Supporting Information

Title: Bis(phosphine)boronium salts. Synthesis, Structures and Co-ordination Chemistry

Authors: Timothy A. Shuttleworth, Miguel A. Huertos, Indrek Pernik, Rowan D. Young, Andrew S. Weller*

- 1. Selected NMR spectra
- 2. Low Temperature ¹H NMR experiment for **6** and **5**
- 3. Reactivity of 7 with H₃B PPh₂H
- 4. Crystallography
- 5. References

1. General NMR experimental details.

NMR spectra were recorded on Bruker AVD 500 MHz spectrometer at room temperature unless otherwise stated. ¹H NMR spectra were recorded at 500 MHz, ³¹P NMR at 202 MHz and ¹¹B NMR at 160 MHz. Residual protio solvent (e.g. CD_2CI_2 : $\delta = 5.32$ ppm) was used as a reference for ¹H NMR spectroscopy. ³¹P and ¹¹B NMR spectra were referenced against 85% H₃PO₄ (external) and BF₃.OEt₂ (external) respectively. The spectrometer was pre-locked and pre-shimmed using a C₆D₆ (0.1 mL) and 1,2-C₆H₄F₂ (0.3 mL) sample. Chemical shifts are quoted in ppm and coupling constants in Hz.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Figure 3. ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂) spectra of 2a, 2b and 2c.

Figure 5. ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂) spectra of 3a, 3b and 3c.

Figure 6. ¹H NMR (C₆D₆) spectrum of 5, (*) = Et₂O (crystallizes with 4) top; ³¹P{¹H} NMR (C₆D₆) spectrum of 5, (*) = PPh₃ bottom.

Figure 7. ESI-MS for 5, experimental (top); simulated (bottom).

Figure 8. ¹H NMR (CD₂Cl₂) spectrum of 6 (top); ³¹P{¹H} NMR (CD₂Cl₂) spectrum of 6 (bottom) (* = pentane).

Figure 9. ¹H NMR (CD₂Cl₂) spectrum of 7 (top); ³¹P{¹H} NMR (CD₂Cl₂) spectrum of 7 (bottom).

2. Low Temperature ¹H NMR experiment for 5 and 6

Figure 10. ¹H NMR (CD₂Cl₂) spectra of 5 at different temperatures. Pentane and Et₂O present in all spectra.

Figure 11. ¹H NMR (CD₂Cl₂) spectra of 5 at 230 K. Pentane and Et₂O present in the spectrum.

Low temperature ¹H NMR experiment is useful for calculate the coalescence rate (k_c) and the Energy for the dynamic process (ΔG^{\ddagger}_{C}).

 $k_{\rm C}$ = 7215 s⁻¹ $\Delta {\rm G}^{\ddagger}_{\rm C}$ = 44 ± 1 kJ mol⁻¹.

Submitted to Dalton Transactions

Figure 12. ¹H NMR (CD₂Cl₂) spectra of 6 at different temperatures. Pentane is present in all spectra.

Figure 13. ¹H NMR (CD₂Cl₂) spectra of 6 at 240 K. Pentane is present in the spectrum.

Low temperature ¹H NMR experiment is useful to calculate the coalescence rate (k_c) and the energy for the dynamic process (ΔG^{\ddagger}_{C}).

 $k_{\rm C}$ = 7765 s⁻¹ $\Delta {\rm G}^{\ddagger}_{\rm C}$ = 44 ± 1 kJ mol⁻¹.

3. Reactivity of 7 with H₃B·PPh₂H.

Reaction of $[Rh(P^{i}Bu_{3})_{2}(PPh_{3})][BAr^{F}_{4}]$ (7) with one equivalent of $Ph_{2}HP \cdot BH_{3}$ led to the formation of a mixture of **8a**, **8b** and **8c** as products(Scheme 1). The major product is the expected **8a**, while **8b** and **8c** are the result of the interchange of phosphines due to the inherent weakness of the phosphine-borane P-B bond.

Figure 14. ESI-MS for 8a, 8b and 8c.

Figure 15. ³¹P{¹H} NMR (CD₂Cl₂) spectra of the 8a, 8b and 8c mixture.

4. Crystalography

Relevant details about structure refinement are given in Table 1. Data of **1a**, **1b**, **1c** and **7** were collected on a Enraf Nonious Kappa CCD difractometer using graphite monochromated Mo K α radiation (λ = 0.71073 Å) and a low temperature device;¹ data were collected using COLLECT, reduction and cell refinement was performed using DENZO/SCALEPACK.² The structures were solved by direct methods using SIR92³ and refined full-matrix least squares on *F*² using SHELX-97.⁴ Data for **6** were collected on an Oxford Diffraction (Agilent Technologies) SuperNova A diffractometer using Cu K α radiation (λ = 1.54184 Å) and an open flow N₂ cooling device [150(2) K]. Data were collected and processed using CrysAlisPro⁵ including cell refinement and interframe scaling. The structure was solved using SIR92 and refined using SHELXL-97. All non-hydrogen atoms were refined with anisotropic displacement parameters. H1, H2, H3 and H4 for the structures **1a**, **1b** and **1c** and H1A and H1B for **6** were located on the Fourier difference map and were freely refined without restraints. In case of **6**, caution should always be exercised with considering the location of the H atoms near a heavy atom such as rhodium. All other hydrogen atoms were placed in calculated positions using the riding model. Rotational disorder of the CF₃ groups of the anions of **1c**, **6** and **7** were treated by modelling the fluorine atoms over two sites or the entire CF₃ group and restraining their geometry.

	1a	1b	1c	6	7
CCDC number	912134	912135	912136	926700	926701
Formula	C ₁₆ H ₄₀ BBrP ₂	C17H40BF3O3P2S	C50.50H58B2F24P2	C99H71B2Cl2F24P4Rh	C74H81BF24P3Rh
Μ	385.14	454.30	1204.53	2035.87	1633.02
Crystal System	orthorhombic	monoclinic	monoclinic	triclinic	monoclinic
Space group	P 21 21 21	P 21/n	P 21/c	P -1	P 21/n
T [K]	150	150	150	150	150
a [Å]	10.6330(3)	8.84740(10)	15.97400(10)	12.9043(5)	16.3321(1)
b [Å]	11.8889(3)	11.19090(20)	18.19600(10)	17.2619(8)	25.1406(2)
c [Å]	17.0844(7)	25.10740(40)	20.96500(20)	21.6182(10)	18.8993(2)
α [deg]	90	90	90	99.497(2)	90
β [deg]	90	2.6590(10)	111.8041(3)	91.413(2)	94.56(1)
γ [deg]	90	90	90	99.906(1)	90
V [ų]	2159.72(12)	2483.22(7)	5657.79(7)	4671.7(4)	7735.5(1)
Z	4	4	4	2	4
Density [gcm-3]	1.184	1.215	1.414	1.450	1.402
µ [mm-1]	2.044	0.295	0.190	3.487	0.381
heta range [deg]	5.14 to 27.49	5.10 to 27.51	5.11 to 27.48	3.480 to 74.296	5.10 to 27.48
Refins collected	2684	9241	25113	34348	34222
Rint	0.0487	0.0303	0.0214	0.050	0.0485
Completeness	98 %	99.1 %	99.1 %	98.6%	99.2%
Data/restr/param	4859 / 0 / 197	5676 / 0 / 260	12867 / 816 / 854	18321 / 1372 / 1396	15712 / 2298 / 1315
R ₁ [l > 2σ(l)]	0.0489	0.0438	0.0561	0.0680	0.0484
wR ₂ [all data]	0.0762	0.1176	0.1502	0.1771	0.1124
GoF	0.993	0.881	1.054	1.028	1.081
Largest diff. pk	0.360 and -0.580	0.352 and -0.295	0.673 and -0.452	1.74 and -1.57	0.659 and -0.811
and hole [eÅ-3]					

Table 1: Crystallographic data for 1a, 1b, 1c, 6 and 7.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Figure 16. Extended packing diagram of compound 1a

3.References

- 1. J. Cosier and M. A. Glazer, J. Appl. Cryst., 1986, 19, 105.
- Z. Otwinowski, Z. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol. 1997, 276, Eds C. W. Carter, R. M. Sweet, Academic Press.
- 3. A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camali. *J. Appl. Cryst.*, **1994**, 27, 435.
- 4. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 5. CrysAlisPro. Oxford Diffraction (AgilentTechnologies).