Supplementary Information for

Quinoline-Based Fluorescent Zinc Sensors with Enhanced Fluorescence Intensity, Zn/Cd Selectivity and Metal Binding Affinity by Conformational Restriction

Yuji Mikata,^{a,*} Yumi Sato,^b Saaya Takeuchi,^b Yasuko Kuroda,^b Hideo Konno^c and Satoshi Iwatsuki^d

^aKYOUSEI Science Center and ^bDepartment of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan, ^cNational Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan and ^dDepartment of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan

Table S1. Crystallographic Data for TQDACH, [Zn(TQDACH)](ClO₄)₂ CH₃OH and

$[Zn(1\text{-}isoTQDACH)](ClO_4)_2 \cdot 2CH_3OH$

	TQDACH	[Zn(TQDACH)]- (ClO4)2 ·CH3OH	[Zn(1-isoTQDACH)]- (ClO ₄) ₂ ·2CH ₃ OH
Formula	$C_{46}H_{42}N_6$	C ₄₇ H ₄₆ Cl ₂ N ₆ O ₉ Zn	$C_{48}H_{50}Cl_2N_6O_{10}Zn$
FW	678.88	975.20	1007.24
Crystal system	triclinic	triclinic	monoclinic
Space group	P - 1	<i>P-</i> 1	$P2_1/n$
<i>a,</i> Å	9.953(2)	11.522(3)	10.8914(3)
<i>b,</i> Å	13.236(3)	11.821(3)	36.6116(12)
<i>c,</i> Å	13.693(3)	17.615(4)	23.0800(8)
α, deg	90.195(3)	102.860(3)	90
β, deg	91.519(3)	94.743(2)	93.212(2)
γ, deg	93.871(3)	112.892(2)	90
<i>V</i> , Å ³	1799.0(6)	2116.2(9)	9188.7(5)
Ζ	2	2	8
D_{calc} , g cm ⁻³	1.253	1.530	1.456
μ, mm ⁻¹	0.0748	0.7744	0.7175
2θ _{max} , deg	55.0	55.0	55.0
temp, K	123	123	123
no. reflns collected	14136	16476	89677
no. reflns used	7831	9221	20934
no. of params	637	586	1261
R _{int}	0.0204	0.0174	0.0456
Final R1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0467	0.0370	0.0670
wR2 (all data) ^b	0.1193	0.0971	0.1710
GOF	1.134	1.051	1.084

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}]]^{1/2}.$

 Table S2.
 Crystallographic Data for [Cu(TQDACH)](ClO₄)₂ 3CH₃OH,

[Cd(TQDACH)](ClO₄)₂ and [Cd(1-isoTQDACH)(CH₃OH)](ClO₄)₂ 0.5CH₃OH ·2H₂O

	[Cu(TQDACH)]- (ClO4)2 3CH3OH	[Cd(TQDACH)]- (ClO ₄) ₂	[Cd(1-isoTQDACH)- (CH ₃ OH)](ClO ₄) ₂ · 0.5CH ₃ OH ·2H ₂ O
Formula	C49H54Cl2CuN6O1	1C46H42CdCl2N6O8	C47.5H52CdCl2N6O11.5
FW	1037.45	990.19	1074.28
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	$Pna2_1$	С2/с	P21/c
<i>a,</i> Å	18.493(5)	15.6590(6)	27.2692(7)
<i>b,</i> Å	12.269(3)	20.5854(5)	16.0487(3)
<i>c,</i> Å	20.647(5)	13.7274(5)	22.2666(5)
β, deg	90	112.878(2)	105.8950(10)
<i>V</i> , Å ³	4685(2)	4076.9(3)	9372.1(4)
Ζ	4	4	8
D_{calc} , g cm ⁻³	1.471	1.613	1.523
μ, mm ⁻¹	0.6494	0.7334	0.6497
$2\theta_{max}$, deg	55.0	55.0	55.0
temp, K	123	123	123
no. reflns collected	29566	15626	71588
no. reflns used	8944	4560	21185
no. of params	631	285	1225
R _{int}	0.0356	0.0196	0.0248
Final <i>R</i> 1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0657	0.0546	0.0601
wR2 (all data) ^b	0.1832	0.1411	0.1683
GOF	1.079	1.049	1.034

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}]]^{1/2}.$

Table S3. Crystallographic Data for [Cd(TQEN)](ClO₄)₂·2CHCl₃, [Cd(1-

isoTQEN)(CH₃CN)](ClO₄)₂·CH₃CN and [Cd(TPEN)(H₂O)](ClO₄)₂

	[Cd(TQEN)]- (ClO ₄) ₂ ·2CHCl ₃	[Cd(1-isoTQEN)- (CH ₃ CN)](ClO ₄) ₂ · CH ₃ CN	[Cd(TPEN)- (H ₂ O)](ClO ₄) ₂
Formula	C44H38CdCl8N6O8	C46H42CdCl2N8O8	$C_{26}H_{30}CdCl_2N_6O_9$
FW	1174.85	1018.20	753.87
Crystal system	triclinic	monoclinic	monoclinic
Space group	<i>P-</i> 1	$P2_{1}/n$	C2/c
<i>a</i> , Å	11.8217(10)	14.3782(5)	15.143(2)
<i>b,</i> Å	12.9831(9)	16.4845(5)	9.9383(13)
<i>c,</i> Å	16.441(2)	19.2641(7)	19.312(3)
α, deg	103.246(3)	90	90
β, deg	101.278(4)	101.197(2)	94.459(2)
γ, deg	96.489(3)	90	90
<i>V</i> , Å ³	2375.7(4)	4474.8(3)	2897.7(7)
Ζ	2	4	4
D_{calc} , g cm ⁻³	1.642	1.511	1.728
μ, mm ⁻¹	0.9691	0.6717	1.0035
2θ _{max} , deg	55.0	55.0	54.9
temp, K	223	223	123
no. reflns collected	23538	44004	10553
no. reflns used	10831	10239	3306
no. of params	604	586	260
R _{int}	0.0175	0.0229	0.0140
Final <i>R</i> 1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0447	0.0402	0.0198
wR2 (all data) ^b	0.1250	0.1087	0.0513
GOF	1.050	1.065	1.097

$${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$$

Table S4. Interatomic distances (Å) and angles (°) for TQDACH,

[Zn(TQDACH)](ClO ₄) ₂ ·CH ₃ OH and	[Zn(1-isoTQDACH)](ClO ₄) ₂ ·2CH ₃ OH
--	--

	[Zn(TQDACH)]-	[Zn(1-isoTQDACH)]-
	(CIO4)2 CI 13OI 1	$(CIO4)_2$ 2CI 13OI 1
Zn-N1	2.2043(19)	2.178(3), 2.210(3)
Zn-N2	2.1804(16)	2.174(3), 2.168(3)
Zn-N3	2.1421(14)	2.115(3), 2.171(3)
Zn-N4	2.2887(18)	2.175(3), 2.117(3)
Zn-N5	2.1269(17)	2.139(3), 2.148(3)
Zn-N6	2.4848(19)	2.171(3), 2.141(3)
N1-Zn-N2	80.02(6)	81.48(11), 80.82(11)
N1-Zn-N3	76.43(7)	79.88(11), 76.40(11)
N1-Zn-N4	79.89(7)	79.85(11), 80.60(11)
N1-Zn-N5	157.13(6)	151.75(10), 155.58(12)
N1-Zn-N6	89.78(7)	95.78(11), 105.44(11)
N2-Zn-N3	152.98(7)	157.90(11), 150.08(11)
N2-Zn-N4	91.71(7)	103.86(11), 109.13(12)
N2-Zn-N5	77.43(7)	77.04(11), 79.64(11)
N2-Zn-N6	78.29(6)	79.44(10), 80.47(11)
N3-Zn-N4	96.97(6)	84.42(11), 86.12(11)
N3-Zn-N5	126.39(8)	124.27(11), 126.66(12)
N3-Zn-N6	88.51(6)	90.73(11), 87.12(11)
N4-Zn-N5	96.95(7)	87.66(11), 92.12(11)
N4-Zn-N6	166.78(7)	173.96(11), 169.60(12)
N5-Zn-N6	89.36(6)	98.07(11), 85.60(12)

Zn-N3-C(4)168.46(10)173.60(15), 174.72(16)Zn-N4-C(4)152.57(10)173.61(16), 163.64(16)Zn-N5-C(4)166.67(10)166.90(15), 168.63(16)Zn-N6-C(4)139.56(10)167.98(15), 175.69(16)

Table S5. Interatomic distances (Å) and angles (°) for

[Cu(TQDACH)](ClO₄)₂·3CH₃OH·H₂O, [Cd(TQDACH)](ClO₄)₂ and [Cd(1-

isoTQDACH)(CH₃OH)](ClO₄)₂ 0.5CH₃OH ·2H₂O

	[Cu(TQDACH)]- (ClO4)2 ·3CH3OH	[Cd(TQDACH)]- (ClO ₄) ₂	[Cd(1-isoTQDACH)- (CH ₃ OH)](ClO ₄) ₂ · 0.5CH ₃ OH 2H ₂ O
M-N1	2.045(4)	2.386(4)	2.417(3), 2.419(3)
M-N2	2.039(4)		2.428(4), 2.417(3)
M-N3	2.032(4)	2.289(4)	2.447(3), 2.432(3)
M-N4	2.345(4)	2.472(3)	2.319(4), 2.314(4)
M-N5	2.068(4)		2.411(4), 2.449(3)
M-N6	2.824(4)		2.330(4), 2.339(4)
M-01	-	-	2.434(3), 2.407(3)
N1-M-N2	85.53(15)	73.78(12)	73.77(10), 74.65(10)
N1-M-N3	79.39(16)	72.18(14)	68.21(10), 68.48(11)
N1-M-N4	80.32(14)	74.40(12)	74.22(12), 73.43(11)
N1-M-N5	165.26(15)	137.72(15)	127.09(11), 128.11(10)
N1-M-N6	91.77(13)	102.02(12)	98.02(12), 97.56(11)
N2-M-N3	159.03(17)	137.72(15)	134.51(12), 133.71(12)
N2-M-N4	96.90(14)	102.02(12)	109.48(11), 108.24(11)
N2-M-N5	80.21(16)	72.18(14)	68.91(12), 68.54(11)
N2-M-N6	75.90(13)	74.40(12)	71.26(12), 71.36(11)
N3-M-N4	94.85(15)	92.25(11)	83.47(11), 87.29(11)
N3-M-N5	113.34(17)	148.53(14)	156.33(13), 157.74(13)
N3-M-N6	89.99(14)	88.93(11)	90.01(11), 86.54(11)
N4-M-N5	104.99(15)	88.93(11)	84.29(12), 84.66(10)
N4-M-N6	169.78(12)	175.65(9)	171.29(11), 170.50(11)
N5-M-N6	81.18(14)	92.25(11)	103.80(12), 103.65(10)
O1-M-N1	-	-	150.46(9), 149.69(9)
O1-M-N2	-	-	131.04(10), 131.72(9)
O1-M-N3	-	-	82.31(10), 81.23(10)
O1-M-N4	-	-	105.08(12), 104.90(11)
O1-M-N5	-	-	81.43(11), 80.86(10)
O1-M-N6	-	-	79.64(12), 81.27(11)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

M-N3-C(4)	166.9(3)	164.75(18)	157.84(17), 157.14(17)
M-N4-C(4)	162.9(2)	140.48(14)	178.00(18), 175.44(14)
M-N5-C(4)	167.1(3)		157.97(17), 154.00(15)
M-N6-C(4)	116.57(18)		171.70(18), 156.50(18)

Table S6. Interatomic distances (Å) and angles (°) for [Cd(TQEN)](ClO₄)₂·2CHCl₃,

	[Cd(TQEN)]- (ClO ₄) ₂ ·2CHCl ₃	[Cd(1-isoTQEN)- (CH3CN)](ClO4)2 · CH3CN	[Cd(TPEN)- (H ₂ O)](ClO ₄) ₂
Cd-N1	2.400(3)	2.406(2)	2.4637(13)
Cd-N2	2.377(3)	2.4088(18)	
Cd-N3	2.354(3)	2.504(3)	2.4890(13)
Cd-N4	2.370(2)	2.338(2)	2.3568(12)
Cd-N5	2.376(3)	2.426(3)	
Cd-N6	2.435(2)	2.378(3)	
Cd-X	-	2.366(3) ^a	2.3884(18) ^b
N1-Cd-N2	74.69(10)	75.83(7)	73.96(5)
N1-Cd-N3	70.83(10)	67.43(7)	68.86(4)
N1-Cd-N4	75.53(8)	72.82(7)	71.35(4)
N1-Cd-N5	147.01(10)	124.72(7)	125.98(4)
N1-Cd-N6	88.81(8)	97.17(8)	106.58(4)
N2-Cd-N3	142.12(9)	131.42(7)	125.98(4)
N2-Cd-N4	92.00(9)	115.54(7)	106.58(4)
N2-Cd-N5	72.72(10)	68.68(7)	68.86(4)
N2-Cd-N6	74.25(8)	70.08(7)	71.35(4)
N3-Cd-N4	94.17(8)	83.07(8)	97.13(4)
N3-Cd-N5	141.81(10)	159.84(8)	163.67(5)
N3-Cd-N6	89.68(8)	83.85(8)	83.22(4)
N4-Cd-N5	100.57(8)	85.77(8)	83.22(4)
N4-Cd-N6	161.57(10)	165.87(8)	177.53(5)
N5-Cd-N6	87.22(8)	108.28(8)	97.13(4)
X-Cd-N1	-	$150.84(8)^{a}$	143.02(3) ^b
X-Cd-N2	-	$129.12(8)^{a}$	143.02(3) ^b
X-Cd-N3	-	83.48(9) ^a	81.83(3) ^b
X-Cd-N4	-	102.59(9) ^a	91.23(3) ^b
X-Cd-N5	-	82.63(9) ^a	81.83(3) ^b
X-Cd-N6	-	81.16(9) ^a	91.23(3) ^b
Cd-N3-C(4)	162.57(11)	159.24(11)	170.23(7)
Cd-N4-C(4)	164.21(15)	177.69(11)	172.52(7)

[Cd(1-isoTQEN)(CH₃CN)](ClO₄)₂·CH₃CN and [Cd(TPEN)(H₂O)](ClO₄)₂

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2013

C1	1
ъı	

Cd-N5-C(4)	165.98(13)	163.59(11)
Cd-N6-C(4)	147.24(13)	163.46(13)

$$a X = N$$

^b X = O.

Figure S1. Zinc titration profile for 34 μ M TQDACH in DMF/H₂O (1:1) at 25 °C. (a) UV-vis absorbance changes at 305 and 317 nm. (b) Fluorescence intensity changes ($\lambda_{ex} = 317$ nm) at 455 nm.

Figure S2. Zinc titration profile for 34 μ M 1-isoTQDACH in DMF/H₂O (1:1) at 25 °C. (a) UV-vis absorbance changes at 316 and 325 nm. (b) Fluorescence intensity changes (λ_{ex} = 325 nm) at 475 nm.

Figure S3. Fluorescence spectra of 34 μ M (a) TQDACH (λ_{ex} = 317 nm) and (b) 1isoTQDACH (λ_{ex} = 325 nm) in DMF/H₂O (1:1) at 25 °C in the presence of one equivalent of zinc (light blue, solid line with marks), cadmium (red, broken line with marks) and other metal ions (various colors, no marks).

Figure S4. ORTEP plot for [Cu(TQDACH)](ClO₄)₂ 3CH₃OH with 50% probability ellipsoids. Counter anions, hydrogen atoms and solvents were omitted for clarity.

Wavelength (nm)

Wavelength (nm)

Figure S5. Temperature-dependent UV-vis spectra of 34 μ M (a) TQEN-Zn complex and (b) TQDACH-Zn complex in acetonitrile.

TQDACH / DMF:H2O(1:1) pH 1.23 pH titration pH 2.05 pH 2.97 0.8 pH 3.92 0.7 pH 4.75 pH 5.46 0.6 pH 7.85 pH 8.19 pH 8.84 0.5 Absorbance pH 9.96 0.4 pH 12.00 pH 13.10 pH 13.96 0.3 0.2 0.1 0 280 300 340 360 260 320 Wavelength (nm)

Figure S6. UV-vis spectra of 34 μM TQDACH in DMF/water (1:1) at various pHs at 25 °C.

Figure S7. Curve fitting of the pH-dependent absorbance change of TQDACH in DMF/water (1:1) using SPECFIT¹ analysis.

Figure S8. UV-vis spectra of 34 μ M 1-isoTQDACH in DMF/water (1:1) at various pHs at 25 °C.

Figure S9. Curve fitting of the pH-dependent absorbance change of 1-isoTQDACH in DMF/water (1:1) using SPECFIT¹ analysis.

Figure S10. Competitive fluorescence intensity change of 34 μ M 1-isoTQEN at 477 nm (λ_{ex} = 328 nm) in the presence of one equivalent of TPEN with increasing amount of zinc in DMF/H₂O (1:1) at 25 °C.

Figure S11. ¹H NMR spectrum of TQDACH in CDCl₃.

Figure S12. ¹³C NMR spectrum of TQDACH in CDCl₃.

TQDACH

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Figure S13. ¹H NMR spectrum of 1-isoTQDACH in CDCl₃.

Figure S14. ¹³C NMR spectrum of 1-isoTQDACH in CDCl₃.

1-isoTQDACH

Figure S15. ¹H NMR spectrum of [Zn(TQDACH)](ClO₄)₂ in CD₃CN.

Figure S16. ¹³C NMR spectrum of [Zn(TQDACH)](ClO₄)₂ in CD₃CN.

Figure S17. ¹H NMR spectrum of [Zn(1-isoTQDACH)](ClO₄)₂ in CD₃CN.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

undid 201.1 285.1-499°T 256-1 702.5 20 282.5 74.681 950.92-40 23.172 60 691.69 687-99 80 100 002.811-123.831 124-704 120 -62-152-966 756.484 127.876 128.329 899.821 140 129-785 1-isoTQDACH-Zn complex 615.051 133-587 121.151 262.751 137.567 690°8ET 160 489°6ET-726.692 128.083 180 ere E

Figure S18. ¹³C NMR spectrum of [Zn(1-isoTQDACH)](ClO₄)₂ in CD₃CN.

References

(1) R. A. Binstead, B. Jung, A. D. Zuverbühler, SPECFIT/32, Global Analysis System,

ver 3.0; Spectrum Software Associates: Marlborough, USA 2000.