Electronic Supplemental Information for

Structural Changes in the Alkaline Earth Uranyl Phosphites

Eric M. Villa, Juan Diwu, Evgeny V. Alekseev, Wulf Depmeier, Thomas E. Albrecht-Schmitt

Section 1: Results	
Section 1.1: $[(Ca^{2+})_{1.81}(UO_2^{2+})_{0.19}][(UO_2)_2(HPO_3)_4] \cdot 5H_2O$	2
Section 1.2: $Sr[(UO_2)(HPO_3)_2] \cdot 2H_2O$	6
Section 1.3: $Ba_2[(UO_2)_2(HPO_3)_4] \cdot 5H_2O_1$	9
Section 1.4: $Ba[U^{IV}(PO_4)_2]$	12
Section 2: References	15

Section 1.1: $[(Ca^{2+})_{1.81}(UO_2^{2+})_{0.19}][(UO_2)_2(HPO_3)_4]$ ·5H₂O.

Bond Distance	$(A) \text{ for } [(Ca^{2+})]$	$1.81(\mathrm{UO_2}^{2+})_{0.19}][(\mathrm{UO_2}^{2+})_{0.19}]]$	$D_2)_2(\mathrm{HPO}_3)_4] \cdot 5\mathrm{H}_2\mathrm{O}_3$	I
U(1)-O(2)	1.759(9)	P(2)-O(7)#4	1.520(10)	
U(1)-O(1)	1.774(9)	P(2)-O(8)#5	1.528(14)	
U(1)-O(4)	2.304(9)	P(2)-O(3)	1.532(9)	
U(1)-O(3)	2.338(8)	Ca(1)-O(8)	2.270(14)	
U(1)-O(7)	2.365(8)	Ca(1)-O(3W)	2.298(12)	
U(1)-O(6)#1	2.474(9)	Ca(1)-O(6)#3	2.333(8)	
U(1)-O(5)	2.487(10)	Ca(1)-O(5)	2.338(9)	
P(1)-O(6)	1.520(9)	Ca(1)-O(2W)	2.367(13)	
P(1)-O(5)#5	1.523(9)	Ca(1)-O(7)#4	2.468(11)	
P(1)-O(4)	1.537(10)	Ca(1)-O(3)	2.491(10)	

Table 1.1.1: Selected bond distances for $[(Ca^{2+})_{1.81}(UO_2^{2+})_{0.19}][(UO_2)_2(HPO_3)_4] \cdot 5H_2O$.

Figure 1.1.1: UV-vis-NIR absorbance for $[(Ca^{2+})_{1.81}(UO_2^{2+})_{0.19}][(UO_2)_2(HPO_3)_4] \cdot 5H_2O$. The characteristic U⁶⁺ transitions are seen between 370-500 nm.¹

Figure 1.1.2: Picture of the crystals of $[(Ca^{2+})_{1.81}(UO_2^{2+})_{0.19}][(UO_2)_2(HPO_3)_4] \cdot 5H_2O$.

Table 1.1.2: Bond Valence Sum	(BVS) calculations for	$f[(Ca^{2+})_{1.81}(UO_2^2)]$	$^{(+)}_{0.19}][(UO_2)_2(HPO_3)_4] \cdot 5H_2O.^2$
-------------------------------	------------------------	-------------------------------	--

			01,02 are	terminal	uranyl oxo grou	ips									
	vu = exp	[(R0 - d)/b].	O8 is a ter	minal P-C) unit										-
Phosphite			distance	vu	U(VI)		_	distance	vu				distance	vu	Total
R(0) : P-O	1.626	O(1)			R(0) : U-O	2.051	U(1)-O(1)	1.774	1.705	R(0) : Ca-O	1.967	O(1)			1.705
b	0.37	O(2)			b	0.519	U(1)-O(2)	1.759	1.755	b	0.37	O(2)			1.755
		P(2)-O(3)	1.532	1.289			U(1)-O(3)	2.338	0.575			Ca(1)-O(3)	2.491	0.243	2.107
		P(1)-O(4)	1.537	1.272			U(1)-O(4)	2.304	0.614			O(4)			1.886
		P(1)-O(5)	1.523	1.321			U(1)-O(5)	2.487	0.432			Ca(1)-O(5)	2.338	0.367	2.120
		P(1)-O(6)	1.52	1.332			U(1)-O(6)	2.474	0.443			Ca(1)-O(6)	2.333	0.372	2.146
		P(2)-O(7)	1.52	1.332			U(1)-O(7)	2.365	0.546			Ca(1)-O(7)	2.468	0.258	2.136
		P(2)-O(8)	1.528	1.303			O(8)					Ca(1)-O(8)	2.27	0.441	1.744
												Ca(1)-O2W	2.367	0.339	0.339
												Ca(1)-O3W	2.298	0.409	0.409
			-		R(0) : U-O	2.051	U(1)-O(1)	1.774	1.705		BVS for Phosph	nites			
	P1-O4,C	05,06			b	0.519	U(1)-O(2)	1.759	1.755		HP(3+)-O(2-)				
	P2-O3,C	07,08					U(1)-O(3)	2.338	0.575		Should Equal 4-	+ for PO3		-	
							U(1)-O(4)	2.304	0.614			-		Ca(1) BVS	2.428
H(P1)=	-0.152						U(1)-O(5)	2.487	0.432		P(1)BVS	3.925			
H(P2)=	0.013						U(1)-O(6)	2.474	0.443		P(2)BVS	3.924			
	Zero Pro	otons					U(1)-O(7)	2.365	0.546						
							U(1) BVS		6.070						

Figure 1.1.3: EDS/SEM image and elemental analysis by weight % for $[(Ca^{2+})_{1.81}(UO_2^{2+})_{0.19}][(UO_2)_2(HPO_3)_4] \cdot 5H_2O$.

All results in weight%

Section 1.2: Sr[(UO₂)(HPO₃)₂]·2H₂O.

Bond D	vistances (Å) for	$Sr[(UO_2)(HPO_3)_2]$	·2H ₂ O
U(1)-O(7)	1.789(7)	P(2)-O(3)	1.492(6)
U(1)-O(6)	1.800(6)	P(2)-O(8)#2	1.531(6)
U(1)-O(4)	2.295(5)	P(2)-O(4)	1.538(6)
U(1)-O(8)	2.300(6)	Sr(1)-O(1)#3	2.482(6)
U(1)-O(2)#1	2.341(6)	Sr(1)-O(5)#2	2.517(6)
U(1)-O(5)	2.413(5)	Sr(1)-O(3)#4	2.557(6)
U(1)-O(2)	2.535(6)	Sr(1)-O(3)	2.559(6)
P(1)-O(1)	1.488(7)	Sr(1)-O(1W)#4	2.604(7)
P(1)-O(5)	1.522(6)	Sr(1)-O(2W)	2.625(6)
P(1)-O(2)	1.569(6)	Sr(1)-O(6)#5	2.684(6)
		Sr(1)-O(8)#2	2.891(6)

Table 1.2.1: Selected bond distances for $Sr[(UO_2)(HPO_3)_2] \cdot 2H_2O$.

Figure 1.2.1: UV-vis-NIR absorbance for $Sr[(UO_2)(HPO_3)_2] \cdot 2H_2O$. The characteristic U^{6+} transitions are seen between 370-500 nm.¹

Figure 1.2.2: Picture of the crystals of Sr[(UO₂)(HPO₃)₂]·2H₂O.

Table 1.2.2: Bond Valence Sum (BVS) calculations for Sr[(UO₂)(HPO₃)₂]·2H₂O.²

			O6,O7 ar	e terminal	uranyl oxo gro	oups							
	vu = ex	p[(R0 – d)/b].	01,03 ar	e terminal	P-O units								
Phosphite			distance	vu	U(VI)				distance	vu		distance	vu
R(0) : P-O	1.626	P(1)-O(1)	1.488	1.452	R(0) : U-O	2.05	0	(1)					
b	0.37	P(1)-O(2)	1.569	1.167	b	0.519) U	(1)-O(2)	2.535	0.394	O(2)-U(1)	2.341	0.57
		P(2)-O(3)	1.492	1.436			0	(3)					
		P(2)-O(4)	1.538	1.269			U	(1)-O(4)	2.295	0.625			
		P(1)-O(5)	1.522	1.325			U	(1)-O(5)	2.413	0.498			
		O(6)					U	(1)-O(6)	1.8	1.622			
		O(7)					U	(1)-O(7)	1.789	1.657			
		P(2)-O(8)	1.531	1.293			U	(1)-O(8)	2.3	0.619			
			1			1.				1			
B (0) G C	a	a (1) a (1)	distance	vu	I	distance	e vu	1	Total				
R(0) : Sr-O	2.118	Sr(1)-O(1)	2.482	0.374					1.826				
Ь	0.37	0(2)	0.007	0.205	5 (1) O(2)	0.000		0.204	2.132				
		Sr(1)-O(3)	2.557	0.305	Sr(1)-O(3)	2.555	,	0.304	2.045				
		0(4)	2 517	0.240					1.895				
		Sr(1)-O(5)	2.517	0.340					2.103				
		Sf(1)-O(6)	2.084	0.217					1.839				
		$S_{r}(1) O(8)$	2 801	0.124					2.035				
		Sr(1)-O(8)	2.691	0.124					0.269				
		Sr(1)-O1W	2.004	0.209					0.209				
		Sf(1)-02w	2.625	0.254					0.254	J			
		B(0) · U-O	2 051	U(1)-O(2)	2 535 0	394		В	VS for Ph	osphites		
P1	-01 02 05	h	,) 519	D(2) - U(1)	2 3 4 1 0	572			P(3+)-O(2))		
P2	-03 04 08	Ŭ	,		U(1)-O(4)	2 295 0	625		S	nould Equi	al 4+ for PO3		
12	,01,00			1	$U(1)_{-}O(5)$	2413 0	498		0				
U(D1)-	0.120			1	U(1) O(6)	10 1	622		D	1)DVC			2 0 4 2
п(r1)= -	0.120				U(1)-U(0)	1.8 l.	022		P	1)872			3.943
H(P2)=	0.026				U(1)-U(7)	1./89 1.	657		P	2)BVS			3.998
Ze	ro Protons]		1	U(1)-O(8)	2.3 0.	619		_				
									Г	Sr(1) BV	s	2 186	

U(1) BVS

5.986

Section 1.3: Ba₂[(UO₂)₂(HPO₃)₄]·5H₂O.

U(1)-O(12)	1.775(6)	P(4)-O(4)	1.511(5)
U(1)-O(7)	1.788(5)	P(4)-O(9)#8	1.534(6)
U(1)-O(16)#1	2.296(6)	P(4)-O(8)#9	1.547(5)
U(1)-O(8)	2.318(5)	Ba(1)-O(14)#2	2.723(5)
U(1)-O(13)#2	2.341(5)	Ba(1)-O(10)#5	2.726(4)
U(1)-O(2)#2	2.494(6)	Ba(1)-O(2W)	2.760(7)
U(1)-O(14)#2	2.515(5)	Ba(1)-O(5)	2.832(5)
U(2)-O(11)	1.765(6)	Ba(1)-O(1)#4	2.846(6)
U(2)-O(3)	1.791(5)	Ba(1)-O(4)#4	2.860(5)
U(2)-O(15)#4	2.275(7)	Ba(1)-O(1W)	2.935(6)
U(2)-O(9)	2.316(5)	Ba(1)-O(8)	3.076(5)
U(2)-O(5)	2.339(5)	Ba(1)-O(15)#4	3.122(7)
U(2)-O(2)	2.514(6)	Ba(1)-O(10)	3.217(6)
U(2)-O(6)	2.529(5)	Ba(2)-O(1)	2.728(5)
P(1)-O(1)	1.508(5)	Ba(2)-O(6)	2.777(6)
P(1)-O(16)	1.526(6)	Ba(2)-O(13)#6	2.805(5)
P(1)-O(15)	1.546(7)	Ba(2)-O(4W)	2.827(8)
P(2)-O(10)	1.515(5)	Ba(2)-O(1W)#7	2.914(6)
P(2)-O(5)	1.534(6)	Ba(2)-O(1)#8	2.928(6)
P(2)-O(13)	1.544(5)	Ba(2)-O(4)	2.928(5)
P(3)-O(14)	1.515(6)	Ba(2)-O(16)#8	2.975(6)
P(3)-O(6)	1.524(6)	Ba(2)-O(4)#8	2.976(6)
P(3)-O(2)	1.559(5)	Ba(2)-O(9)	3.001(5)
		Ba(2)-O(10)#6	3.098(6)

Table 1.3.1: Selected bond distances for $Ba_2[(UO_2)_2(HPO_3)_4] \cdot 5H_2O$.

Figure 1.3.1: UV-vis-NIR absorbance for $Ba_2[(UO_2)_2(HPO_3)_4] \cdot 5H_2O$. The characteristic U⁶⁺ transitions are seen between 370-500 nm.¹

Figure 1.3.2: Picture of the crystals of Ba₂[(UO₂)₂(HPO₃)₄]·5H₂O.

-	vu = exp[(R0	- d)/b].		O4,O10 are t	erminal P	-O units	_															
Phosphite				distance	vu	ı	U(VI)						distan	ce	vu				distance		vu	
R(0) : P-O	1.626	P(1)-C	(1)	1.5	608	1.376	R(0) : 1	U-O		2.051 0	D(1)											
b	0.37	P(3)-C	(2)	1.5	59	1.199	b			0.519 1	U(2)-O(2)			2.514	0.410	U(1)	·O(2)			2.494	0.4	426
		O(3)								I	U(2)-O(3)			1.791	1.650							
		P(4)-C	(4)	1.5	11	1.365				(D(4)											
		P(2)-C	(5)	1.5	34	1.282				I	U(2)-O(5)			2.339	0.574							
		P(3)-C	(6)	1.5	24	1.317				I	U(2)-O(6)			2.529	0.398							
		O(7)								1	U(1)-O(7)			1.788	1.660							
		P(4)-C	(8)	1.5	547	1.238				I	U(1)-O(8)			2.318	0.598							
		P(4)-C	(9)	1.5	34	1.282				1	U(2)-O(9)			2.316	0.600							
		P(2)-C	(10)	1.5	515	1.350				(O(10)											
		O(11)									U(2)-O(11)			1.765	1.735							
		O(12)	(12)			1.240					U(1)-O(12)			1.775	1.702							
		P(2)-0	(13)	1.5	15	1.248					U(1) - O(13)			2.341	0.5/2							
		P(3)-U	(14)	1.5	15	1.350				1	U(1) - O(14)			2.515	0.409							
		P(1)-0	(15)	1.5	26	1.241				1	U(2) - O(15)			2.275	0.624							
		r(1)-0	(10)	1.5 1.5	20	1.510				di	0(1)-0(10)			2.290	0.024						T (1	
DOD D O		2.20	D (1) O(1)	distance	2.046	vu	0.000			distance	2 720	vu	0.000		uis	lance	0.000	vu	0.200		1 otal	
K(0) : Ba-O		2.29	Ba(1)-O(1)		2.840		0.225	Ba(2)-O(1)			2.728		0.225	Ba(2)-O(1)			2.928		0.306		2.12/	
U		0.57	O(2)																		2.034	
			$B_{2}(1) - O(4)$		2.86		0.214	$B_{2}(2) - O(4)$			2 928		0.214	$B_{2}(2) - O(4)$			2 976		0.178		1.050	
			Ba(1) - O(5)		2 832		0.214	Bu(2) 0(4)			2.720		0.214	Du(2) O(4)			2.970		0.170		2.088	
			Ba(2)-O(6)		2.032		0.268														1.984	
			O(7)																		1.660	
			Ba(1)-O(8)		3.076		0.120														1.955	
			Ba(2)-O(9)		3.001		0.146														2.029	
			Ba(1)-O(10)		2.726		0.308	Ba(1)-O(10)			3.217		0.082	Ba(2)-O(10))		3.098		0.082		1.821	
			O(11)																		1.735	
			O(12)																		1.702	
			Ba(2)-O(13)		2.805		0.249														2.069	
			Ba(1)-O(14)		2.723		0.310														2.069	
			Ba(1)-O(15)		3.122		0.106														1.996	
			Ba(2)-O(16)		2.975		0.157														2.091	
			Ba(1)-O1W		2.935		0.175	Ba(2)-O1W			2.915		0.185								0.360	
			Ba(1)-O2W		2.761		0.280														0.280	
L			Ba(2)-O4W		2.827		0.234				Г					-				L	0.234	
-			_	R(0) :	U-O	2.051	U(1)-O(7	7)	1.788	1.660	2.05	51 U(2))-O(2)	2.514	0.410			В	SVS for Ph	osphites.		
	P1-O1,O15,O16			b		0.519	U(1)-O(8	3)	2.318	0.598	0.5	19 U(2))-O(3)	1.791	1.650			Н	IP(3+)-O(2-)		
	P2-O5,O10,O13						U(1)-O(1	12)	1.775	1.702		U(2))-O(5)	2.339	0.574			S	hould Equ	al 4+ for.	PO3	
1	P3-O2,O6,O14						U(1)-O(1	13)	2.341	0.572		U(2))-O(6)	2.529	0.398			_				
	P4-O4,O8,O9						U(1)-O(1	14)	2.515	0.409		U(2))-O(9)	2.316	0.600			Р	(1)BVS		3.9	927
							U(1)-O(1	16)	2.296	0.624		U(2)) - O(11)	1.765	1.735			Р	(2)BVS		3.8	880
							U(1)-O(3	30)	2.35	0.562		U(2))-O(15)	2.275	0.649			Р	(3)BVS		3.8	866
H(P1)=	-0.214											-				4		Р	(4)BVS		3.8	885
H(P2)=	0.023						U(1) BV	S		6.126		U(2)	BVS		6.017							
H(P3)=	-0.087					_												В	a(1) BVS		2.0	048
H(P4)=	0.044																	В	8a(2) BVS		2.2	242
	Zero Protons																					

Table 1.3.2: Bond Valence Sum (BVS) calculations for $Ba_2[(UO_2)_2(HPO_3)_4] \cdot 5H_2O.^2$ 03,07,011,012 are terminal uranyl oxo groups

Section 1.4: Ba[U^{IV}(PO₄)₂].

Во	nd Distances (Å) for $Ba[U^{IV}(PO_4)]$	2]
U(1)-O(2)#1	2.230(15)	Ba(1A)-O(1W)#9	2.7845(4)
U(1)-O(2)#2	2.230(15)	Ba(1A)-O(1W)	2.7845(4)
U(1)-O(2)#3	2.230(15)	Ba(1A)-O(1)#10	2.826(14)
U(1)-O(2)#4	2.230(15)	Ba(1A)-O(1)#11	2.826(14)
U(1)-O(1)#5	2.456(15)	Ba(1A)-O(1)#12	2.826(14)
U(1)-O(1)#6	2.456(15)	Ba(1A)-O(1)#13	2.826(14)
U(1)-O(1)#7	2.456(15)	Ba(1A)-O(2)	3.296(13)
U(1)-O(1)	2.456(15)	Ba(1A)-O(2)#14	3.296(13)
P(1)-O(2)#7	1.517(14)	Ba(1A)-O(2)#7	3.296(13)
P(1)-O(2)	1.517(14)	Ba(1A)-O(2)#9	3.296(13)
P(1)-O(1)	1.541(17)		
P(1)-O(1)#7	1.541(17)		

Table 1.4.1: Selected bond distances for $Ba[U^{IV}(PO_4)_2]$.

Figure 1.4.1: UV-vis-NIR absorbance for Ba[$U^{IV}(PO_4)_2$]. The characteristic U^{4+} transitions are observed at approximately 429, 486, 495, 549, 649, 672, 880, 1070 and 1133, with the transitions at 649, 1070 and 1133 being the largest observed.³

Figure 1.4.2: Picture of the crystals of Ba[U^{IV}(PO₄)₂].

Table 1.4.2: Bond Valence Sum	(BVS) calculations	for $Ba[U^{IV}(PO_4)_2]$. ²
-------------------------------	--------------------	---

	vu = ex	p[(R0 - d)/b].													
Phosphate			distance	vu	U(IV)			distance	vu				distance	vu	Total
R(0) : P-O	1.604	P(1)-O(1)	1.541	1.186	R(0) : U-O	2.112	U(1)-O(1)	2.456	0.395	R(0) : Ba-O	2.29	Ba(1A)-O(1)	2.826	0.235	1.815
b	0.37	P(1)-O(2)	1.517	1.265	b	0.37	U(1)-O(2)	2.23	0.727	b	0.37	Ba(1A)-O(2)	3.296	0.066	2.058
					R(0) : U-O	2.051	U(1)-O(1)	2.456	0.395			BVS for Phosp	hate		
					b	0.519	U(1)-O(1)	2.456	0.395			Should Equal 5	+ for PO4		
	P1-O1,	01,02,02					U(1)-O(1)	2.456	0.395			P(1)BVS	4.901		
H(P1)=	0.254]					U(1)-O(1)	2.456	0.395			<u>-</u>		•	
	Zero Pr	otons					U(1)-O(2)	2.23	0.727						
							U(1)-O(2)	2.23	0.727						
							U(1)-O(2)	2.23	0.727						
							U(1)-O(2)	2.23	0.727						
							U(1) BVS		4.486						

Table 1.6.3: Shape8 calculations for U1 in $Ba[U^{IV}(PO_4)_2]$.⁴

	D4d	C2v	D2d
U1	20.0243	14.6568	10.5861

Section 2: References.

- 1. (a) J. T. Bell, R. E. Biggers, *J. Mol. Spectrosc.* 1965, **18**, 247. (b) H. D. Burrows, T. J. Kemp, *Chem. Soc. Rev.* 1974, **3**, 139.
- (a) I. D. Brown, D. Altematt, Acta Crystallogr., Sect. B: Struct. Sci. 1985, 41, 244. (b) N. E. Brese, M. O'Keeffe, Acta Crystallogr., Sect. B: Struct. Sci. 1991, 47, 192. (c) J. Loub, Acta Crystallogr., Sect. B: Struct. Sci. 1991, 47, 468. (d) P. C. Burns, R. C. Ewing, F. C. Hawthorne, Can. Mineral. 1997, 35, 1551. (e) A. J. Locock, P. C. Burns, Z. Kristallogr. 2004, 219, 259. (f) I. D. Brown, Chem. Rev. 2009, 109, 12.
- 3. D. Cohen, W. T. Carnall, J. Phys. Chem. 1960, 64, 1933.
- (a) D. L. Kepert, *Prog. Inorg. Chem.* 1978, 24, 179. (b) J. Xu, E. Radkov, M. Ziegler, K. N. Raymond, *Inorg. Chem.* 2000, 39, 4156. (c) A. V. Gorden, J. Xu, K. N. Raymond, P. Durbin, *Chem. Rev.* 2003, 103, 4207.