Electronic Supplementary Information for Dalton. Trans.

A series of 3D lanthanide frameworks constructed from aromatic multi- carboxylate ligand: structural diversity, luminescence and magnetic properties

Xun Feng ^a, Xun-Li Ling ^a, Lang Liu ^c, Hong-Liang Song ^a, Li-Ya Wang^{*,a, b}, Seik-Weng Ng ^{d,f}, Bei Ya Su ^a

1 Additional Figures

Fig. S1. Illustration of an individual dinuclear Nd_2 unit doubly linked by the carboxylic group from Hddp ligands viewed approximately down the *a c*-plane in **1**.

Fig. S2. Illustration of 1D double chain linked by the carboxylic group from Hddp ligands viewed along the 011 direction in **1**.

Fig. S3. 2D lattice layer constructed from DPPA and Nd(III) ions viewed down ac plane

Fig. S4 Prospective view of 3D porous framework with open channels viewed along the [011] direction in 1.

Fig. S5. View of an individual dinuclear Tb₂ units linked by the carboxylic group from HDDP ligands viewed approximately down the *ac*-plane in **3**.

Fig. S6. Projective view of 1D double chain structure of 3 viewed along a b plane

Fig. S7.Projective view of 3D packing structure of 3 viewed along bc plane

Fig. S8. Comparison of the experimental and simulated PXRD patterns for 1 and 2

Fig. S9 The X-ray powder diffraction diagrams of microcrystalline powders of 3 (Tb)

Fig. S10 The X-ray powder diffraction diagrams of microcrystalline powders of 4 (Yb)

Fig. S12. The thermal gravimetric analysis (TGA) diagram for powder 3

Fig. S13 The thermal gravimetric analysis (TGA) diagram for powder 4

Fig. S14 Excitation spectrum of compound 1 in solid state.

Fitting of the compound 1 based on Sm³⁺ ion and equations employed

The ⁶H ground term for Sm(II1) is split by spin-orbit coupling into six levels. The energies, E(J), increase from ⁶H_{5/2}, these energy is

$$E(J) = \lambda [J(J+1) - \frac{35}{4}]/2$$
eq (S1)

The energy of the ground state is again taken as the origin. The spin-orbit coupling parameter is of the order of 200 cm⁻¹, such that the first excited state ${}^{6}\text{H}_{7/2}$ can be populated at room temperature and above. The expression of the magnetic susceptibility taking into account the six states arising from ${}^{6}\text{H}$ is:

$$\chi_{\rm M} = \frac{\sum_{J=5/2}^{15/2} (2J+1)\chi(J) \exp[-E(J)/kT]}{\sum_{J=5/2}^{15/2} (2J+1) \exp[-E(J)/kT]}$$

The $\chi(J)$ is given by eq(2) and E(J) by eq(1). X_M may be expanded as:

$$\chi' = \frac{N\beta^2}{3kTx} \frac{a_1x + b_1 + (a_2x + b_2)e^{-7x/2} + (a_3x + b_3)e^{-8x} + (a_4x + b_4)e^{-27x/2} + (a_5x + b_5)e^{-20x} + (a_6x + b_6)e^{-55x/2}}{3 + 4e^{-7x/2} + 5e^{-8x} + 6e^{-27x/2} + 7e^{-20x} + 8e^{-55x/2}}$$

$$x = J / kT \qquad eq (2)$$

Parameters and value are as follow

$$a_{1} = 2.143; b_{1} = 7.347$$

$$a_{2} = 42.92; b_{2} = 1.641$$

$$a_{3} = 283.7; b_{3} = -0.6571$$

$$a_{4} = 620.6; b_{4} = -1.9400$$

$$a_{5} = 1122; b_{5} = -2.835$$

$$a_{6} = 1813; b_{6} = -3.556$$

Equation (3) was assigned as a molecular field approximation

$$\chi = \frac{\chi}{1 - (2zj'/Ng^2\beta^2)\chi} \qquad eq (3)$$

2 Supporting characterizations

IR spectra of complexes 1-4.

For **1**, IR (KBr pellet, cm⁻¹): 3384s, 3181br, 2973m, 1594s, 1529s, 1452s, 1410m, 1338s, 1279m, 1212s, 867m, 810s, 793s, 660s, 569m.

For **2**, IR: 3402s, 3122br, 2953m, 1623s, 1591s, 1413m, 1374s, 1279s, 1087s, 1245s, 929vs, 827s, 556m.

For **3**, IR: 3420vs, 1734s, 1626vs, 1612s, 1442s, 1423s, 1392s, 1329m, 1279s, 1068s, 832s, 763s, 698s.

For 4, IR: 3415vs, 1762s, 1686vs, 1622s, 1417s, 1392s, 1319m, 1273s, 1012vs, 873s, 810m, 663s.

3 Additional Tables

Polymer 1					
Nd(1)-O(3)	2.443(2)	Nd(1)-O(6)	2.445(2)	Nd(1)-O(5)#1	2.460(2)
Nd(1)-O(7)#2	2.476(2)	Nd(1)-O(4)#3	2.498(2)	Nd(1)-O(1)	2.515(2)
Nd(1)-O(1W)	2.522(2)	Nd(1)-O(1)#4	2.573(2)	Nd(1)-O(2)#4	2.625(2)
O(3)-Nd(1)-O(6)	139.20(7)	O(3)-Nd(1)-O(5)#1	97.37(8)	O(6)-Nd(1)-O(5)#1	70.41(8)
O(3)-Nd(1)-O(7)#2	148.95(7)	O(6)-Nd(1)-O(7)#2	66.76(7)	O(5)#1-Nd(1)-O(7)#2	73.65(8)
O(3)-Nd(1)-O(4)#3	76.13(7)	O(6)-Nd(1)-O(4)#3	136.15(7)	O(5)#1-Nd(1)-O(4)#3	143.35(7)
O(7)#2-Nd(1)-O(4)#3	93.30(8)	O(3)-Nd(1)-O(1)	66.09(7)	O(6)-Nd(1)-O(1)	73.14(7)
O(5)#1-Nd(1)-O(1)	75.90(7)	O(7)#2-Nd(1)-O(1)	135.70(7)	O(4)#3-Nd(1)-O(1)	129.55(8)
O(3)-Nd(1)-O(1W)	71.19(8)	O(6)-Nd(1)-O(1W)	133.93(8)	O(5)#1-Nd(1)-O(1W)	72.09(8)
O(7)#2-Nd(1)-O(1W)	77.78(8)	O(4)#3-Nd(1)-O(1W)	71.70(8)	O(1)-Nd(1)-O(1W)	121.60(7)
O(3)-Nd(1)-O(1)#4	84.15(7)	O(6)-Nd(1)-O(1)#4	82.26(7)	O(5)#1-Nd(1)-O(1)#4	139.69(7)
O(7)#2-Nd(1)-O(1)#4	122.17(7)	O(4)#3-Nd(1)-O(1)#4	76.31(7)	O(1)-Nd(1)-O(1)#4	67.97(7)
O(1W)-Nd(1)-O(1)#4	143.27(7)	O(3)-Nd(1)-O(2)#4	125.90(7)	O(6)-Nd(1)-O(2)#4	69.82(7)
O(5)#1-Nd(1)-O(2)#4	135.55(8)	O(7)#2-Nd(1)-O(2)#4	73.07(7)	O(4)#3-Nd(1)-O(2)#4	67.01(7)
O(1)-Nd(1)-O(2)#4	110.11(6)	O(1W)-Nd(1)-O(2)#4	127.03(7)	O(1)#4-Nd(1)-O(2)#4	50.24(6)
Polymer 2					
Sm(1)-O(1)	2.403(3)	Sm(1)-O(2)#2	2.470(3)	Sm(1)-O(4)#3	2.601(3)
Sm(1)-O(6)	2.414(3)	Sm(1)-O(1W)	2.479(3)	O(2)-Sm(1)#2	2.470(3)
Sm(1)-O(5)#1	2.425(3)	Sm(1)-O(3)	2.493(3)	O(3)-Sm(1)#3	2.524(3)
Sm(1)-O(7)	2.442(3)	Sm(1)-O(3)#3	2.524(3)	Sm(1)-C(1)#4	2.917(3)
O(1)-Sm(1)-O(6)	139.49(8)	O(7)-Sm(1)-O(3)#3	122.36(9)	O(5)#1-Sm(1)-O(1W)	72.38(10)
O(1)-Sm(1)-O(5)#1	97.04(10)	O(2)#2-Sm(1)-O(3)#3	76.18(9)	O(7)-Sm(1)-O(1W)	77.41(10)
O(6)-Sm(1)-O(5)#1	70.41(9)	O(1W)-Sm(1)-O(3)#3	143.06(9)	O(2)#2-Sm(1)-O(1W)	71.71(10)
O(1)-Sm(1)-O(7)	148.24(8)	O(3)-Sm(1)-O(3)#3	67.97(10)	O(1)-Sm(1)-O(3)	66.42(9)
O(6)-Sm(1)-O(7)	67.22(8)	O(1)-Sm(1)-O(4)#3	126.38(8)	O(6)-Sm(1)-O(3)	73.12(9)
O(5)#1-Sm(1)-O(7)	74.27(10)	O(6)-Sm(1)-O(4)#3	69.75(9)	O(5)#1-Sm(1)-O(3)	75.53(10)
O(1)-Sm(1)-O(2)#2	76.26(9)	O(5)#1-Sm(1)-O(4)#3	135.47(10)	O(7)-Sm(1)-O(3)	136.16(8)
O(6)-Sm(1)-O(2)#2	135.90(9)	O(7)-Sm(1)-O(4)#3	72.66(9)	O(2)#2-Sm(1)-O(3)	129.72(9)
O(5)#1-Sm(1)-O(2)#2	143.66(9)	O(2)#2-Sm(1)-O(4)#3	66.80(10)	O(1W)-Sm(1)-O(3)	121.72(10)
O(7)-Sm(1)-O(2)#2	92.65(9)	O(1W)-Sm(1)-O(4)#3	126.66(9)	O(1)-Sm(1)-O(3)#3	84.30(9)
O(1)-Sm(1)-O(1W)	70.86(10)	O(3)-Sm(1)-O(4)#3	110.41(9)	O(6)-Sm(1)-O(3)#3	82.42(9)
O(6)-Sm(1)-O(1W)	133.97(10)	O(3)#3-Sm(1)-O(4)#3	50.73(8)	O(5)#1-Sm(1)-O(3)#3	139.47(9)
Polymer 3					
Tb(1)-O(10)#1	2.264(4)	Tb(1)-O(5)#2	2.291(4)	Tb(1)-O(9)#3	2.302(4)

Table S1Selected bond lengths [Å] and angles [°] for complexes 1–4

Tb(1)-O(6)	2.338(4)	Tb(1)-O(8)#4	2.402(4)	Tb(1)-O(1)	2.428(4)
Tb(1)-O(7)#4	2.477(4)	Tb(1)-O(2)	2.765(6)		
O(10)#1-Tb(1)-O(5)#2	83.09(16)	O(10)#1-Tb(1)-O(9)#3	78.59(15)	O(5)#2-Tb(1)-O(9)#3	84.05(15)
O(10)#1-Tb(1)-O(6)	80.75(14)	O(5)#2-Tb(1)-O(6)	85.64(13)	O(5)#2-Tb(1)-O(8)#4	81.39(14)
O(9)#3-Tb(1)-O(8)#4	79.92(14)	O(6)-Tb(1)-O(8)#4	117.78(14)	O(10)#1-Tb(1)-O(1)	76.11(16)
O(8)#4-Tb(1)-O(1)	122.32(15)	O(9)#3-Tb(1)-O(1)	103.47(17)	O(6)-Tb(1)-O(1)	79.03(15)
O(5)#2-Tb(1)-O(7)#4	114.17(15)	O(9)#3-Tb(1)-O(7)#4	122.82(14)	O(6)-Tb(1)-O(7)#4	79.32(13)
O(8)#4-Tb(1)-O(7)#4	53.03(12)	O(1)-Tb(1)-O(7)#4	81.38(15)	O(10)#1-Tb(1)-O(2)	106.78(17)
O(9)#3-Tb(1)-O(2)	73.40(16)	O(6)-Tb(1)-O(2)	120.73(14)	O(8)#4-Tb(1)-O(2)	79.59(15)
O(1)-Tb(1)-O(2)	48.89(16)	O(7)#4-Tb(1)-O(2)	68.27(16)		
Polymer 4					
Polymer 4 Yb(1)-O(5)#1	2.205(2)	Yb(1)-O(4)#2	2.221(2)	Yb(1)-O(6)	2.227(2)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3	2.205(2) 2.280(2)	Yb(1)-O(4)#2 Yb(1)-O(7)#4	2.221(2) 2.305(3)	Yb(1)-O(6) Yb(1)-O(2)	2.227(2) 2.353(2)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3 Yb(1)-O(1)	2.205(2) 2.280(2) 2.419(2)	Yb(1)-O(4)#2 Yb(1)-O(7)#4	2.221(2) 2.305(3)	Yb(1)-O(6) Yb(1)-O(2)	2.227(2) 2.353(2)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3 Yb(1)-O(1) O(5)#1-Yb(1)-O(4)#2	2.205(2) 2.280(2) 2.419(2) 84.33(9)	Yb(1)-O(4)#2 Yb(1)-O(7)#4 O(5)#1-Yb(1)-O(6)	2.221(2) 2.305(3) 79.94(9)	Yb(1)-O(6) Yb(1)-O(2) O(4)#2-Yb(1)-O(6)	2.227(2) 2.353(2) 87.02(9)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3 Yb(1)-O(1) O(5)#1-Yb(1)-O(4)#2 O(5)#1-Yb(1)-O(3)#3	2.205(2) 2.280(2) 2.419(2) 84.33(9) 80.70(9)	Yb(1)-O(4)#2 Yb(1)-O(7)#4 O(5)#1-Yb(1)-O(6) O(4)#2-Yb(1)-O(3)#3	2.221(2) 2.305(3) 79.94(9) 85.56(8)	Yb(1)-O(6) Yb(1)-O(2) O(4)#2-Yb(1)-O(6) O(5)#1-Yb(1)-O(7)#4	2.227(2) 2.353(2) 87.02(9) 78.52(10)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3 Yb(1)-O(1) O(5)#1-Yb(1)-O(4)#2 O(5)#1-Yb(1)-O(3)#3 O(6)-Yb(1)-O(7)#4	2.205(2) 2.280(2) 2.419(2) 84.33(9) 80.70(9) 94.48(10)	Yb(1)-O(4)#2 Yb(1)-O(7)#4 O(5)#1-Yb(1)-O(6) O(4)#2-Yb(1)-O(3)#3 O(3)#3-Yb(1)-O(7)#4	2.221(2) 2.305(3) 79.94(9) 85.56(8) 87.10(10)	Yb(1)-O(6) Yb(1)-O(2) O(4)#2-Yb(1)-O(6) O(5)#1-Yb(1)-O(7)#4 O(4)#2-Yb(1)-O(2)	2.227(2) 2.353(2) 87.02(9) 78.52(10) 81.52(9)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3 Yb(1)-O(1) O(5)#1-Yb(1)-O(4)#2 O(5)#1-Yb(1)-O(3)#3 O(6)-Yb(1)-O(7)#4 O(6)-Yb(1)-O(2)	2.205(2) 2.280(2) 2.419(2) 84.33(9) 80.70(9) 94.48(10) 79.59(9)	Yb(1)-O(4)#2 Yb(1)-O(7)#4 O(5)#1-Yb(1)-O(6) O(4)#2-Yb(1)-O(3)#3 O(3)#3-Yb(1)-O(7)#4 O(3)#3-Yb(1)-O(2)	2.221(2) 2.305(3) 79.94(9) 85.56(8) 87.10(10) 117.66(9)	Yb(1)-O(6) Yb(1)-O(2) O(4)#2-Yb(1)-O(6) O(5)#1-Yb(1)-O(7)#4 O(4)#2-Yb(1)-O(2) O(7)#4-Yb(1)-O(2)	2.227(2) 2.353(2) 87.02(9) 78.52(10) 81.52(9) 116.19(10)
Polymer 4 Yb(1)-O(5)#1 Yb(1)-O(3)#3 Yb(1)-O(1) O(5)#1-Yb(1)-O(4)#2 O(5)#1-Yb(1)-O(3)#3 O(6)-Yb(1)-O(7)#4 O(6)-Yb(1)-O(2) O(4)#2-Yb(1)-O(1)	2.205(2) 2.280(2) 2.419(2) 84.33(9) 80.70(9) 94.48(10) 79.59(9) 114.54(9)	Yb(1)-O(4)#2 Yb(1)-O(7)#4 O(5)#1-Yb(1)-O(6) O(4)#2-Yb(1)-O(3)#3 O(3)#3-Yb(1)-O(7)#4 O(3)#3-Yb(1)-O(2) O(6)-Yb(1)-O(1)	2.221(2) 2.305(3) 79.94(9) 85.56(8) 87.10(10) 117.66(9) 122.00(8)	Yb(1)-O(6) Yb(1)-O(2) O(4)#2-Yb(1)-O(6) O(5)#1-Yb(1)-O(7)#4 O(4)#2-Yb(1)-O(2) O(7)#4-Yb(1)-O(2) O(3)#3-Yb(1)-O(1)	2.227(2) 2.353(2) 87.02(9) 78.52(10) 81.52(9) 116.19(10) 78.07(8)

Symmetry codes for **1**: #1, -x,-y+1,-z+1; #2, -x,-y+2,-z+1; #3, x-1,y+1,z; #4, -x+1,-y+2,-z+1; #5, x+1,y-1,z. for **2**: #1, x,y+1,z; #2, -x+2,-y-1,-z+2; #3, x+1,y+1,z; #4, x+1,y-1,z; #5, x-1,y-1,z; #6, x,y-1,z; #7, x-1,y+1,z; for **3**: #1, -x,-y+1,-z+1; #2, -x,-y+2,-z+1; #3, x-1,y+1,z; #4, -x+1,-y+2,-z+1; #5, x+1,y-1,z. for **4**: #1, x-1,y-1, z; #2, x-1,y,z; #3, -x+1,-y,-z+1; #4, x+1,y-1,z; #5, x+1, y, z; #6,x+1,y+1, z. for **5**: #1, x+1,y+1,z; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1, z. for **5**: #1, x+1,y+1,z; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1, z. for **5**: #1, x+1,y+1,z; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1, z. for **5**: #1, x+1,y+1,z; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1, z. for **5**: #1, x+1,y+1,z; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1, z]; #4, x+1,y-1,z; #4, x+1,y-1,z; #4, x+1,y-1,z; #4, -x+1,-y+1, z]; #5, x+1, y, z; #6, x-1,y-1,z; #7, x-1,y+1, z]; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1,-z+1; #5, x-1, y, z; #6, x-1,y-1,z; #7, x-1,y+1, z]; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1,-z+1; #5, x-1, y, z; #6, x-1,y-1,z]; #7, x-1,y+1, z]; #2, x+1, y, z; #3, x+1,y-1,z; #4, -x+1,-y+1,-z+1; #5, x-1, y, z; #6, x-1,y-1,z]; #7, x-1,y+1, z]; #1, x-1,y+1, z]; #1, x-1,y-1, x]; #1, x-1,y-

Table S2	The Hydrogen bor	nd lengths (Å) an	d angles (°) for co	mplexes 1 to 4
----------	------------------	-------------------	---------------------	----------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Polymer 1				
O(1W)-H(11)O(3)#3	0.839(10)	1.931(19)	2.718(3)	156(4)
O(1W)-H(12)O(7)#5	0.843(10)	2.057(17)	2.861(3)	160(3)
O(2W)-H(22)O(5)	0.838(10)	2.132(11)	2.969(4)	177(6)
Polymer 2				
O1(W)-H1(WB) O(1)	0.747	2.024	152.70	2.709
O(1W)-H(1WB)O(6)	0.747	2.479	118.24	2.908
O(1W)-H1(WA) O(7)	0.732	2.137	165.43	2.851
O1W-H1(WA) O(6)	0.732	2.573	110.15	2.908
O2(W)-H(2WB)O(5)	0.811	2.153	170.62	2.956

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Polymer 3				
O(3)-H(3)O(2)	0.82	1.64	2.431(8)	162.7
Polymer 4				
O(9)-H(9)O(8)	0.81(6)	1.64(6)	2.399(5)	155(7)

Symmetry codes for **1**: #1, -x,-y+1,-z; #2, -x+1,-y+1, -z+1; #3, -x,-y,-z+1; #4, -x+1,-y,-z+1; #5, x-1,y,z; for **2**: #1 -x+1,-y,-z+1; #2 -x+1,-y+1,-z; #3 -x,-y+1, -z; #4 -x,-y,-z; for **3**: #1, -x,-y+1,-z+1; #2, -x,-y+2,-z+1; #3, x-1, y+1,z; #4, -x+1,-y+2,-z+1; #5, x+1, y-1, z; for **4**: #1, x-1, y-1, z; #2, x-1, y, z; #3, -x+1,-y,-z+1; #4, x+1, y-1, z; #5, x+1, y, z.