Tin(II) fluoride vs. tin(II) chloride – a comparison of their coordination chemistry with neutral ligands

Chitra Gurnani, Andrew L. Hector, Edward J. Jager, William Levason, David Pugh and Gillian Reid

SUPPLEMENTARY INFORMATION

Table S1 Crystal data and structure refinement details

	[Ph ₂ P(H)(CH ₂) ₂ P(H)Ph ₂][SnCl ₃] ₂	$C_{26}H_{26}Cl_6P_2Sn_2$	850.49	monoclinic	P2 ₁ /c (14)	11.407(5)	16.501(6)	9.233(4)	06	113.011(6)	06	1599.6(11)
	$[(o-C_6H_4(PMe_2)_2CH_2]I_2.dmso$	C ₁₁ H ₁₈ I ₂ P ₂ .Me ₂ SO	544.12	monoclinic	P2 ₁ /c (14)	9.035(2)	20.046(5)	11.377(3)	06	95.021(4)	06	2052.6(9)
	[CH2(PMe3)2][SnCl3]2	$C_7H_{20}Cl_6P_2Sn_2$	616.25	monoclinic	P2 ₁ /c (14)	8.793(3)	20.570(6)	10.823(4)	06	104.374(4)	06	1896.4(11)
m imelio ie oloni	Compound	Formula	Mg mol ⁻¹	Crystal system	Space group (No.)	a/Å	$b/{ m \AA}$	$c/ m \AA$	$\alpha^{ m o}$	β/°	$^{\prime \prime \circ}$	$U/Å^3$

Ζ	7	4	2
μ (Mo-K α) /mm ⁻¹	3.628	3.315	2.178
F(000)	1176	1048	828
Total reflections	11751	9685	9358
Unique reflections	4304	4638	3635
$R_{ m int}$	0.062	0.027	0.046
Goodness-of-fit on F^2	166.0	0.954	1.137
$R_1^{ m b} \left[I_{ m o} > 2 \sigma(I_{ m o}) ight]$	0.046	0.020	0.056
R_1 (all data)	0.064	0.023	0.066
$wR_2^{ m b}\left[I_o\!>\!2{ m \sigma}(I_o) ight]$	0.079	0.043	0.082
wR_2 (all data)	0.087	0.043	0.086

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Fig S1. Structure of [CH₂(PMe₃)₂][SnCl₃]₂ with atom numbering scheme Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Sn1-Cl1 = 2.5507(16), Sn1-Cl2 = 2.5482(17), Sn1-Cl3 = 10002.5299(16), Sn2-Cl4 = 2.5455(16), Sn2-Cl5 = 2.5445(17), Sn2-Cl6 = 2.337(2), P1-C4 = 1.814(6), P2-C4 = 1.803(5); P1-C4-P2 = 2.5299(16), P2-C14 = 2.5455(16), P2-C15 = 2.5445(17), Sn2-Cl6 = 2.337(2), P1-C4 = 1.814(6), P2-C4 = 1.803(5); P1-C4-P2 = 2.5495(17), P2-C15 = 2.5445(17), Sn2-Cl6 = 2.337(2), P1-C4 = 1.814(6), P2-C4 = 1.803(5); P1-C4-P2 = 2.5495(17), P2-C15 = 2.5445(17), Sn2-Cl6 = 2.337(2), P1-C4 = 1.814(6), P2-C4 = 1.803(5); P1-C4-P2 = 2.5495(17), P2-C15 = 2.5445(17), P2-C15 = 2.545(17), P2-P2, P2122.2(3). Positional disorder was observed for the phosphonium cations based around P1 and P4; the use of DFIX was necessary to restrain the P-C bonds to a sensible length. A second dataset of the same compound was obtained with the c axis of the unit cell $\sim 1/3^{rd}$ of the length (hence the cell volume was also $\sim 1/3^{rd}$ of the size and Z = 8). However, there were clear (albeit weak) reflections which corresponded to the longer axis hence the larger cell was determined as correct.

1,1,3,3-tetramethylbenzodiphospho-1,3-diium diiodide

white precipitate formed which, upon cooling, was allowed to settle. The solid was isolated by decanting away the supernatant and drying *in vacuo*. Yield 0.440 g, 95%. Required for for C₁₁H₁₈I₂P₂ (465.9): C, 28.3; H, 3.9. Found: C, 28.8; H, 4.0%. ¹H NMR(d⁶dmso, 295 K): 2.56 (d, J_{HP} = 16.1 Hz, [12H]), 3.93 (t, J_{HP} = 13.7 Hz, [2H]), 8.17–8.25 (m, [2H]), 8.51–8.60 (m, [2H]). ¹³C {¹H} NMR $(d^{6}-dmso\ 295\ K)$: 11.42 (d, $J_{CP} = 50.8\ Hz$), 100.40 (s), 129.63 (s), 131.90 (t, $J_{CP} = 10.7\ Hz$), 135.81 (d, $J_{CP} = 6.8\ Hz$). ³¹ P{¹H} NMR Diiodomethane (0.268 g, 1.0 mmol) was added to a solution of diphos (0.198 g, 1.0 mmol) in PhMe (20 mL) and refluxed for 16 h. A (d⁶-dmso, 295 K): 50.4.

The structure is shown in Fig S2.

Figure S2. Crystal structure of [o-C₆H₄(PMe₂)₂(CH₂)]I₂·Me₂SO showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms and the dmso solvent molecule are omitted for clarity. Selected bond lengths (Å) and angles (°): P1–C11 = 1.8073(19), P2–C11 = 1.8130(19); P1–C11–P2 = 107.62(11).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S3 The structure of [Ph₂P(H)(CH₂)₂P(H)Ph₂][SnCl₃]₂ showing the cation and one anion. Ellipsoids are drawn at the 50% probability level and H atoms (bar PH) are omitted for clarity. Symmetry code 2-x, 1-y, 2-z Selected bond lengths (Å) and angles (°): P1-H1 = 1.37(5), Cl1-Sn1 = 2.5061(15) Cl2-Sn1 = 2.5064(16), Cl3-Sn1 = 2.5457(15), Cl1-Sn1-Cl2 = 91.28(5), Cl1-Sn1-Cl3 = 0.28(5), Cl2-Sn1 = 0.28(5), Cl2-Sn1 = 0.28(5), Cl2-Sn1 = 0.28(5), Cl2-Sn1-Cl3 = 0.28(5), Cl1-Sn1-Cl3 = 0.28(5), Cl2-Sn1-Cl3 = 0.28(5 90.27(5), Cl2-Sn1-Cl3 = 90.68(4).