562525 -1 9590412955
0	-3.8690462874 2.9252215954 1.5183035155
0	-2 9121471635 -0 2121099631 -3 6755494076
0	-1 8323002273 -2 8788786017 1 7661166901
C	-3 4025620060 2 0035866640 0 9688585554
C	-2.7829907056 _0.1297314656 _2.5138542787
C	-2.06753176 -1.9213714628 1.128294467
н	3 9305608857 _0 0519302232 _4 3106606104
н	1 9756568947 0 8252299357 -4 4402422991
н	2 1888178177 -1 3155627522 -4 3783468342
Н	2 7419190346 -3 8672285986 2 7968288442
н	1 0086905618 -4 2708622919 1 581297967
н	0.8319252001 -3.04227514 -3.3431005826
н	4 1681223822 4 2558060183 1 2854511927
Н	4 9290099715 2 965854874 2 834990721
Н	2 9225732744 3 7204103337 2 9600087113
Н	-2.1542132073 -0.8868842668 4.4759803281
н	-3 8717287579 0 4034761181 4 3353563408
н	-1 89805922 1 2471736342 4 3648555058
Н	-4 1004212787 4 2753671756 -1 5692858217
Н	-4 9006718295 2 8938016802 -3 0170011202
Н	-2.8792066341 3.5926054495 -3.2078073567
Н	-1 1616422104 -4 3302134428 -1 2562260451
Н	-0 9449325319 -3 2342920823 -3 0989970839
Н	-2.8801966211 -3.9590967342 -2.5026370649
**	2.0001/00211 0.00/07012 2.0020070019
Zer	o-point correction= 0.217979 (Hartree/Pa
	· · · · · · · · · · · · · · · · · · ·

Zero-point correction=0.217979 (Hartree/Particle)Thermal correction to Energy=0.265417Thermal correction to Enthalpy=0.266361Thermal correction to Gibbs Free Energy=0.119008

Sum of electronic and zero-point Energies=	-3456.039592
Sum of electronic and thermal Energies=	-3455.992155
Sum of electronic and thermal Enthalpies=	-3455.991211
Sum of electronic and thermal Free Energies=	-3456.138563

	3
Pt	1.4493314742 -0.5658295342 -2.829271848
Pt	-0.2338715088 1.5381202252 -2.830771315
Pt	-1.2148393295 -0.971490498 -2.8276477736
Р	3.6339846758 -1.2199147806 -2.8203030457
Р	-0.7604544828 3.7570252408 -2.8219351834
Р	-2.8740933184 -2.5358525901 -2.8126493172
N	2.8742584578 2.1577579825 -3.1704192266
С	1.8722842044 1.4872090222 -2.9789482368
C	3 1036413562 3 5683042409 -3 372870795
N	-3 3057828249 1 4097461986 -3 1696827062
$\hat{\mathbf{C}}$	-2 223863263 0 8777290197 -2 9784031342
C	-4 6418692914 0 9018663551 -3 3715690749
N	0.431084542 _3.5698084194 _3.1510102615
C	0.3517968679 _2.3653099821 _2.9694513958
C	1 5363583327 -4 4776360539 -3 3455024945
н	<i>A</i> 1 <i>AA</i> 67 <i>A</i> 373 <i>A</i> _2 1327910637 _1 8673656675
н	A 5816994635 _0 1854877871 _2 6598506782
н	<i>A</i> 1761399057 _1 8253371859 _3 97753760 <i>A</i>
н	-2.1271789632 $A.062117756$ -2.6409735674
н Н	-0.5247308035 4.502117750 -2.0407755074
и П	0.2007858473 4.6605300030 1.8810866704
н Н	-3.6631969616 -2.7135623564 -3.9725515123
и П	3.0051707010 -2.7155025504 -5.7725515125
и П	-5.7251574517 -2.5151154001 -1.8054774682
и П	-2.4514075558 -5.8715500457 -2.0500705079
и П	2 8124781042 2 0246045682 2 6255864004
и П	2 1760872076 / 1508203221 - 2 3051627668
и П	A 000070338 1 2045682473 A 3600457702
и П	-4.999070538 1.2045082475 -4.5000457702 5 3152600180 1 3366088767 2 627341280
и П	-5.5152005185 1.5500088707 -2.027541285 4.6818866406 0.1023502483 -3.2084112205
и П	-4.0818800400 -0.1923392483 -3.2984112293 1 AA075A35A0 A 0A83A02077 A 3280051A07
и П	1.4497345349 -4.9463402077 -4.5269951407
н Н	2 5059/69151 -3 9678901595 -3 279366/356
Dt	1 4553004006 _0 550315124 _2 8266858065
Γι Dt	-0.2480017002 + 1.5374006085 + 2.8200858905
Γι Dt	-1.2480917002 1.3374990783 $2.8294078038-1.2047556688$ -0.9819011472 2.8260118096
Γι D	3 6457141123 _1 1838654434 _2 8120360481
I D	-0.7961560362 - 3.7511602022 - 2.8110814/35
I D	-2.8485400873 -2.5625207002 -2.80805171
N	2.8523673446 2.1868255544 3.1768016577
$\hat{\mathbf{C}}$	1 8582848458 1 506100080 2 9803235344
C	3 066/353/33 3 5988/087/6 3 3873001313
N	-3 31655216/1 1 3706600321 3 1783581075
C	-2 23080/3201 0 857/733971 2 98173210/1
$\frac{c}{c}$	-4 6471785895 0 859288317 3 3840590628
N	0.4660789275 _3.5635892608 _3.1540394751
$\hat{\mathbf{C}}$	0.3754301946 -2.3602890445 -2.9690177807
č	1.5797949939 -4 4595989581 3 3536791694
\sim	

H 4.1578117987 -2.1171454768 1.8806055396 H 4.5820012248 -0.1453220875 2.6173804851 H 4.201738649 -1.7523782554 3.9821580037 H -2.1569427338 4.0453368549 2.5778281625 H -0.6170111535 4.5085813189 3.9926419823 H -0.2173733854 4.669064053 1.9035908073 H -3.6382223662 -2.7458002924 3.9683811789 Н -3.8975652335 -2.5501158731 1.8602748288 H -2.4139090113 -3.8947086485 2.6365722492 H 3.5156724611 3.7541748963 4.3724596168 H 3.7679459106 3.9781345794 2.6388463912 H 2.1321127291 4.1713740747 3.3287030819 H -5.0046572132 1.1589281911 4.3733775128 H -5.326635606 1.2875186155 2.6415213577 H -4.6771174332 -0.2353841655 3.3114595177 H 1.4910599959 -4.9351728054 4.3346825057 H 1.5536153165 -5.250010279 2.5979930097 H 2.5438931894 -3.9385479284 3.2969861204 TI 0.0030674999 0.0082430729 -0.0004192946 Zero-point correction= 0.455852 (Hartree/Particle) Thermal correction to Energy= 0.515971 Thermal correction to Enthalpy= 0.516915 Thermal correction to Gibbs Free Energy= 0.339946 Sum of electronic and zero-point Energies= -3572.281699

Sum of electronic and thermal Energies=-3572.221580Sum of electronic and thermal Enthalpies=-3572.220636Sum of electronic and thermal Free Energies=-3572.397605

4

Pt	-2.11021 1.11185 -1.65503
Pt	-3.82041 0.361 0.66736
Pt	-3.46333 -1.52304 -1.33098
Р	-2.8634 2.33479 0.12103
Р	-2.35155 -0.62809 -3.12986
Р	-4.83995 0.99803 2.60113
Р	-4.01568 -3.53052 -2.23676
F	0.98942 1.04197 -2.62904
F	2.44008 2.79751 -4.05652
F	1.32316 5.12934 -4.94538
F	-1.29529 5.68401 -4.37122
F	-2.76981 3.95149 -2.93217
F	-2.15128 -2.43981 1.53207
F	-3.22493 -3.74839 3.61694
F	-5.92665 -3.97117 3.84733
F	-7.57186 -2.86833 1.98149
F	-6.5246 -1.55607 -0.12724
С	-0.962 2.42513 -2.72279
С	0.37179 2.19034 -3.04307
С	1.14931 3.07781 -3.78058
С	0.58923 4.26711 -4.23762
С	-0.74442 4.54489 -3.9425
С	-1.48565 3.629 -3.19694
С	-4.29111 -1.89271 0.61787
С	-3.49927 -2.50747 1.60863
С	-4.02011 -3.19952 2.69307
С	-5.40738 -3.318 2.81479
С	-6.2481 -2.74946 1.85484
С	-5.68096 -2.06698 0.78396
Н	-3.76196 3.39429 -0.13197
Н	-2.087 2.91843 1.14952
Η	-1.28071 -1.36825 -3.68291
Н	-3.09151 -0.36703 -4.30405
Η	-4.66444 0.17146 3.73129
Н	-6.2495 1.06227 2.56487
Η	-4.55432 2.24913 3.17885
Н	-4.60497 -4.50695 -1.40521
Η	-3.01283 -4.32255 -2.83731
Н	-4.96028 -3.52127 -3.28518
Tl	-0.0052 -0.41749 -0.04293
Pt	2.14828 0.78234 1.7711
Pt	3.40886 -1.82198 1.05947
Pt	3.83671 0.32134 -0.64091
Р	2.32452 -1.16302 2.97324
Р	2.9486 2.22592 0.19217
Р	3.88824 -3.95895 1.65884
Р	4.88297 1.19894 -2.46297
F	2.90488 3.37789 3.45047

F	1.48899 4.93104 5.13264
F	-1.149 4.39125 5.62576
F	-2.34566 2.25674 4.40634
F	-0.95448 0.68003 2.73223
F	6.47015 -1.78524 -0.14493
F	7.47535 -2.81324 -2.42493
F	5.79666 -3.57318 -4.42712
F	3.10405 -3.28984 -4.15971
F	2.0724 -2.26107 -1.90381
С	1.04456 1.96417 3.02342
С	1.60937 3.06578 3.66822
С	0.89916 3.88771 4.54238
С	-0.44429 3.61706 4.79689
С	-1.04504 2.52862 4.17126
С	-0.29757 1.73232 3.30913
С	4.22802 -1.92994 -0.92522
С	5.61117 -2.12766 -1.11857
С	6.15636 -2.6668 -2.27886
С	5.29837 -3.05911 -3.30915
С	3.9159 -2.91009 -3.16786
С	3.4173 -2.36512 -1.99287
Η	1.22708 -1.93877 3.414
Η	3.0702 -1.10396 4.17112
Η	3.88319 3.20441 0.59596
Η	2.19567 2.98152 -0.73701
Η	4.44341 -4.82308 0.69074
Η	2.85718 -4.79457 2.14085
Η	4.83135 -4.13697 2.69345
Η	4.67971 0.55508 -3.70208
Η	6.29385 1.20549 -2.42224
Η	4.64471 2.53117 -2.84897

0.390117 (Hartree/Particle)
0.466661
0.467605
ergy= 0.255986
ergies= -6370.875892
ies= -6370.799348
pies= -6370.798404
energies= -6371.010023

	5
Pt	1.2097684799 1.2895032055 3.6921577126
Pt	-1.2079154682 0.2218309217 2.8306102882
Pt	0.6163041669 -1.3982739401 4.1621475595
S	-0.3473342036 2.3318200935 2.3153540575
Р	1.0473296755 -3.3171363657 5.3826640148
S	2.6600510033 -0.3300451181 4.6004471585
S	-1.319679685 -2.1161630947 3.0756380824
Р	-3.421815978 0.5550960724 2.2017467162
Р	2.4946294312 3.1235313818 4.2763178852
0	0.1120372846 2.3523005943 0.8927762811
0	-1.0416275104 3.5406445463 2.7930401494
0	3.0074891932 -0.1581919575 6.0216977752
0	3.7160721457 -0.7291548615 3.6556209464
0	-1.0135370912 -2.7704670345 1.7803304229
0	-2.4027280533 -2.6870113348 3.8934294452
Η	0.6297230728 -3.2611060055 6.726154639
Η	2.3867105678 -3.724265767 5.5358697945
Η	0.4490304599 -4.5220795668 4.9669730879
Η	-4.0870753378 -0.4734410405 1.5136223468
Η	-3.7422151348 1.6724360971 1.4128428689
Η	-4.2748236928 0.7440861962 3.3069388013
Η	2.3707213766 4.3014546694 3.5144995993
Η	3.894980487 2.9760510844 4.3071279036
Η	2.2511818642 3.6199797263 5.5713015389
Tl	0.405341041 -0.5602122863 -0.02484714
Pt	-0.2832436252 1.2965682332 -2.7540945919
Pt	-1.7093803008 -0.9065932097 -3.6705203494
Pt	1.008778913 -0.652145039 -4.2570493236
S	-2.4638932384 0.6983755507 -2.1667364024
Р	2.7912827843 -1.2677050294 -5.599179395
S	2.033995719 1.1084267 -3.1197773739
S	-0.3469472238 -2.5082426524 -4.733471447
Р	-3.7267366644 -1.9014623392 -4.214896264
Р	-0.2820737447 3.4976961502 -2.0038463739
0	-2.4793542452 0.1690775133 -0.7685858683
0	-3.5883103124 1.5726724117 -2.5446030062
0	2.7076750554 2.148581171 -3.9146917595
0	2.7009963858 0.6473255005 -1.8779516377
0	-0.0505821383 -3.6579061184 -3.8630563705
0	-0.6317895299 -2.7517394541 -6.1581715404
H	2.72972854 -0.7723517567 -6.915741882
H	4.0848230004 -0.8601424099 -5.2206311916
H	3.0040780431 -2.6389324466 -5.8392163645
H	-5.//52495/20 -5.5055140043 -4.51846/4/66
H	-4.8399203213 -1.0010100036 -3.380336518
H	-4.2451499707 -1.5252019613 -5.4688428575
H	-1.500898/409 5.921105/246 -1.1413359/45
н	0.838/9110/3 3.9813//8418 -1.34169/2696

H -0.4052420678 4.4269514113 -3.0555606973

Zero-point correction=	0.227343 (Hartree/Particle)
Thermal correction to Energy=	0.284203
Thermal correction to Enthalpy=	0.285147
Thermal correction to Gibbs Free Ener	rgy= 0.115839
Sum of electronic and zero-point Ener	gies= -6067.569000
Sum of electronic and thermal Energie	es= -6067.512140
Sum of electronic and thermal Enthalp	bies= -6067.511196
Sum of electronic and thermal Free Er	nergies= -6067.680503

	6
Pt	3.8317051274 0.4944879711 -1.4868641212
Pt	2.9537407086 1.4040323904 0.8978642337
Pt	3.2100068179 -1.3384854195 0.5147746116
Р	4.7773459028 1.0340631837 -3.5201791137
Р	2.4220351354 3.2913367636 2.1221072236
Р	3.3968516434 -3.4925376357 1.3420091176
С	3.4052366462 2.4014179613 -0.8472152377
S	2.3753342 -0.2575653592 2.4409920532
S	3.6472156794 -1.8348433747 -1.7718104315
0	3.3431923908 3.4815031823 -1.2935626196
0	0.8957705192 -0.4807266711 2.5141952996
0	3.1128134893 -0.368901047 3.7116961867
0	4.8561421161 -2.6145678547 -2.0885006153
0	2.3859227836 -2.1988327134 -2.4592074499
Н	4.3127974308 0.3827206996 -4.6806274539
Н	6.1618317872 0.8014334768 -3.6439018026
Н	4.7035632409 2.3785143763 -3.935427589
Н	1.4296713064 3.1889286495 3.1144765821
Н	1.9480962961 4.394891878 1.3890119801
Н	3.4606116374 3.8952329051 2.8601734401
Η	2.6311161034 -3.8558155692 2.4673747043
Η	4.689040693 -3.8333869589 1.787127459
Η	3.1236320958 -4.576713609 0.4850702896
Pt	-4.056878761 -1.0312488341 -0.8355360079
Pt	-3.4670200632 1.6005665377 -0.6425870113
Pt	-2.6269640318 -0.1180284448 1.3655447099
Р	-5.2902076451 -2.63680108 -1.9442768887
Р	-3.8982072873 3.7078364938 -1.4743828669
Р	-1.9892141253 -0.4516066483 3.5706656627
С	-4.3741455386 0.5193515346 -2.1428213655
S	-2.0058331436 2.1500981696 1.1213867545
S	-3.0545374571 -2.3788825457 0.8121025387
0	-4.7562722443 0.6894006645 -3.2360815082
0	-0.5884447338 2.2549945476 0.6690539021
0	-2.4403586149 3.1140709782 2.150581102
0	-3.90983831 -3.1836400079 1.7019548707
0	-1.7855914474 -3.0069804364 0.3445832078
Η	-4.7101510505 -3.8997582404 -2.1784258551
Η	-6.497080392 -3.0286839817 -1.331059481
Η	-5.748393824 -2.3212275575 -3.2386674171
Η	-2.8422977786 4.6372536672 -1.5701748342
Η	-4.4301396815 3.7959581672 -2.7763472586
Η	-4.8377247799 4.4797882824 -0.7614852007
Η	-1.1938288043 0.5182335789 4.2025241295
Η	-3.0913608546 -0.5136295254 4.4463921443
Η	-1.3077986116 -1.6323968034 3.9112049241
Tl	0.084828429 -0.7544517414 -0.362729998

Zero-point correction=	0.224543 (Hartree/Particle)
Thermal correction to Energy=	0.278342
Thermal correction to Enthalpy=	0.279286
Thermal correction to Gibbs Free Energy	rgy= 0.117029
Sum of electronic and zero-point Energies= -5197.077251	
Sum of electronic and thermal Energie	es= -5197.023453
Sum of electronic and thermal Enthalp	bies= -5197.022509
Sum of electronic and thermal Free Er	nergies= -5197.184766