Electronic Supplementary Information

Spin-crossover in a *trans*-[FeL₂(NCS)₂] family (L = triaryltriazole): Remote substituent effects on spin transition modes and temperature

Guo-Ping Shen,^{*a*} Li Qi,^{*a*} Lei Wang,^{*a*} Yan Xu,^{*a*} Jing-Jing Jiang,^{*a*} Dunru Zhu,^{*a*,*b*} Xiao-Qin Liu^{*a*} and Xiaozeng You^{*b*}

^{*a*} State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China.

^b State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

*Corresponding author. E-mail: zhudr@njut.edu.cn; Fax: +86 25 83172261; Tel: +86 25 83587717

Complexes	Py/Trz	p-Cl-Ph/Trz	<i>p</i> -CH ₃ -Ph/Trz	<i>p</i> -CH ₃ O-Ph/Trz	p-F-Ph/Trz
1	13.4(3)/14.3(3)	85.8(3)			
2	11.6(3)/14.8(3)		82.9(3)		
3 0.5H ₂ O	9.9(3)		75.5(3)	36.3(3)	
4	9.3(3)		80.4(3)		36.9(3)

Table S1 Dihedral angles (9) between the aryl ring and triazole ring of triaryltriazoles in 1-4.

Table S2 Hydrogen-bond geometry and π -stacking interaction (Å, \Im) for 1 and 2.

Complexes	$D-H \cdots A$	d(D–H)	$d(H \cdot \cdot A)$	$d(D \cdot \cdot A)$	∠D−H ···A
1	C9–H9 $\cdot \cdot$ Cl1 ^{<i>i</i>}	0.93	2.780(1)	3.528(4)	138
	$C2-H2 \cdots C17^{ii}$	0.93	2.744(1)	3.627(4)	159
	C14–H14 ··· N3 ⁱⁱⁱ	0.93	2.506(2)	3.403(4)	162
	C4–H4 ·· <i>π</i> (C13-18)	0.93	2.899(1)	3.707(4)	146
	$C19 \cdot C12^{iii}$			3.309(3)	
	π - π interaction	d(cent ·· cent)		$d(\pi \cdot \cdot \pi)$	dihedral angle
	$\pi(\mathrm{N4})\cdot\cdot\pi^{iii}(\mathrm{N4}^{iii})$	3.816		3.685	0.0
	$\pi(N5) \cdot \pi^{i\nu} (N5^{i\nu})$	3.	790	3.547	0.0
2	C9–H9 $\cdot \cdot$ C19 ^{<i>i</i>}	0.93	2.889(1)	3.631(4)	138
	$C2-H2 \cdots C15^{\nu}$	0.93	2.732(1)	3.621(4)	160
	C18–H18 ··· N3 ^{vi}	0.93	2.523(2)	3.433(4)	167
	C4–H4 $\cdot \cdot \pi$ (C13-18)	0.93	2.887(1)	3.708(4)	148
	$C20 \cdot C12^{vi}$			3.357(3)	
	π - π interaction	$d(cent \cdot \cdot cent)$		$d(\pi \cdot \cdot \pi)$	dihedral angle
	$\pi(\mathrm{N4})\cdot\pi^{vi}(\mathrm{N4}^{vi})$	4.001		3.841	0.0
	$\pi(N5) \cdot \pi^{vii} (N5^{vii})$	3.	885	3.593	0.0

Symmetry codes: (*i*) *x*, *y*, *z*-1; (*ii*) -*x*, 1-*y*, 2-*z*; (*iii*) 1-*x*, 1-*y*, 1-*z*; (*iv*) 1-*x*, -*y*, 1-*z*; (*v*) -*x*, -*y*, 1-*z*; (*vi*) 1-*x*, -*y*, -*z*; (*vii*) 1-*x*, -1-*y*, -*z*.

Table S3 Hydrogen-bond geometry and π -stacking interaction (Å, \degree) for **3** 0.5H₂O and **4**.

Complexes	D–H ···A	d(D-H)	$d(H \cdot \cdot A)$	$d(D \cdot \cdot A)$	∠D–H …A
3 0.5H ₂ O	C16–H16 ·· O1W	0.93	2.550	3.136(4)	121
	$C20^{viii}$ -H20A viii ··O1	0.93	2.530	3.169(6)	126
	C14A-H14E $\cdot \cdot$ S1 ^{<i>ix</i>}	0.96	2.826	3.470(4)	125
	C16–H16 $\cdot \cdot \pi^{i\nu}$ (Py)	0.93	3.045	3.883(3)	151
	C4-H4 ·· <i>π</i> (C15-20)	0.93	2.890	3.728(4)	151
4	C15-H15 $\cdot \cdot$ F1 ^x	0.93	2.490	3.329(3)	150
	C3–H3B $\cdot\cdot$ S1 ^{xi}	0.93	2.938	3.656(3)	135
	C19–H19 $\cdot \cdot \pi^{xi}$ (Py)	0.93	2.976	3.788(3)	147
	C4–H4 ·· <i>π</i> (C14-19)	0.93	2.903	3.746(3)	151

Symmetry codes: (*viii*) *x*, -1/2-*y*, 1/2+*z*; (*ix*) *x*-1, -1/2-*y*, *z*-1/2; (*x*) *x*, 1/2-*y*, *z*-1/2; (*xi*) *x*-1/2-*y*, *z*-1/2; (*xi*) *x*, 1/2-*y*, *z*-1/2; (*xi*) *x*-1/2-*y*, *z*-1/2; (*xi*) *x*-1/2-*y*,

Figure S1. View of the hydrogen bonds and $C \cdots C$ contacts in 1.

Figure S2. View of the intramolecular edge-to-face C4-H4 $\cdots \pi$ interaction in **1**.

Figure S3. 3D structure of 1.

Figure S4. View of the hydrogen bonds and $C \cdots C$ contacts in 2.

Figure S5. View of the intramolecular edge-to-face C4-H4 $\cdot \pi$ interaction in **2**.

Figure S6. 3D structure of 2.

Fig. S7 Experimental and simulated powder XRD patterns of complexes 1-4.