Electronic Supplementary Informations

for

Solvent viscosity tuned highly selective NIR and ratiometric fluorescent sensing of Fe³⁺ by a symmetric chalcone analogue

Uzra Diwan, Ajit Kumar, Virendra Kumar and K.K.Upadhyay*

Department of Chemistry (Centre for Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi-221005, India *E-mail: drkaushalbhu@yahoo.co.in, Tel: +91 542 670 2488

EXPERIMENTAL

1.1 Apparatus:

The IR Spectra for the receptors **1** was recorded on JASCO-FTIR Spectrophotometer while ¹H NMR and ¹³C NMR spectra for the same were recorded on a JEOL AL 300 FT NMR Spectrometer. Mass spectrometric analysis was carried out on a MDS Sciex API 2000 LCMS/Brukar Compass data analysis spectrometer. Electronic spectra were recorded at room temperature (298 K) on a UV-1700 pharmaspec spectrophotometer with quartz cuvette (path length=1 cm). Emission spectra were recorded on JY HORIBA Fluorescence spectrophotometer.

1.2 Materials:

All reagents for synthesis were purchased from Sigma-Aldrich and were used without further purification.

1.3 General Methods:

All titration experiments were carried at room temperature. All the cations were used as their chloride. The ¹H NMR spectra were recorded by using tetramethylsilane (TMS) as an internal reference standard...

1.4. Theoretical studies:

All DFT calculations were carried out with the Gaussian 03 program. The structures of receptor **1** in the absence and presence of anions were fully optimized in gaseous phase using B3LYP functional with the 6-31g** basis set. To visualize the optimized structures Gauss View software was used.

Figure S2: ¹³C NMR spectrum of receptor 1

Page | 4

Figure S3: IR spectrum of receptor 1

Figure S4: Mass spectrum of receptor 1

Figure S5: Absorbance of receptor 1 in different solvent at 1×10^{-5} M concentration

Table 1: UV-visible absorption band of receptor 1 in various solvents and corresponding absorbance

S. No	Solvent	Wavelength, nm	Absorbance
1.	ACN	423 nm	0.64
2.	CHCl ₃	430 nm	0.94
3.	CH ₂ Cl ₂	430 nm	0.98
4.	Diethyl ether	409 nm	0.74
5.	MeOH	435 nm	0.89
6.	EtOH	436 nm	0.73
7.	Acetone	424 nm	1.04
8.	DMF	434 nm	0.76
9.	DMSO	439 nm	0.87
10.	Water	435 nm	0.86
11.	Ethyl acetate	415 nm	0.75
12.	Ethylene glycol	445 nm	0.18
13.	Hexane	397, 426 nm	0.58, 0.38
12.	Toluene	410 nm	0.85

Figure S6: Colour changes of receptor 1 upon respective additions of Cu²⁺, from left to right; receptor 1, 1+10 equiv. Cu²⁺ and 1+5 equiv. of Cu²⁺

Figure S7: Family of absorbance spectra of receptor 1 upon concomitant additions of Fe²⁺ ion and its corresponding color changes

FIGURE S8: Job's Plot of Fe³⁺ with receptor 1 showing 1:1 stoichiometry

Figure S9: Job's Plot of Cu²⁺ with receptor 1 showing 1:2 stoichiometries

Figure S10: Mass spectrum of 1+Fe³⁺ complex

Figure S11: Mass spectrum of 1+Cu²⁺ complex

Figure S12: (a) Colour changes of receptor 1 upon addition of 5 equivalent various metal ions,

Figure S12: (b) Effect of various metal ions on the colour of 1+Fe³⁺ complex, from left to right; receptor 1, Fe³⁺, Cr³⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺ and Al³⁺

Figure S12: (c) Effect of various metal ions on the UV-visible spectra of 1+Fe³⁺ complex, from left to right; receptor 1, Fe³⁺, Cr³⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺ and Al³⁺

Electronic supplementary Informations

Figure S13: Non-linear fit plot of receptor 1with Fe³⁺

Figure S14: Determination of detection limit and calibration curves of receptor with Fe³⁺

Electronic supplementary Informations

Figure S15: Emission responses of receptor 1 in different solvents:

Figure S16: Non-linear fit plots of receptor 1 obtained from fluorescence titration data between receptor 1 and Fe³⁺

Figure S17: Determination detection limit and calibration curves of receptor 1 with Fe^{3+} through fluorescence data

