Supporting Information

(C^C*) Cyclometalated Binuclear N-Heterocyclic Biscarbene Platinum(II) Complexes – Highly Emissive Phosphorescent Emitters

Alexander Tronnier, Thomas Strassner*

Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany, Fax: 49 351 46339679; Tel: 49 351 46338571; E-mail: thomas.strassner@chemie.tu-dresden.de

Table of contents:

S3
S4
S14
S15
S16
S26
S30
S45

List of Abbreviations

1D/2D-NMR	one-/twodimensional Nuclear Magnetic Resonance Spectroscopy
AcAc	Acetylacetonate, 2,4-Pentadione
B3LYP	Becke three-parameter exchange, Lee-Yang-Parr correlation functional
BCP	2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
BP86	Becke 1988 exchange, Perdew86 correlation functional
CIE	Color coordinates, defined by an international commission (CIE –
	Commission internationale de l'éclairage)
COD	1,5-Cyclooctadiene
COSY	Homonuclear correlation spectroscopy
DFT	Density functional theory
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
ECP	Effective core potential
FMO	Frontier molecular orbital
HMBC	Heteronuclear multiple-bond correlation spectroscopy
НОМО	Highest occupied orbital
HSQC	Heteronuclear single-quantum correlation spectroscopy
Hz	Hertz
ILCT	Intraligand charge transfer
ITO	Indium-Tin-Oxide
KO ^t Bu	Potassium tert-butanolate
LLCT	Interligand/ligand-to-ligand charge transfer
LUMO	Lowest unoccupied orbital
MLCT	Metal-to-ligand charge transfer
NHC	N-Heterocyclic carbene
NOESY	Nuclear Overhauser effect spectroscopy
OLED	organic light-emitting device/diode
PhOLED	Phosphorescent organic light-emitting device/diode
PMMA	Poly(methyl methacrylate)
SOC	Spin-orbit coupling
THF	Tetrahydrofuran

Experimental Details

Solvents of 99.5% purity were used throughout this study. 1,4-Dioxane and DMF were dried using standard techniques and stored under argon atmosphere over molecular sieve (4 Å). Dichloro(1,5-cyclooctadiene)platinum(II) was prepared differently from the literature procedure^[1] as described in a previous report.^[2] Dimesitoylmethane^[3] was prepared according to literature procedure. Potassium tetrachloroplatinate(II) was obtained from Pressure Chemicals Co. All other chemicals were obtained from common suppliers and used without further purification. ¹H-, ¹³C- and ¹⁹⁵Pt-NMR spectra were recorded on a Bruker AC 300 P, a Bruker DRX-500 or a Bruker Avance 600 spectrometer. ¹H and ¹³C spectra were referenced internally using the resonances of the solvent (DMSO, CDCl₃). ¹⁹⁵Pt spectra were referenced externally using potassium tetrachloroplatinate(II) in perdeuterated water (-1617.2 (PtCl₄²⁻), -2654.1 (PtCl₂)). Shifts are given in ppm, coupling constants J in Hz. Elemental analyses were performed by the microanalytical laboratory of our institute on a Hekatech EA 3000 Euro Vector elemental analyzer. Melting points have been determined using a Wagner and Munz PolyTherm A system and are not corrected. The photoluminescence of the complexes was measured in thin PMMA films doped with 2wt% emitter and/or in 100% emitter films. The 2wt% films were prepared by doctor blading a solution of emitter (2 mg/L) in a 10wt% PMMA solution in dichloromethane on a substrate with a 60 µm doctor blade. The film was dried and the emission was measured under nitrogen with a Hamamatsu Absolute PL Quantum Yield Measurement System C9920-02. The excitation was carried out at a wavelength of 355 – 370 nm (Xe-lamp with monochromator) and emission was detected with a calibrated CCD spectrometer. The phosphorescence decay was measured by excitation with pulses of a THG-NdYAG-Laser (355 nm, 1 ns) and time-resolved photon-counting in the Multi Channel Scaling (MCS)-Technique (Detector R928P from Hamamatsu, MCS Card P7888 from FAST Comtec).

For the production of the diode and testing an ITO substrate used as the anode was first cleaned by commercial detergents for the LCD-Production (Deconex[®] 20NS and 25ORGAN-ACID[®]) followed by immersion in a acetone/isopropanole-mixture in an ultrasonic bath. Afterwards the substrate is treated with ozone to remove residues of organic material. This treatment also improves the hole injection properties of the ITO substrate. Then the hole injection layer is spincoated from solution. This is followed by vacuum deposition of the various organic materials with rates of approximately 0.5-5 nm/min at 10^{-7} - 10^{-9} mbar. Finally a layer of 0.75 nm lithium fluoride and a 100 nm aluminium electrode are deposited. All

diodes are sealed with glass in an inert nitrogen atmosphere. For characterisation of the OLEDs the electroluminescence spectra were measured at various currents and voltages. The IV characteristic was measured in combination with the emitted light.

Synthesis

1,4-Bis(imidazole)benzene (1a)

A dried schlenk tube was charged with 1,4-diiodobenzene (4.95 g, 15 mmol), imidazole (3.57 g, 52.5 mmol), potassium hydroxide (2.95 g, 52.5 mmol) and copper(I) oxide (0.43 g, 3 mmol) under an argon atmosphere. Dry DMSO was added through a septum after an additional degassing phase of the solids. The suspension was stirred for 48 hours at 130 °C. After cooling to room temperature the reaction mixture was poured into a water/ethyl acetate solution (1:3). Solids were filtered off and the phases separated. The aqueous phase was extracted with ethyl acetate (6x60 mL). The combined organic phases were washed with brine (50 mL) and dried over sodium sulfate. After concentration under reduced pressure the solid product was precipitated and washed with diethyl ether. Collecting the solid and drying under vacuum yielded the off-white product (1.55 g, 49.3%). ¹H-NMR (CDCl₃, 300.13 MHz): δ = 7.87 (s, 2H, NC*H*N), 7.51 (s, 4H, *CH*_{arom}), 7.30 (t, *J* = 1.3 Hz, 2H, *CH*_{arom}), 7.23 (s, 2H, *CH*_{arom}), ppm. ¹³C-NMR (CDCl₃, 75.475 MHz): δ = 136.4 (NCHN), 135.5 (*C*_i), 130.9 (*C*H_{arom}), 122.8 (*C*H_{arom}), 118.1 (*C*H_{arom}) ppm. M.p. 208-210 °C. Anal. Calc. for C₁₂H₁₀N₄ (210.24 g mol⁻¹): C, 68.56; H, 4.79; N, 26.65. Found: C, 68.27; H, 4.98; N, 26.67 %.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

1,3-Bis(imidazole)benzene (1b)

A dried schlenk tube was charged with 1,3-diiodobenzene (3.30 g, 10 mmol), imidazole (2.04 g, 30 mmol), potassium hydroxide (2.24 g, 40 mmol) and copper(I) oxide (0.29 g, 2 mmol) under an argon atmosphere. Dry DMSO was added through a septum after an additional degassing phase of the solids. The suspension was stirred for 48 hours at 120 °C. After cooling to room temperature the reaction mixture was poured into a water/ethyl acetate solution (1:3). Solids were filtered off and the phases separated. The aqueous phase was extracted with ethyl acetate (3x50 mL). The combined organic phases were washed with brine (50 mL) and dried over magnesium sulfate. The crude product was purified by flash chromatography with ethyl acetate yielding a pale brown crystalline solid (1.29 g, 61.3%). ¹H-NMR (CDCl₃, 300.13 MHz): δ = 7.93 (s, 2H, NCHN), 7.62 (t, *J* = 7.9 Hz, 1H, CH_{arom}), 7.43 (s, 2H), 7.41 (s, 1H, CH_{arom}), 7.33 (s, 2H, CH_{arom}), 7.24 (s, 2H, CH_{arom}) ppm. ¹³C-NMR (CDCl₃, 75.475 MHz): δ = 138.7 (*C*₁), 135.5 (NCHN), 131.5 (*C*H_{arom}), 131.0 (CH_{arom}), 120.2 (CH_{arom}), 118.1 (*C*H_{arom}), 114.6 (*C*H_{arom}) ppm. M.p. 129-131 °C. Anal. Calc. for C₁₂H₁₀N₄ (210.24 g mol⁻¹): C, 68.56; H, 4.79; N, 26.65. Found: C, 68.35; H, 4.74; N, 26.75 %.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

1,4-Bis(3-methylimidazolium)benzene iodide (2a)

A sealed tube is charged with 1,4-bis(imidazole)benzene **1a** (1.05 g, 5 mmol) and iodomethane (1.9 mL, 30 mmol). After addition of 8 mL THF the tube is sealed and the reaction mixture stirred for 72 h at 100 °C. The generated solid is filtered off and washed with small portions of tetrahydrofuran and diethyl ether. After drying under vacuum an off-white solid is yielded (2.42 g, 98%). ¹H-NMR (*d*₆-DMSO, 300.13 MHz): $\delta = 9.90$ (s, 2H, NC*H*N), 8.39 (s, 2H, *CH*_{arom}), 8.10 (s, 4H, *CH*_{arom}), 8.00 (s, 2H, *CH*_{arom}), 3.98 (s, 6H, *CH*₃) ppm. ¹³C-NMR (*d*₆-DMSO, 75.475 MHz): $\delta = 136.3$ (NCHN), 135.2 (*C*_i), 124.6 (*C*H_{arom}), 123.3 (*C*H_{arom}), 120.9 (*C*H_{arom}), 36.3 (*C*H₃) ppm. Dec. > ca. 300 °C. Anal. Calc. for C₁₄H₁₆I₂N₄ (494.12 g mol⁻¹): C, 34.03; H, 3.26; N, 11.34. Found: C, 33.94; H, 3.16; N, 11.33 %.

1,4-Bis(3-benzylimidazolium)benzene bromide (2b)

A sealed tube is charged with 1,4-bis(imidazole)benzene **1a** (0.51 g, 2.4 mmol) and benzylbromide (2.5 mL, 20.4 mmol). After addition of 8 mL THF the tube is sealed and the reaction mixture stirred for 48 h at 110 °C. The generated solid is filtered off and washed with small portions of tetrahydrofuran and diethyl ether. After drying under vacuum an off-white solid is yielded (1.25 g, 94%). ¹H-NMR (d_6 -DMSO, 600.16 MHz): $\delta = 10.18$ (s, 2H, NCHN), 8.45 (s, 2H, CH_{arom}), 8.14 (s, 4H, CH_{arom}), 8.10 (s, 2H, CH_{arom}), 7.55 (d, J = 7.5 Hz, 4H, CH_{arom}), 7.44 (m, 6H, CH_{arom}), 5.54 (s, 4H, CH₂) ppm. ¹³C-NMR (d_6 -DMSO, 150.91 MHz): $\delta = 135.9$ (C_i), 135.1 (NCHN), 134.2 (C_i), 128.9 (CH_{arom}), 128.8 (CH_{arom}), 128.5 (CH_{arom}), 123.3 (CH_{arom}), 121.6 (CH_{arom}), 52.4 (CH₂) ppm. Dec. > ca. 345 °C. Anal. Calc. for C₂₆H₂₄Br₂N₄ (552.30 g mol⁻¹): C, 56.54; H, 4.38; N, 10.14. Found: C, 56.22; H, 4.45; N, 10.07 %.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

1,3-Bis(3-methylimidazolium)benzene iodide (2c)

A sealed tube is charged with 1,3-bis(imidazole)benzene **1b** (0.42 g, 2 mmol) and iodomethane (1.2 mL, 8 mmol). After addition of 5 mL THF the tube is sealed and the reaction mixture stirred for 48 h at 100 °C. The generated solid is filtered off and washed with small portions of tetrahydrofuran and diethyl ether. After drying under vacuum an off-white solid is yielded (0.97 g, 98%). ¹H-NMR (d_6 -DMSO, 600.16 MHz): $\delta = 9.90$ (s, 2H, NCHN), 8.38 (s, 2H, CH_{arom}), 8.31 (s, 1H, CH_{arom}), 8.03 (s, 2H, CH_{arom}), 8.00 (m, 3H, CH_{arom}), 3.99 (s, 6H, CH₃) ppm. ¹³C-NMR (d_6 -DMSO, 150.91 MHz): $\delta = 136.4$ (NCHN), 135.8 (C_i), 132.1 (CH_{arom}), 124.8 (CH_{arom}), 122.6 (CH_{arom}), 121.0 (CH_{arom}), 115.7 (CH_{arom}), 36.3 (CH₃) ppm. M.p. 266-269 °C. Anal. Calc. for C₁₄H₁₆I₂N₄ (494.12 g mol⁻¹): C, 34.03; H, 3.26; N, 11.34. Found: C, 33.88; H, 3.19; N, 11.32 %.

 $1,4-Bis\{(SP-4)-[(3-methyl-1H-imidazol-2-ylidene-\kappa C2)(pentan-2,4-dionato-\kappa O2,\kappa O4)platinum(II)]\ (\kappa N1,\kappa Pt1,\kappa N1',\kappa Pt1')benzene\ (3a)$

А dried flushed schlenk with 1,4-bis(3and argon tube was charged methylimidazolium)benzene iodide 2a (0.40 g, 0.8 mmol) and silver(I) oxide (0.20 g, 0.88 mmol). After addition of 20 mL dry 1,4-dioxane the reaction mixture was stirred under argon in the dark at room temperature for 48 h. Dichloro(1,5-cyclooctadiene)platinum(II) (0.75 g, 2 mmol) and 10 mL 2-butanone were added. The mixture was heated to 115 °C and stirred for another 54 h. Afterwards all volatiles were removed under reduced pressure. Potassium tert-butanolate (0.72 g, 6.4 mmol), acetylacetone (0.66 mL, 6.4 mmol) and 25 mL dry DMF were added under argon. After stirring for 28 h at room temperature and 14 h at 100 °C all volatiles were again removed under reduced pressure leaving the crude product, which was washed with water and purified by flash chromatography with methylene chloride/acetone 5/1. The product containing fraction was finally recrystallized from methylene chloride/tetrahydrofuran 1/1 solution and dried under vacuum to give a lightyellow solid (0.04 g, 6%). ¹H-NMR (d_6 -DMSO, 300.13 MHz): $\delta = 7.77$ (d, J = 2.0 Hz, 2H, NCH), 7.32 (d, J = 2.0 Hz, 2H, NCH), 7.21 (s, 2H, CH_{arom}), 5.57 (s, 2H, OCCH), 3.98 (s, 6H, NCH₃), 2.05 (s, 6H, CCH₃), 1.92 (s, 6H, CCH₃) ppm. ¹³C-NMR (*d*₆-DMSO, 150.927 MHz): δ = 184.1 (CO), 146.6 (NCN), 141.8 (PtC), 121.6 (NCH), 118.8 (NC), 114.9 (NCH), 113.4 (CH_{arom.}), 101.7 (CH), 34.2 (NCH₃), 27.7 (CCH3) ppm. Dec. > ca. 310 °C. Anal. Calc. for C₂₄H₂₆N₄O₄Pt₂ (824.66 g mol⁻¹): C, 34.95; H, 3.18; N, 6.78. Found: C, 34.69; H, 3.15; N, 6.57 %.

1,4-Bis{(SP-4)-[(3-methyl-1H-imidazol-2-ylidene- κ C2)(2,2,6,6-tetramethylheptan-3,5-dionato- κ O3, κ O5)platinum(II)] (κ N1, κ Pt1, κ N1 ', κ Pt1 ')benzene (**3b**)

А dried flushed schlenk charged with and argon tube was 1,4-bis(3methylimidazolium)benzene iodide 2a (0.99 g, 2 mmol) and silver(I) oxide (0.70 g, 3 mmol). After addition of 30 mL dry 1,4-dioxane the reaction mixture was stirred under argon in the dark at room temperature for 72 h. Dichloro(1,5-cyclooctadiene)platinum(II) (1.87 g, 5 mmol) and 15 mL 2-butanone were added. The mixture was heated to 115 °C and stirred for another 96 h. Afterwards all volatiles were removed under reduced pressure. Potassium tertbutanolate (1.79 g, 16 mmol), 2,2,6,6-tetramethyl-3,5-heptanedione (2.95 g, 16 mmol) and 30 mL dry DMF were added under argon. After stirring for 3 days at room temperature and 24 h at 100 °C all volatiles were again removed under reduced pressure leaving the crude product, which was washed with water and purified by flash chromatography with methylene chloride. The product containing fraction was finally washed with diethyl ether to remove traces of the dione and dried under vacuum to give a light-yellow solid (0.33 g, 16%). ¹H-NMR (CDCl₃, 600.16 MHz): $\delta = 7.44$ (*pseudo-t*, $J_{\rm H,Pt} = 27.5$ Hz, 2H, $CH_{\rm arom}$), 7.20 (d, J =2.0 Hz, 2H, NCH), 6.77 (d, J = 2.0 Hz, 2H, NCH), 5.81 (s, 2H, OCCH), 4.09 (s, 6H, NCH₃), 1.33 (s, 18H, CCH₃), 1.21 (s, 18H, CCH₃) ppm. ¹³C-NMR (CDCl₃, 150.91 MHz): $\delta = 194.4$ (CO), 193.8 (CO), 149.3 (NCN), 142.5 (PtC), 119.8 (NCH), 119.1 (NC), 114.3 (NCH), 113.5 (CH_{arom.}), 92.8 (OCCH), 42.0 (CCH₃), 41.4 (CCH₃), 35.1 (NCH₃), 28.8 (CH₃), 28.7 (CH₃), ppm. ¹⁹⁵Pt-NMR (CDC13, 64.52 MHz): $\delta = -3402.7$ (d, J = 52.0 Hz) ppm. Dec. > 275 °C. Anal. Calc. for C₃₆H₅₀N₄O₄Pt₂ (992.98 g mol⁻¹): C, 43.55; H, 5.08; N, 5.64. Found: C, 43.58; H, 5.31; N, 5.49 %.

1,4-Bis{(SP-4)-[(3-methyl-1H-imidazol-2-ylidene- κ C2)(1,3-dimesitoylpropan-1,3-dionato- κ O1, κ O3)platinum(II)] (κ N1, κ Pt1, κ N1', κ Pt1')benzene (**3c**)

dried argon А and flushed schlenk tube charged with 1,4-bis(3was methylimidazolium)benzene iodide 2a (0.40 g, 0.8 mmol) and silver(I) oxide (0.19 g, 0.8 mmol). After addition of 20 mL dry 1,4-dioxane the reaction mixture was stirred under argon in the dark at room temperature for 48 h. Dichloro(1,5-cyclooctadiene)platinum(II) (0.75 g, 2 mmol) and 10 mL 2-butanone were added. The mixture was heated to 115 °C and stirred for another 48 h. Afterwards all volatiles were removed under reduced pressure. Potassium tert-butanolate (0.72 g, 6.4 mmol), dimesitoylmethane (1.97 g, 6.4 mmol) and 20 mL dry DMF were added under argon. After stirring for 64 h at room temperature and 7 h at 100 °C all volatiles were again removed under reduced pressure leaving the crude product, which was washed with water and purified by flash chromatography with methylene chloride/acetone. After drying under vacuum a light-yellow solid was obtained (0.21 g, 21%). ¹H-NMR (CDCl₃, 600.16 MHz): δ = 7.24 (s, 2H, CH_{arom}), 7.14 (d, J = 2.0 Hz, 2H, NCH), 6.86 (s, 4H, CH_{arom}), 6.82 (s, 4H, CH_{arom}), 6.66 (d, J = 2.0 Hz, 2H, NCH), 5.64 (s, 2H, OCCH), 3.87 (s, 6H, NCH₃), 2.37 (s, 12H, CCH₃), 2.31 (s, 12H, CCH₃), 2.30 (s, 6H, CCH₃), 2.28 (s, 6H, CCH₃) ppm. ¹³C-NMR (CDCl₃, 150.91 MHz): $\delta = 184.6$ (CO), 183.9 (CO), 147.7 (NCN), 142.7 (PtC), 139.9 (C_i), 139.4 (C_i), 137.4 (C_i), 137.2 (C_i), 134.3 (C_i), 133.7 (C_i), 128.2 (CH_{arom}), 128.0 (CH_{arom}), 120.0 (NCH), 118.5 (NC), 114.8 (NCH), 113.7 (CH_{arom}), 107.2 (OCCH), 34.8 (NCH₃), 21.12 (CH₃), 21.08 (CH₃), 20.1 (CH₃), 19.5 (CH₃) ppm. ¹⁹⁵Pt-NMR (CDCl3, 64.52 MHz): $\delta = -3354.8$ (s) ppm. M.p. 240-242 °C. Anal. Calc. for C₅₆H₅₈N₄O₄Pt₂ (1241.26 g mol⁻¹): C, 54.19; H, 4.71; N, 4.51. Found: C, 54.13; H, 4.87; N, 4.35 %.

 $1,4-Bis\{(SP-4)-[(3-benzyl-1H-imidazol-2-ylidene-\kappaC2)(2,2,6,6-tetramethylheptan-3,5-dionato-\kappaO3,\kappaO5)platinum(II)]\ (\kappa N1,\kappa Pt1,\kappa N1',\kappa Pt1')benzene\ (\textbf{3d})$

А dried and flushed schlenk charged with 1.4-bis(3argon tube was methylimidazolium)benzene iodide **2b** (0.44 g, 0.8 mmol) and silver(I) oxide (0.19 g, 0.8 mmol). After addition of 20 mL dry 1,4-dioxane the reaction mixture was stirred under argon in the dark at room temperature for 48 h. Dichloro(1,5-cyclooctadiene)platinum(II) (0.75 g, 2 mmol) and 10 mL 2-butanone were added. The mixture was heated to 115 °C and stirred for another 48 h. Afterwards all volatiles were removed under reduced pressure. Potassium tert-butanolate (0.72 g, 6.4 mmol), 2,2,6,6-tetramethyl-3,5-heptanedione (1.18 g, 6.4 mmol) and 20 mL dry DMF were added under argon. After stirring for 2 days at room temperature and 6 h at 100 °C all volatiles were again removed under reduced pressure leaving the crude product, which was washed with water and purified by flash chromatography with methylene chloride. The product was dried under vacuum to give a light-yellow solid (57 mg, 6%). ¹H-NMR (CDCl₃, 600.16 MHz): $\delta = 7.50$ (s, 2H, CH_{arom}), 7.43 (d, J = 7.1 Hz, 4H, $CH_{arom.}$), 7.33 (t, J = 7.3 Hz, 4H, $CH_{arom.}$), 7.28 (t, J = 7.3 Hz, 2H, $CH_{arom.}$), 7.21 (d, J = 2.0 Hz, 2H, NCH), 6.71 (d, J = 2.0 Hz, 2H, NCH), 5.80 (s, 2H, CH), 5.79 (s, 4H, CH₂), 1.31 (s, 18H, CH₃), 1.03 (s, 18H, CH₃) ppm. ¹³C-NMR (CDCl₃, 150.91 MHz): $\delta = 194.6$ (CO), 193.9 (CO), 149.1 (NCN), 142.5 (PtC), 137.0 (CH₂C), 128.7 (CHarom.), 128.1 (CHarom.), 127.9 (CHarom.), 119.2 (NC), 118.4 (NCH), 115.0 (NCH), 113.5 (CH_{arom}), 92.9 (CH), 51.1 (CH₂), 41.8 (CCH₃), 41.3 (CCH₃), 28.7 (CH₃), 28.4 (CH₃) ppm. ¹⁹⁵Pt-NMR (CDCl3, 64.52 MHz): $\delta = -3402.0$ ppm. Dec. > 288 °C. Anal. Calc. for C₄₈H₅₈N₄O₄Pt₂ (1145.17 g mol⁻¹): C, 50.34; H, 5.10; N, 4.89. Found: C, 50.66; H, 5.22; N, 4.70 %.

 $1,3-Bis\{(SP-4)-[(3-methyl-1H-imidazol-2-ylidene-\kappa C2)(pentan-2,4-dionato-\kappa O2,\kappa O4)platinum(II)]\ (\kappa N1,\kappa Pt1,\kappa N1',\kappa Pt1') benzene\ (3e)$

А dried and argon flushed schlenk tube was charged with 1.3-bis(3methylimidazolium)benzene iodide 2c (0.40 g, 0.8 mmol) and silver(I) oxide (0.19 g, 0.8 mmol). After addition of 20 mL dry 1,4-dioxane the reaction mixture was stirred under argon in the dark at room temperature for 48 h. Dichloro(1,5-cyclooctadiene)platinum(II) (0.75 g, 2 mmol) and 10 mL 2-butanone were added. The mixture was heated to 115 °C and stirred for another 48 h. Afterwards all volatiles were removed under reduced pressure. Potassium tert-butanolate (0.72 g, 6.4 mmol), acetylacetone (0.66 mL, 6.4 mmol) and 25 mL dry DMF were added under argon. After stirring for 60 h at room temperature and 16 h at 100 °C all volatiles were again removed under reduced pressure leaving the crude product, which was washed with water and purified by flash chromatography with methylene chloride/acetone. Drying under vacuum gave an off-white solid (0.06 g, 7%). ¹H-NMR (d_6 -DMSO, 600.16 MHz): $\delta = 7.82$ (s, 1H, CH_{arom}), 7.66 (d, J = 2.0 Hz, 2H, NCH), 7.32 (d, J =2.0 Hz, 2H, NCH), 7.25 (s, 1H, CH_{arom}), 5.56 (s, 2H, OCCH), 3.98 (s, 6H, NCH₃), 1.99 (s, 6H, CCH₃), 1.92 (s, 6H, CCH₃) ppm. ¹³C-NMR (d_6 -DMSO, 150.91 MHz): δ = 184.6 (CO), 183.8 (CO), 147.4 (NCN), 142.3 (PtC), 134.7 (CH_{arom}), 121.9 (NCH), 118.9 (C_i), 114.4 (NCH), 101.6 (OCCH), 96.2 (CH_{arom}), 34.1 (NCH₃), 27.8 (CH₃), 27.4 (CH₃) ppm. ¹⁹⁵Pt-NMR $(d_6$ -DMSO, 64.52 MHz): $\delta = -3416.3$ ppm. M.p. > 320 °C. Anal. Calc. for C₂₄H₂₆N₄O₄Pt₂ (824.66 g mol⁻¹): C, 34.96; H, 3.18; N, 6.79. Found: C, 34.58; H, 3.02; N, 6.42 %.

Photoluminescence Data

Figure S1. Absorption (left) and emission (right) spectra, 2wt% emitter in PMMA at room temperature.

Figure S2. Absorption spectra for 3b and 3c as 100% films.

Device Data

Figure S3. Device layout (left) and structure of **4** and **5** (right). ETL = electron-transport layer, HBL = hole-blocking layer, EML = emission layer, HTL = hole-transport layer, HIL = hole-injection layer. BCP = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline.

NMR Characterization

In the following section 2D NMR spectra (COSY, HSQC, HMBC for **3c-3e** and NOESY for **3d** and **3e**) are given.

Figure S4. COSY spectrum of 3c in CDCl₃.

Figure S5. HSQC spectrum of 3c in CDCl₃.

Figure S6. HMBC spectrum of 3c in CDCl₃.

Figure S7. COSY spectrum of 3d in CDCl₃.

Figure S8. HSQC spectrum of 3d in CDCl₃.

Figure S9a. HMBC spectrum of 3d in CDCl₃.

Figure S9b. HMBC spectrum of 3d in CDCl₃.

Figure S10. NOESY spectrum of 3d in CDCl₃.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Figure S11. COSY spectrum of 3e in DMSO-d₆.

Figure S12. HSQC spectrum of 3e in DMSO-d₆.

Figure S12. HMBC spectrum of 3e in DMSO-d₆.

Figure S14. NOESY spectrum of 3e in DMSO-d₆.

Solid-state structure determination

Preliminary examination and data collection were carried out on an area detecting system (Kappa-CCD; Nonius, FR590) using graphite monochromated Mo-Ka radiation $(\lambda=0.71073 \text{ Å})$ with an Oxford Cryosystems cooling system at the window of a sealed finefocus X-ray tube. The reflections were integrated. Raw data were corrected for Lorentz, polarization, decay and absorption effects. The absorption correction was applied using SADABS.^[4] After merging the independent reflections were used for all calculations. The structure was solved by a combination of direct methods^[5] and difference Fourier syntheses.^[6] All non-hydrogen atom positions were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions using SHELXL riding model. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (F_0^2 - F_c^2)^2$ with the SHELXL-97 weighting scheme and stopped at shift/err < 0.001. Details of the structure determinations are given in the Supporting Information. Neutral-atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[7] All calculations were performed with the programs COLLECT,^[8] DIRAX,^[9] EVALCCD,^[10] SIR92,^[5a] SIR97,^[5b] SIR2004,^[5c] SADABS,^[4] PLATON^[11] and the SHELXL-97 package.^[6, 12] For the visualization Mercury^[13] and ORTEP-III^[14] were used.

Table S1. Crystallographic details for the salt 2b and the complexes 3b and 3c.

Complex	2b	3b	3c
CCDC #	930701	930702	930703
empirical formula	$C_{26} H_{24} Br_2 N_4$	C36 H50 N4 O4 Pt2	C ₅₆ H ₅₈ N ₂ O ₄ Pt ₂
formula weight [g/mol]	552.31	992.28	1241.24
T [K]	198(2)	198(2)	198(2)
wavelength [Å]	0.71073	0.71073	0.71073
crystal system	monoclinic	monoclinic	monoclinic
space group	P 21/c	P 21/n	P 21/n
a [Å]	12.301(3)	11.198(3)	11.342(2)
b [Å]	8.981(18)	12.003(2)	19.880(3)
c [Å]	11.865(2)	13.678(2)	12.6380(14)
α [°]	90	90	90
β [°]	112.87(3)	94.38(3)	101.411(9)
γ [°]	90	90	90
U [Å ³]	1207.7(4)	1833.1(6)	2793.3(8)
Ζ	2	2	2
D _{calc} [Mg/m ³]	1.519	1.799	1.476
$\mu(MoK\alpha) [mm^{-1}]$	3.377	7.665	5.047
crystal size [mm ³]	0.80x0.75x0.15	0.45x0.44x0.36	0.45x0.43x0.29
F(000)	556	964	1220
reflections collected	19823	37526	68874
independent reflections	2193 $R_{int} = 0.059$	$3721 R_{int} = 0.040$	5722 $R_{int} = 0.050$
Goodness-of-fit on F ²	1.051	1.152	1.113
$R_1 [I \ge 2\sigma(I)]$	0.0359	0.0178	0.0286
wR ₂	0.0685	0.0368	0.0659
data / restraints / parameters	2193/0/145	3721 / 0 / 215	5722 / 0 / 305

Figure S15. ORTEP plot of the molecule arrangement in complex **3b**. The shortest Pt-Pt distance is 6.058 Å. The molecules form two planes with an angle of 10.12 °.

Figure S16. ORTEP plot of the molecule arrangement in complex **3c.** The shortest Pt-Pt distance is 8.716 Å. The molecules form two planes with an angle of 36.32 °.

Figure S17. Solid-state structures of **2b**. Thermal ellipsoids are drawn at 50% probability. Selected bond lengths [Å] and angles [°]: C1-N1 1.338(4); C1-N2 1.321(4); N1-C4 1.439(4); N2-C7 1.474(4); N2-C1-N1 108.5(3); C7-N2-C1 125.4(3); N1-C4-C5 119.8(3); N2-C1-N1-C4 178.7(3); C8-C7-N2-C1 -118.4(4); C1-N1-C4-C5 -9.1(5).

Quantum chemical Calculations

All calculations were performed with the Gaussian03 package.^[15] The density functional hybrid model B3LYP^[16] and the gradient-corrected density functional BP86^[16b, 17] were used together with the $6-31G(d)^{[18]}$ basis set. No symmetry or internal coordinate constraints were applied during optimizations. All reported intermediates were verified as true minima by the absence of negative eigenvalues in the vibrational frequency analysis. Harmonic force constants were calculated for all geometries in order to verify them as ground states. In all cases platinum was described using a decontracted Hay-Wadt(n+1) ECP and basis set.^[19]

Approximate free energies were obtained through thermochemical analysis, using the thermal correction to Gibbs free energy as reported by Gaussian03. This takes into account zero-point effects, thermal enthalpy corrections, and entropy. All energies reported in this paper, unless otherwise noted, are free energies at standard conditions (T=298 K, p=1 atm), using unscaled frequencies. For visualization GaussView^[20] and CYLview^[21] were used.

B3LYP was used for the singlet and triplet ground state optimization. FMOs were computed on the singlet state while the spin densities were calculated on the optimized triplet ground state. Furthermore, BP86 was used to again optimize the complexes in the triplet ground state. The energies obtained from these calculations were then used for the emission wavelength prediction.

Bond lengths [Å] and	Complex 3b		Compl	lex 3c
Angles [°]	Xray	DFT	Xray	DFT
Pt(1)-C(1)	1.943(3)	1.966	1.955(4)	1.966
Pt(1)-C(5)	1.987(3)	2.005	1.980(4)	2.004
Pt(1)-O(1)	2.086(2)	2.161	2.075(3)	2.162
Pt(1)-O(2)	2.051(2)	2.090	2.046(3)	2.099
C(1)-Pt(1)-C(5)	80.40(12)	79.73	80.34(16)	79.93
O(1)-Pt(1)-O(2)	89.82(8)	87.72	90.10(11)	88.62
C(4)-N(1)-C(1)-Pt(1)	-4.1(4)	0.0	4.9(5)	-0.3
N(1)-C(1)-Pt(1)-O(1)	-174.1(2)	180.0	175.9(3)	-179.8

Table S2. Comparison of geometry data for **3b** and **3c** taken from solid-state determination and DFT calculations (B3LYP/6-31G(d)).

Figure S18. CYLview plot of the optimised singlet ground state structures (B3LYP/6-31G(d)).

In Figure S19 the calculated structure (left) of a possible isomer of **3e** with the second cyclometalation taking place at the position between the two imidazole fragments is shown. A strong twisting of the complex due to sterical repulsion is obvious and the reason for an energy difference of 21.9 kcal/mol to the thermodynamically more favoured complex **3e**. At the right side the calculated structure for **3e** with a dpm auxiliary ligand is depicted. Again the sterical hindrance is the reason, why this complex was not observed experimentally.

Figure S19. Possible but not favourable isomer of **3e** (left) and analogue to **3e** with dpm (right) as auxiliary ligand (B3LYP/6-31G(d)).

In Figure S20 the frontier molecular orbitals are shown for the optimized singlet state geometries.

Figure S20. Frontier molecular orbitals of the emissive complexes computed on the singlet ground state (B3LYP/6-31G(d), isovalue = 0.02).

In Figure S21 the spin densities for **3b-d** are shown. The results of these calculation suggest a π - π * charge transfer during the emission process with a significant contribution of the metal d-orbitals.

Figure S21. Spin densities computed on the first excited emitting triplet ground state (B3LYP/6-31G(d), isovalue = 0.02).

Complex	S-T gap [eV] ^[a]	λ_{max} uncorr.[nm]	S-T gap corr. [eV] ^[b]	$\lambda_{max} \operatorname{corr.[nm]}^{[b]}$
3b	2.027	612	2.415	513
3c	2.035	609	2.423	512
3d	2.033	610	2.420	512

Table S3. Data for the wavelength prediction (BP86/6-31G(d)).

^[a] Singlet ground state not optimized but geometry taken from the optimized triplet ground state. ^[b] Correction method taken from ref.^[22]

In the following section the singlet ground state geometries for **3a-e** are given (B3LYP/6-31G(d)).

Coordinates for the optimized singlet	C -6.09633 -2.03063 0.00026
ground state of 3a Free Energy $\Delta G =$	C = 4.68540 = 4.11424 = 0.00143
ground state of ed. The Energy 10	н -4.11871 -4.43098 0.88469
-1688.164157 H.	н -5.65437 -4.61956 0.00009
G 0 (F2000 1 04222 0 00000	н -4.11575 -4.43170 -0.87964
C = 0.67289 = 1.24332 = 0.00009	C -7.86480 -0.23974 -0.00039
C = 1.42851 = 0.06767 = 0.00010	H -8.06634 0.37940 -0.88238
C = 0.71773 1.14745 0.00003	н -8.54935 -1.09156 -0.00091
C = 0.07288 = 1.24331 = 0.00001	н -8.06688 0.37868 0.88200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н -6.93394 -2.71841 0.00029
$H = 1 \ 18012 \ = 2 \ 20381 \ 0 \ 00014$	C 6.09635 2.03062 0.00034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 6.40649 0.65916 0.00016
C = 2.92963 - 1.99299 - 0.00023	C 4.81327 2.60311 0.00046
C = 1.37113 - 3.63578 - 0.00056	C 4.68541 4.11424 0.00108
C = 2.59835 - 4.22212 - 0.00088	C 7.86479 0.23971 -0.00002
C = 1.37112 $3.63577 = 0.00035$	н 6.93396 2.71840 0.00045
C = 2.92963 = 1.99300 = 0.00020	Н 8.54935 1.09153 0.00070
C -2.59834 4.22212 -0.00066	H 8.06669 -0.37834 -0.88270
Н 2.88326 -5.26266 -0.00119	H 8.06651 -0.37979 0.88167
н 0.38285 -4.06636 -0.00057	H 4.11861 4.43107 0.88423
н -0.38284 4.06635 -0.00029	H 4.11589 4.43160 -0.88010
н -2.88323 5.26267 -0.00088	H 5.65438 4.61955 -0.00018
Pt 3.42665 -0.09177 0.00000	
N 1.59198 -2.27203 -0.00010	Coordinates for the entimized singlet
N -1.59198 2.27202 -0.00005	Coordinates for the optimized singlet
C 4.98931 -3.41835 -0.00069	ground state of 3b Free Energy $\Delta G =$
Н 5.27996 -3.98264 0.89141	ground state of the free Energy 20
Н 5.28000 -3.98250 -0.89287	-2159.582045 H.
н 5.48667 -2.44833 -0.00061	
C -4.98930 3.41838 -0.00063	C -0.82566 1.14573 0.00005
н -5.27997 3.98270 0.89145	C = 1.42732 = 0.11560 = 0.00006
н -5.27996 3.98252 -0.89284	C = 0.56580 = 1.22860 = 0.00012
н -5.48668 2.44837 -0.00057	C = 0.82566 - 1.14573 = 0.00015
N 3.54667 -3.20184 -0.00071	C 1.42/32 0.11559 0.00012
N = 354666 320185 = 000059	
N 5.51000 5.20105 0.00035	C 0.56580 1.22859 0.00008
Pt -3.42665 0.09178 0.00004	C 0.56580 1.22859 0.00008 H -1.44830 2.03525 0.00000
Pt -3.42665 0.09178 0.00004 O -3.69441 -1.98655 0.00051	C 0.56580 1.22859 0.00008 H -1.44830 2.03525 0.00000 H 1.44829 -2.03525 0.00020
Pt -3.42665 0.09178 0.00004 0 -3.69441 -1.98655 0.00051 0 -5.57522 0.30841 -0.00016	C 0.56580 1.22859 0.00008 H -1.44830 2.03525 0.00000 H 1.44829 -2.03525 0.00020 C 2.65016 2.34901 -0.00001
Pt -3.42665 0.09178 0.00004 0 -3.69441 -1.98655 0.00051 0 -5.57522 0.30841 -0.00016 0 5.57520 -0.30841 0.00011	C 0.56580 1.22859 0.00008 H -1.44830 2.03525 0.00000 H 1.44829 -2.03525 0.00020 C 2.65016 2.34901 -0.00001 C 0.89444 3.77987 0.00014 C 2.0550 4 51827 0.00013
Pt -3.42665 0.09178 0.00004 O -3.69441 -1.98655 0.00051 O -5.57522 0.30841 -0.00016 O 5.57520 -0.30841 0.00011 O 3.69442 1.98655 0.00028	C 0.56580 1.22859 0.00008 H -1.44830 2.03525 0.00000 H 1.44829 -2.03525 0.00020 C 2.65016 2.34901 -0.00001 C 0.89444 3.77987 0.00014 C 2.03650 4.51837 0.00013

С	-2.65016	-2.34901	-0.00000
C	-2 03651	-4 51837	0 00011
	2.05051	F F0C00	0.00017
Н	2.18590	5.58682	0.0001/
Η	-0.14053	4.08153	0.00022
п	0 14052	1 00151	0 00020
п	0.14052	-4.00154	0.00028
Η	-2.18591	-5.58682	0.00012
Рt	3 39017	0 52712	0 00003
1.0	1 00000	0.02712	0.00003
N	1.28/92	2.45546	0.00004
Ν	-1.28792	-2.45546	0.00011
C	1 51029	1 01997	_0 00024
C	4.51050	4.0100/	-0.00024
Н	4.73208	4.61308	-0.89277
н	4.73210	4.61391	0.89172
тт	E 1167E	2 11220	0 00010
п	5.110/5	3.11320	0.00012
С	-4.51039	-4.01887	-0.00040
н	-4 73203	-4 61297	-0 89301
	1.75205	1.01207	0.0000140
н	-4./3216	-4.61402	0.89148
Η	-5.11675	-3.11328	0.00004
NT	3 10665	3 62700	0 00001
TN	2.T0002	5.02/09	0.00001
Ν	-3.10666	-3.62709	0.00004
Pt	-3.39017	-0.52712	0.00001
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 00100	1 40400	0 000001
0	-3.92180	1.49422	0.00008
0	-5.50067	-0.99338	-0.00015
$\cap$	5 50066	0 99340	-0 00032
0	5.50000	0.99910	0.00052
0	3.92184	-1.49422	0.00026
С	-5.10240	1.98581	0.00022
C	-6 20510	1 259/7	0 00001
C	-0.30319	1.204/	0.00001
С	-6.45249	-0.14171	-0.00024
С	-5.10867	3.53477	0.00065
a	7 06201	0 70502	0 00060
C	-/.00321	-0.76505	-0.00060
Η	-7.21306	1.83745	0.00007
С	6.30518	-1.25845	-0.00018
a	6 45040	0 1/170	0 00053
C	0.45249	0.141/2	-0.00055
С	5.10239	-1.98580	0.00031
C	5 10868	-3 53476	0 00098
a	7 0 6 2 2 1	0 70500	0.000000
C	/.80321	0.78503	-0.00114
Η	7.21305	-1.83743	-0.00029
C	-7 98212	-1 66772	1 26335
	0.04005	1.00772	1 00100
Н	-8.94/25	-2.18856	1.2/123
Η	-7.18448	-2.41402	1.30008
н	-7 91851	-1 06042	2 17419
~		1 660012	1 06401
C	-/.98155	-1.66/32	-1.26491
Η	-8.94665	-2.18819	-1.27340
ч	-7 91752	_1 05974	-2 17552
	7.91792	1.05571	2.17552
н	-/.18386	-2.41359	-1.30149
С	-9.01946	0.23103	-0.00068
н	-9 00334	0 87185	0 88792
 	0 00010	0.07100	0.00012
Н	-9.00313	0.87199	-0.88916
Η	-9.97530	-0.30622	-0.00084
C	-6 51479	4 15925	0 00068
C	0.51475	H.1J/2J	0.00000
Н	-7.08978	3.87603	-0.88807
Н	-7.08995	3.87559	0.88917
тт	6 42600	E 0E011	0 00006
п	0.42090		0.00090
С	-4.35278	4.00721	1.26435
Н	-3.34814	3.57807	1.30191
 บ	_1 26050	5 1000 <i>C</i>	1 26060
п	-4.20959	3.T0080	1.20009
Η	-4.88284	3.70559	2.17573
С	-4.35246	4.00801	-1.26255
U U	1 26020	E 10100	1 06610
н	-4.20928	2.TUT00	-1.20019
Η	-3.34781	3.57891	-1.30017
H	-4.88228	3.70696	-2.17427
 C	4 25220	4 00000	1 06505
Ċ	4.35327	-4.00693	⊥.∠0505
Η	3.34867	-3.57774	1.30291

ннСнннСнннСнннСннн	4. 4. 4. 4. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	27004 88371 35202 88157 26874 34739 51481 08946 09029 42693 01944 00372 00271 97529 98244 94765 18493 91882 98125 18360 94638 91695	$\begin{array}{c} -5.1 \\ -3.7 \\ -4.0 \\ -3.7 \\ -5.1 \\ -3.5 \\ -4.1 \\ -3.8 \\ -5.2 \\ -0.2 \\ -0.8 \\ -0.8 \\ 0.3 \\ 1.6 \\ 2.1 \\ 2.4 \\ 1.0 \\ 1.6 \\ 2.4 \\ 2.1 \\ 1.0 \end{array}$	0058 0516 0830 0755 0194 7912 5923 7616 7540 5210 3104 7197 7189 0619 6733 8801 1377 5980 6771 1403 8852 6041	1.269 2.176 -1.267 -1.269 -1.299 0.000 -0.888 0.007 -0.007 0.888 0.007 -0.007 1.267 1.300 2.177 -1.269 -1.307 -1.275 -2.175	961 515 182 379 512 924 062 339 385 114 182 570 038 234 308 100 010 375 520 134 380 599
Coo	ordir	nates	for th	e op	timized	singlet
gro	und	state	of <b>3c</b> .	Free	Energy	$\Delta G =$
-29	26.3	82176	θН.			
C	-0.	89229	1.0	9726	-0.064	413
C	-0.4	414/2 49186	-0.1	9899 6168	-0.06	145 503
C	0.	89226	-1.0	9726	-0.064	404
С	1.	41469	0.1	9900	-0.061	148
С	0.	49184	1.2	6169	-0.060	515
Η	-1.	56943	1.9	4644	-0.065	577
H	1.	56940	-1.9	4644	-0.065	561
C C	∠.	5083/ 67306	2.5 3.8	0201 2846	-0.072	248 266
C	1.	77135	4.6	3093	-0.081	121
С	-0.	67309	-3.8	2846	-0.078	329
С	-2.	50839	-2.5	0261	-0.072	224
C	-1.	77137	-4.6	3093	-0.080	075
н ч	_0	85902 37780	5.7	0618 6972	-0.080	0UL 117
H	0.	37778	-4.0	6972	-0.080	
Н	-1.	85904	-5.7	0618	-0.085	545
Ρt	3.	34814	0.7	2502	-0.053	305
Ν	1.	14243	2.5	2886	-0.073	300
N	-1.	14245	-2.5	2886	-0.072	276
С н	4.	27080 45914	4.2	8268 7403	-0.078	2∠5 213
H	4.	44475	4.9	0784	0.805	536
Н	4.	94013	3.4	2255	-0.054	409
С	-4.	27089	-4.2	8267	-0.075	586
H	-4.	45923	-4.8	7387	-0.97	783
н ч	-4.	4447⊥ 94∩1⊑	-4.9	U/98 2255	0.805	205 252
N	2.1	89212	3.8	0367	-0.07	710
N	-2.	89214	-3.8	0366	-0.076	572
	-	~ 1 ~ 1 ~	0 7	2502		

0	-3 99089	1 27229	-0 00647
0	5 40167	1 22752	0 04000
0	5.42107	1 22752	0.04000
0	5.42164	1.33/53	-0.05011
0	3.99087	-1.27229	-0.00645
С	-5.20556	1.67173	0.02565
С	-6.36005	0.86884	0.02920
C	-6 41585	-0 53668	-0 00738
ц Ц	-7 31068	1 38965	0 06559
п	-7.31000	1.30903	0.00000
C	6.36003	-0.86884	0.02881
С	6.41582	0.53668	-0.00781
С	5.20554	-1.67173	0.02552
Н	7.31067	-1.38964	0.06505
C	-7 77292	-1 19609	-0 01401
C	0 20000	1 67200	1 22057
C	-0.29009	-1.07300	-1.23037
С	-8.48771	-1.36014	1.18735
С	-9.54880	-2.30018	-1.22451
С	-9.73245	-1.99897	1.14756
С	-10.28112	-2.47612	-0.04590
н	-9 96003	-2 65997	-2 16604
11 TT	10 20560	2.0377	2.10001
п	-10.20500	-2.12/03	2.07619
С	-5.37551	3.16860	0.09027
С	-5.09146	3.83642	1.29875
С	-5.78520	3.89141	-1.04625
С	-5.24334	5,22511	1.35245
C	_5 01423	5 28180	_0 94877
d		5.20100	0.04077
C	-5.65071	5.96/95	0.23961
Η	-5.03807	5.73912	2.28981
Η	-6.22837	5.84157	-1.82788
С	5.37552	-3.16858	0.09025
С	5.09145	-3.83632	1,29879
C	5 78530	-3 801/18	_1 0/617
C	5.78530	-3.09140	-1.04017
C	5.24340	-5.22500	1.35261
С	5.91440	-5.28185	-0.94857
С	5.65086	-5.96792	0.23986
Н	5.03810	-5.73894	2.29000
н	6 22859	-5 84169	-1 82763
2	7 77200	1 10609	0 01472
C	7.77290	1.19000	-0.014/2
С	8.29884	1.67346	-1.23144
С	8.48771	1.36053	1.18658
С	9.54876	2.29976	-1.22563
С	9.73247	1.99931	1.14654
C	10 28111	2 47607	-0 04710
с тт	0 0 0 0 0 0 0	2.17007	0.01710
п 	9.95995	2.05925	-2.10720
Н	10.28566	2.12825	2.0/510
С	-6.07392	3.20204	-2.36299
Η	-5.25456	2.53633	-2.65723
Н	-6.98041	2.58722	-2.31045
н	-6 21530	3 93691	-3 16177
21	4 64404	2 07/20	2 52600
C 	-4.04404	3.07430	2.52090
Н	-5.36052	2.28/35	2./9284
Η	-3.68149	2.57892	2.36047
Η	-4.54317	3.74344	3.38703
С	-5.77445	7,47276	0.31298
н	-6 07635	7 80223	1 31325
IJ	_/ 01050	7 06202	0 00510
ц	-4.01020	1.90393	0.00519
Н	-6.51112	/.84994	-0.40454
С	-11.61414	-3.18857	-0.05960
Η	-11.48655	-4.27577	0.03308
Н	-12.25052	-2.86497	0.77105
н	-12 15726	-3,00603	-0.99346
с	_7 52010	_1 50610	-2 52750
	7.JJULU	1.0012	2.77172
Н	-/.344⊥3	-0.44838	-2./44/0

Н	-6.56187	-2.00142	-2.484	01	
Н	-8.09889	-1.92525	-3.368	67	
С	-7.93302	-0.86839	2.507	20	
Н	-6.91824	-1.24453	2.681	69	
Н	-7.87540	0.22617	2.540	27	
Н	-8.56297	-1.19596	3.340	17	
С	6.07409	-3.20224	-2.362	97	
н	5.25505	-2.53606	-2.657	02	
н	6 98096	-2 58796	-2 310	65	
н	6 21486	-3 93720	-3 161	79 79	
C	4 64398	-3 07420	2 526	88	
с u	5 36044	_2 28717	2.520	80	
п u	2 601/2	2.20717	2.792	40	
п u	J.00143	2.57070	2.300	72 01	
п	4.54511	-3.74323	3.307	04 2F	
C	5.//400	-/.4/2/2	0.313	30	
H	6.0/613	-7.80213	1.313	//	
H	4.81885	-/.96396	0.085	14 00	
Н	6.51169	-7.84988	-0.403	82	
С	7.53801	1.50528	-2.528	39	
Η	7.34428	0.44745	-2.745	29	
Η	6.56166	2.00037	-2.484	83	
Η	8.09864	1.92440	-3.369	58	
С	7.93301	0.86926	2.506	59	
Н	6.91849	1.24606	2.681	23	
Η	7.87468	-0.22526	2.539	77	
Η	8.56332	1.19652	3.339	41	
С	11.61414	3.18850	-0.061	06	
Η	12.15719	3.00575	-0.994	92	
Η	11.48658	4.27572	0.031	40	
Η	12.25058	2.86507	0.769	62	
C	1. (	C (1	·· · 1	• 1 /	
C0	ordinates	for the o	ptimized	singlet	
gro	ound state	of 3d. Fre	e Energy	$\Delta G =$	
24	521 521156	п			
-20	521.551150	11.			
С	-0.49608	-1.30334	-0.226	88	
С	-1.40027	-0.28400	0.083	54	
С	-0.86169	0.99821	0.301	11	
С	0.49654	1.30277	0.225	54	
С	1.40072	0.28342	-0.084	85	
С	0.86216	-0.99880	-0.302	39	
Η	-0.86418	-2.30989	-0.402	17	
Η	0.86463	2.30930	0.400	86	
С	3.15496	-1.47835	-0.639	33	
С	1.84108	-3.30781	-0.877	87	
С	3.12977	-3.68973	-1.081	83	
С	-1.84051	3.30699	0.877	70	

C2E	
333	

-3.15441

-3.12911

3.55391

0.92482

-0.92427

-3.55319

3.39219

1.87420 -1.87370

5.38926

5.65590

5.68975

-5.38845

1.47757

3.68874

-4.65594

-3.87527

3.87450

4.65481

0.43767

1.95163

-1.95232

-2.54711

-2.94874

-1.49768

2.54584

0.63896

1.08255

-1.30448

-0.90270

0.90231

1.30590

-0.26383

-0.60757

-1.05041

-2.03424

-1.01322

1.05278

0.60675

С

С

Η

Η

Η

Η

Ν

Ν

С

Η

Η

С

Ρt

н	-5.65389	2.94543	2.03777
	F (0000	1 40047	1 01200
н	-5.68893	1.4964/	1.01388
Ν	3.92574	-2.55578	-0.93617
NT	2 0 2 5 1 0	2 55402	0 02671
IN	-3.92510	2.00402	0.930/1
Ρt	-3.39171	-0.43830	0.26277
$\cap$	2 27672	2 10210	0 16760
0	-3.3/0/2	-2.40310	-0.10709
0	-5.53661	-0.58289	0.46988
$\cap$	5 53716	0 58234	-0 47083
0	0.00710	0.00201	0.1/005
0	3.37702	2.48264	0.16578
С	-4.38227	-3,27191	-0.21588
a	F 70401	0,00001	0 01407
C	-5./2421	-2.92201	0.0140/
С	-6.22915	-1.64812	0.33600
C	-3 08808	_1 70700	_0 56917
C	5.50000	H. /2//2	0.50017
С	-7.74832	-1.43718	0.56107
н	-6 44461	-3 71905	-0 06553
~	5 50444	0.00000	0.00555
C	5.72444	2.92233	-0.01629
С	6.22954	1.64776	-0.33760
a	1 20247	2 27150	0 01054
C	4.3824/	3.2/159	0.21354
С	3.98813	4.72769	0.56530
C	7 74872	1 43695	-0 56281
C	1.14072	1.43095	-0.30201
Н	6.44474	3.71891	0.06287
C	-8 24290	-0 40070	-0 47432
	0.21200	0.10070	0.11100
Н	-9.30522	-0.18239	-0.31100
Η	-7.68307	0.53492	-0.40207
тт	0 1 2 1 2 1	0 70207	1 40502
п	-0.13121	-0./039/	-1.49505
С	-7.94433	-0.88065	1.99031
н	-9 00517	-0 66849	2 16989
11	J.00J17	0.00049	2.10909
Н	-7.61211	-1.60499	2.74367
Н	-7.37749	0.04219	2.13710
~	0 50001	0.01219	0 41400
C	-8.58921	-2./1803	0.41408
Η	-8.51467	-3.14490	-0.59231
п	-8 29667	-3 18602	1 12792
п	-0.29007	-3.40092	1.13/03
Η	-9.64489	-2.48223	0.59289
C	-5 17479	-5 70529	-0 62290
	5.17175	5.70525	0.02250
Н	-5.69179	-5.77696	0.34058
Η	-5.90599	-5.41939	-1.38720
тт	4 0000	6 70707	0 07547
п	-4.00995	-0./0/0/	-0.0/54/
С	-3.29636	-4.70475	-1.95126
н	-2 44915	-4 01397	-1 95355
	2.11715	1.01357	1.00000
Н	-2.93434	-5.70736	-2.20972
Η	-3.99460	-4.38596	-2.73449
a	2 00647	E 01771	
C	-2.9004/	-5.21//1	0.50557
Η	-2.62527	-6.22233	0.25174
н	-2 12897	-4 54354	0 57439
		F 0CC01	1 40151
н	-3.45954	-5.20091	1.49151
С	2.98720	5.21732	-0.50694
ч	2 12968	4 54321	-0 57834
п	2.12900	4.54521	-0.57854
Η	2.62594	6.22203	-0.25576
Н	3.46086	5,26626	-1.49481
2	2 20556	4 70400	1 04706
C	3.29550	4./0400	1.94/90
Η	3.99330	4.38616	2.73170
ч	2 93337	5 70746	2 20600
11 7-			1 0400-
Н	2.44834	4.01402	1.94986
С	5.17485	5.70502	0.62056
- U		E 4100C	1 20540
п	5.9054/	5.41930	1.30549
Η	5.69255	5.77630	-0.34257
н	4 80987	6 70770	0 87250
	1.00007	0.70770	0.07250
C	8.58942	2.71802	-0.41671
Н	8.29665	3.48645	-1.14085
ъ	8 51/00	3 1/5/6	0 50011
11	0. 0. 1. 190	2.T-1040	0.00944
Η	9.64511	2.48229	-0.59556
С	7.94457	0.87960	-1.99175
	-		-

Н	9.00542	0.6675	50 -2.1	7140	
Н	7.37784	-0.0434	12 -2.1	3784	
Н	7.61210	1.6034	13 -2.7	4548	
С	8.24369	0.4011	L7 0.4	7310	
Н	7.68410	-0.5346	54 0.4	0145	
Н	9.30605	0.1830	0.3	80975	
Н	8.13203	0.7849	97 1.4	9441	
С	6.06529	-3.348	76 0.0	4541	
С	6.84952	-4.4645	50 -0.2	26566	
С	5.92268	-2.9691	L3 1.3	8838	
С	7.48327	-5.1934	14 0.7	4431	
Н	6.97038	-4.7636	54 -1.3	30491	
С	6.55049	-3.6983	36 2.3	39710	
Н	5.31760	-2.1006	53 1.6	3728	
С	7.33246	-4.8127	71 2.0	)7766	
Н	8.09045	-6.0574	18 0.4	8768	
Н	6.43286	-3.3951	L4 3.4	3397	
Н	7.82199	-5.3789	94 2.8	86547	
С	-6.06600	3.3497	73 -0.0	4044	
С	-6.85106	4.4638	38 0.2	27425	
С	-5.92422	2.9738	32 -1.3	8455	
С	-7.48646	5.1948	35 -0.7	/3321	
Н	-6.97126	4.7601	L7 1.3	31439	
С	-6.55367	3.7050	)8 -2.3	39077	
Н	-5.31851	2.1065	59 -1.6	3632	
С	-7.33649	4.817	78 -2.0	6769	
Н	-8.09428	6.0576	50 -0.4	7374	
Н	-6.43665	3.4047	74 -3.4	2854	
Н	-7.82730	5.3855	59 -2.8	35357	
Co	ordinates	for the	optimize	d singl	et
gro	ound state	of 3e. Fr	ree Ener	gy ΔG	=
-16	588 159140	Н			
С	1.22142	-0.6995	56 0.0	0002	
С	1.18182	-2.1074	<del>1</del> 1 -0.0	0004	
С	-0.00000	-2.8425	54 0.0	0004	

С	1.18182	-2.10741	-0.00004
С	-0.00000	-2.84254	0.00004
С	-1.18182	-2.10740	0.00015
С	-1.22143	-0.69956	0.00017
С	-0.00000	-0.01180	0.00012
Η	0.00001	1.07260	0.00015
С	-3.52524	-1.80752	0.00024
С	-2.93383	-3.99410	0.00006
С	-4.29237	-3.92721	0.00000
Η	-2.27269	-4.84575	0.00001
Η	-5.03674	-4.70817	-0.00015
С	3.52523	-1.80752	-0.00019
С	2.93383	-3.99411	-0.00028
С	4.29237	-3.92721	-0.00033
Η	2.27270	-4.84576	-0.00028
Η	5.03675	-4.70817	-0.00034
Ν	-2.47950	-2.68859	0.00019
Ν	-4.64194	-2.57985	0.00012
Ν	2.47950	-2.68859	-0.00015
Ν	4.64194	-2.57984	-0.00030
С	6.01402	-2.08350	-0.00027
Η	5.98796	-0.99350	-0.00020
Η	6.53801	-2.44151	0.89190
Η	6.53800	-2.44139	-0.89250
С	-6.01404	-2.08352	0.00001

Н	-6.53788	-2.44129	-0.89235	C	6.82632	2.48372	0.00009
Η	-6.53815	-2.44167	0.89205	0	2.32567	2.05786	0.00024
Η	-5.98800	-0.99353	0.00022	0	5.06542	0.91966	-0.00001
Η	-0.00001	-3.92947	0.00001	Pt	-3.06236	0.09977	0.00022
С	-6.82629	2.48376	-0.00067	Pt	3.06235	0.09977	-0.00005
С	-5.34219	2.16600	-0.00046	Н	7.29624	2.03509	0.88324
С	-4.42346	3.22843	-0.00064	Н	7.29688	2.03282	-0.88155
Η	-4.83744	4.23003	-0.00094	Н	7.02752	3.55788	-0.00115
С	-3.02055	3.12808	-0.00035	Н	1.54509	4.40959	0.88291
С	-2.19530	4.40002	-0.00048	Н	1.54250	4.40863	-0.87950
0	-5.06539	0.91966	0.00005	Н	2.81163	5.30255	-0.00058
0	-2.32565	2.05788	-0.00009	Н	-1.54331	4.40891	0.88037
С	2.19530	4.39999	0.00074	Н	-1.54426	4.40940	-0.88204
С	3.02058	3.12806	0.00026	Н	-2.81165	5.30256	0.00006
С	4.42348	3.22842	-0.00000	Н	-7.02741	3.55794	-0.00107
Η	4.83745	4.23003	-0.00004	Н	-7.29651	2.03368	-0.88290
С	5.34222	2.16600	-0.00002	Н	-7.29659	2.03440	0.88190

In the following section the triplet ground state geometries for the emissive complexes **3b-d** are given, which were used for the spin density calculations (B3LYP/6-31G(d)).

Co	ordinates	for the op	timized triplet	0	3.92371	1.50581	-0.00002
			-	0	5.47504	-1.00245	0.00006
gro	ound state	of <b>3b</b> . Free	Energy $\Delta G =$	0	-5.47504	1.00245	-0.00000
<b>•</b>	1 50 405115	тт		0	-3.92371	-1.50581	-0.00001
-2	139.495115	H.		С	5.10742	1.98396	0.00005
C	0 85979	1 16380	-0 00001	С	6.30322	1.24214	0.00009
C	1 44593	_0 09233	-0 00002	C	6.43489	-0.15838	0.00010
C	0 53504	-1 26679		С	5.13219	3.53302	-0.00006
C	-0 85979	_1 16380		С	7.83871	-0.81622	0.00020
C	1 44502	-1.10300	-0.00001	Н	7.21740	1.81092	0.00012
C	-1.44595	1 26670	-0.00000	С	-6.30322	-1.24214	-0.00002
U U	1 40244	2 04590	-0.00001	С	-6.43489	0.15837	-0.00001
п u	1 49244	2.04580		С	-5.10742	-1.98396	-0.00002
п	-1.49244	-2.04000	-0.00001	С	-5.13219	-3.53302	-0.00002
d	-2.03424	2.342/3	0.00001	С	-7.83871	0.81622	-0.00003
d	-0.005/0	3./034/ 1 E1076	0.00000	Н	-7.21740	-1.81092	-0.00003
d	-2.01530	4.51270	0.00001	С	7.94826	-1.69966	-1.26418
d	0.005/0	-3.76527	-0.00005	Н	8.90828	-2.22980	-1.27239
d	2.03424	-2.342/5	-0.00005	Н	7.14351	-2.43821	-1.30108
	2.01530	-4.512/0 E E0107	-0.00007	Н	7.89040	-1.09141	-2.17474
п тт	-2.10305	5.5010/	0.00002	С	7.94796	-1.69992	1.26442
п тт	0.16630	4.09470	-0.00001	Н	8.90797	-2.23007	1.27274
п	-0.16036	-4.09470	-0.00004	Н	7.88991	-1.09185	2.17509
H	2.10305	-5.5818/	-0.00008	Н	7.14319	-2.43846	1.30099
PL	-3.30/92	0.52100	0.00001	С	9.00546	0.18782	0.00044
IN	-1.24978	2.44740	0.00000	Н	8.99591	0.82892	-0.88803
N	1.24970	-2.44740	-0.00004	Н	8.99579	0.82864	0.88910
C	-4.48630	4.02729	0.00007	Н	9.95558	-0.35940	0.00042
H	-4.70912	4.62192	0.89257	С	6.54565	4.14086	-0.00039
H	-4.70911	4.02218	-0.89225	Н	7.11758	3.85067	0.88806
н	-5.09565	3.12388	-0.00006	Н	7.11712	3.85078	-0.88916
C	4.48630	-4.02729	-0.00015	Н	6.47045	5.23464	-0.00030
H	4.70909	-4.62228	0.89211	С	4.38168	4.01443	-1.26351
H	4.70913	-4.62181	-0.892/1	Н	3.37173	3.59787	-1.30111
H	5.09565	-3.12388	0.00009	Н	4.31170	5.10897	-1.26779
N	-3.08555	3.03089	0.00001	Н	4.90769	3.70641	-2.17507
N	3.08555	-3.63088	-0.00006	С	4.38219	4.01461	1.26363
Ρt	3.36792	-0.52160	-0.00003				

1 7 2 1 6
7 2 1 6
2 1 6
1 6
б
4
7
3
2
б
1
3
7
4
1
0
0
3
9
1
8
8
3
1
0
Ø
в б

Coordinates for the optimized triplet ground state of **3c**. Free Energy  $\Delta G = -2926.295197$  H.

С	-0.92674	1.11400	-0.08289
С	-1.43451	-0.17619	-0.07903
С	-0.45930	-1.29796	-0.08965
С	0.92674	-1.11401	-0.08287
С	1.43450	0.17618	-0.07909
С	0.45930	1.29795	-0.08973
Н	-1.61335	1.95529	-0.08052
Н	1.61335	-1.95530	-0.08048
С	2.49433	2.49360	-0.09365
С	0.64646	3.83167	-0.11508
С	1.75328	4.62268	-0.11638
С	-0.64647	-3.83168	-0.11485
С	-2.49434	-2.49361	-0.09342
С	-1.75329	-4.62270	-0.11607
Н	1.84044	5.69846	-0.12611
Н	-0.40185	4.08157	-0.12396
Н	0.40184	-4.08159	-0.12376
Н	-1.84045	-5.69847	-0.12574
Ρt	3.32656	0.71705	-0.06234
Ν	1.10608	2.51785	-0.10089
Ν	-1.10608	-2.51787	-0.10071
С	4.24902	4.28676	-0.10276
Н	4.44432	4.86242	-1.01385
Н	4.41888	4.92725	0.76901
Н	4.92049	3.42916	-0.06212
С	-4.24903	-4.28677	-0.10235
Н	-4.44437	-4.86247	-1.01341
Н	-4.41884	-4.92722	0.76945

표 _4 92050	-3 42016	-0 06172
11 1.92050	5.12710	0.001/2
N 2.87319	3.80416	-0.10304
N -2 87320	-3 80417	-0 10271
N 2.07520	5.0011/	0.102/1
Pt -3.32656	-0.71706	-0.06218
0 2 00102	1 20/00	0 00450
0 -3.99102	1.20490	-0.00430
0 -5.39657	-1.34272	-0.05333
	1 2/071	0 05264
0 5.59050	1.342/1	-0.05504
0 3.99102	-1.28499	-0.00466
C E 20720	1 67202	0 02405
C = 5.20729	1.0/202	0.03495
C -6.35467	0.85606	0.04065
a c 20670		0 00000
C =0.390/9	-0.54654	-0.00226
н -7.31022	1.36709	0.08411
g ( )5460		0 04042
0.35468	-0.85605	0.04043
C 6.39679	0.54854	-0.00257
a E 00720	1 (7000	0 02402
C 5.20730	-1.6/202	0.03483
н 7.31023	-1.36708	0.08388
a = = 4 = 0 2	1 01000	0 00010
C = /. /4/93	-1.21980	-0.00613
C -8.27362	-1.69827	-1.22265
a 0.45706	1 20200	1 10700
0 -8.45/26	-1.39320	1.19/02
C -9.51859	-2.33412	-1.21457
0 0 0 7 1 0	0 04171	1 1 - 0 0 1
0 -9.69/16	-2.041/1	1.12901
C -10.24591	-2.51921	-0.03418
11 0 0 0 0 0 0 0	2 60422	2 1 5 5 0 2
H -9.92990	-2.09425	-2.15592
н -10.24626	-2.17775	2.08897
а <u>г</u> рорір	2 16657	0 10670
C =5.39312	3.1005/	0.106/9
C -5.10661	3.83243	1.31601
C E 01042	2 00026	1 00045
C - J. 01943	5.00920	-1.02343
C -5.27260	5.21906	1.37647
C _5 96225	5 27797	-0 91921
G 5.90229	5.27757	
C -5.69667	5.96203	0.269/5
н -5.06525	5.73145	2.31427
ч _6 28007	5 82702	_1 70252
H -0.20907	5.05/92	-1.19352
C 5.39313	-3.16656	0.10679
C = 5 + 10672	-3 83333	1 31609
C 5.10072	5.05252	1.01000
C 5.81934	-3.88936	-1.02342
C 5.27271	-5.21893	1.37667
G F 0(017	E 0700C	0 01007
C 5.96217	-5.2/806	-0.9190/
C 5.69669	-5.96200	0.26997
	E 72104	0 01450
H 5.06545	-5./5124	2.31455
н 6.28891	-5.83809	-1.79336
C 7 74793	1 21981	-0 00654
C 7.74755	1.21/01	0.00034
C 8.27355	1.69824	-1.22310
C 8 45731	1 39330	1 19657
e 0.13751	1.32330	1 01 5 1 1
C 9.51853	2.33409	-1.21511
C 9.69722	2.04176	1,15848
g 10 04501	0 51001	0 02470
0 10.24591	2.51921	-0.034/6
н 9.92984	2.69418	-2.15648
11 10 24626	0 17700	2 00040
п 10.24030	2.1/02	2.00040
C -6.11056	3.20235	-2.34094
H _5 28447	2 55000	-2 64640
	2.55009	2.01010
н -7.00748	2.57414	-2.28314
H _6 27002	2 92900	-3 12457
··· ··································	5.55509	J.IJIJ/
C -4.64204	3.06998	2.53753
H -5.34861	2.27489	2.80601
		2.20001
п -3.0/599	∠.58448	2.30205
н -4.54111	3.73669	3.39947
0 - 5 02620	7 16500	0 25127
C -0.00028	1.40500	0.5515/
н -6.17437	7.78320	1.34381
H -4.87762	7,96644	0.16048
	7 0/172	0 20704
н -0.55208	/.84⊥/3	-0.38/04
C -11.57364	-3.24150	-0.04641
u _11 /2600	-1 20006	0 02601
11 -11.43099		0.02091

H H C	-12.20407 -12.12741 -7.51804	-2.93634 -3.04785 -1.52085	0.79563 -0.97179 -2.52142
н Н	-6 53803	-0.46103 -2.00901	-2.73581 -2.48236
H	-8.07833	-1.94151	-3.36204
С	-7.90240	-0.90158	2.51683
H	-6.88243	-1.26635	2.68498
н ч	- / . 85 / 84	U.19341 -1 24095	2.55539
C	6.11035	-3.20256	-2.34100
Η	5.28423	-2.55035	-2.64646
Η	7.00726	-2.57434	-2.28334
H	6.26976	-3.93938	-3.13458
С Н	5.34885	-2.27463	2.33750
H	3.67619	-2.58427	2.36214
Η	4.54140	-3.73637	3.39959
С	5.83631	-7.46497	0.35172
н н	6.1/4/0 4 87759	-7.78306	1.34411 0 16119
Н	6.55189	-7.84179	-0.38686
С	7.51790	1.52079	-2.52182
H	7.33241	0.46096	-2.73616
H U	6.53790	2.00897	-2.48273
C	7.90253	0.90165	2.51643
Η	6.88256	1.26643	2.68461
Η	7.85797	-0.19333	2.55502
H	8.52485	1.24105	3.35039
H	12.12738	3.04778	-0.97245
Η	11.43699	4.32907	0.02616
Η	12.20408	2.93642	0.79498
Сс	oordinates	for the op	timized triplet
gro	ound state	of 3d. Free	Energy $\Delta G =$
-20	621.443024	H.	
C	-0.51440	-1.33773	-0.23604
C	-0.84313	1.03475	0.29223
С	0.52233	1.32711	0.21157
С	1.41495	0.31071	-0.09128
C	0.85123	-1.04572	-0.31509
Н	0.89771	2.34235 2.33168	0.38056
С	3.14929	-1.47144	-0.63699
С	1.83358	-3.32206	-0.86980
C	3.12833	-3.68781	-1.06611
C	-3.13979	1.45761	0.62766
С	-3.11731	3.67067	1.07407
H	3.55576	-4.65452	-1.28267
Н Н	0.92425 -0 91500	-3.89961 3 88600	-U.89584 0 88644
т т	-3 54413	4 63520	1 30120

Pt 3.37159

N -1.83938

Ν

0.44486

1.94272

1.84822 -1.95525

-0.27060

-0.60275

0.58755

C	F 38E03	-2 55308	_1 02855
C	5.50505	2.55570	1.02055
Н	5.66306	-2.96391	-2.00624
ч	5 68797	_1 50509	-0 99820
п	5.00/9/	-1.50509	-0.99020
С	-5.37108	2.53036	1.06778
тт	E 60600	2 00772	2 06020
н	-2.02002	2.09/12	2.00039
Η	-5.67326	1.48278	1.00171
ът	2 02220	2 5 5 0 4 0	0 0000
IN	3.92239	-2.55848	-0.92825
Ν	-3.91150	2.54178	0.93290
	2 26216	0 45640	0 00001
ΡL	-3.30310	-0.45640	0.25031
0	-3.36085	-2.51295	-0.18158
~		0 50000	0 4 5 5 0 0
0	-5.50/44	-0.59203	0.45580
0	5,51619	0.58055	-0.47490
~	2 2 2 7 7 1		0 14007
0	3.30/51	2.50385	0.1486/
С	-4.37119	-3.29218	-0.23183
a	E 71010	2 02020	0 00604
C	-5./1210	-2.93020	-0.00604
С	-6.20696	-1.65298	0.31517
C	2 00021	1 75240	0 50102
C	-3.99031	-4./5249	-0.30193
С	-7.72524	-1.42931	0.53189
ч	-6 43929	-3 72008	_0 08927
11	0.15525	5.72000	0.00927
С	5.71793	2.92313	-0.03395
С	6 21413	1 64401	-0 34569
a	4 2000	2.00471	0.010100
C	4.37690	3.28471	0.19198
С	3.99454	4.74692	0.53244
a		1 40140	
Ċ	1.13223	1.42140	-0.56502
Η	6.44389	3.71477	0.04135
C	0 20110	0 20671	0 50496
C	-0.20440	-0.30071	-0.30400
Н	-9.26572	-0.15962	-0.34729
н	-7 63725	0 54411	-0 42806
	1.03/23	0.51111	0.12000
Н	-8.09006	-0.76952	-1.52622
С	-7.92494	-0.87395	1,96114
	0 00500	0 (5240	2 1 2 4 5 4
н	-8.98509	-0.65349	2.13454
Н	-7.60336	-1.60267	2.71489
<b>T</b> T	7 25152	0 04202	0 11000
н	-/.35153	0.04383	2.11358
С	-8.57650	-2.70237	0.37737
ы	-8 10031	-2 10010	-0 62928
п	-0.49934	-3.12012	-0.02920
Н	-8.29552	-3.47501	1.10170
н	-9 63106	-2 45721	0 54986
~	5.05100	5 51001	0.51900
C	-5.18646	-5.71821	-0.63966
Н	-5.70752	-5.78376	0.32204
 TT	F 01000	F 40C1C	1 40602
н	-5.91209	-5.42010	-1.40693
Н	-4.83052	-6.72456	-0.88984
C	2 20//1	1 72710	1 06207
C	-3.29441	-4./3/10	-1.90297
Η	-2.43987	-4.05535	-1.96363
н	-2 94203	-5 74353	-2 21977
	2.91205	4 41154	0 0 0 0 0 0 0
Н	-3.98/02	-4.41154	-2./4839
С	-2.99712	-5.25112	0.49330
тт	2 64504	6 25007	0 24410
н	-2.04594	-0.2598/	0.24419
Н	-2.13239	-4.58635	0.56587
ы	-2 17211	-5 20268	1 / 0 / 1 0
п	-3.4/341	-3.29300	1.40010
С	3.00041	5.23707	-0.54583
н	2 13642	4 57085	-0 61366
 			0.0100
н	∠.648⊥4	o.∠47⊥0	-0.30354
Η	3.47640	5.27345	-1.53310
C	3 20012	4 7/000	1 01270
C	5.49914	4./4008	1.913/8
Η	3.99239	4.42078	2.70118
н	2 94550	5 74777	2 16384
 	2.71550	4 05500	1 01007
н	2.44548	4.05722	T.9T83/
С	5.18959	5.71436	0.58323
ਸ	5 91612	5 40700	1 2517/
11 T-			T. JJT/4
Н	5.70982	5.77449	-0.37927
Н	4.83263	6.72183	0.82735
C	Q E011E	2 60000	_0 /0700
<u> </u>	0.00117	4.09000	-U. #Z/ZO

Н	8.29519	3.46261	-1.15815	Н	5.25755	-2.10693	1.65759
Н	8.50757	3.13381	0.57533	C	7.29247	-4.79740	2.13836
Н	9.63551	2.45347	-0.60199	Н	8.09282	-6.03531	0.56390
С	7.92829	0.85079	-1.98875	Н	6.35196	-3.38864	3.47614
Н	8.98846	0.63162	-2.16366	Н	7.77281	-5.35806	2.93577
Н	7.35708	-0.07034	-2.12864	C	-6.06349	3.36828	0.00984
Η	7.60164	1.57001	-2.74938	C	-6.88001	4.44422	0.37401
С	8.21734	0.39130	0.48136	C	-5.90630	3.06290	-1.35059
Η	7.65185	-0.54142	0.41689	C	-7.53204	5.20549	-0.59990
Η	9.27859	0.16474	0.32250	Н	-7.01124	4.68666	1.42667
Η	8.10587	0.78500	1.49890	C	-6.55216	3.82465	-2.32308
С	6.04914	-3.34721	0.08090	Н	-5.27473	2.22694	-1.64146
С	6.85037	-4.45542	-0.21407	C	-7.36742	4.89804	-1.95036
С	5.87707	-2.96863	1.42100	Н	-8.16389	6.03796	-0.30172
С	7.47227	-5.17722	0.80837	H	-6.42273	3.57876	-3.37367
Η	6.99350	-4.75436	-1.25057	Н	-7.87114	5.48953	-2.71018
С	6.49273	-3.69102	2.44188				

In the following section the triplet ground state geometries for 3a-e are given, which were used for the emission wavelength prediction (BP86/6-31G(d)).

Coordinates for the optim	imized triplet	0 3.65325 2.00140 -0.00034
anound state of 20 Ence I		0 5.54953 -0.32516 -0.00042
ground state of <b>3a</b> . Free f	Energy $\Delta G =$	0 -5.54953 0.32515 0.00016
-1688 293405 H		0 -3.65325 -2.00140 0.00008
-1000.275405 11.		C 4.78473 2.62002 -0.00044
C 0.70546 1.26939	0.00003	C = 6.07281 = 2.03495 = 0.000032
C 1.44489 0.08391 -	-0.00005	C 6.38570 0.65973 -0.00029
C 0.69804 -1.19448	0.00004	H 6.91981 2.72685 -0.00030
C -0.70546 -1.26939	0.00014	C -6.07280 -2.03495 -0.00053
C -1.44489 -0.08391	0.00020	C -6.38570 -0.65973 -0.00036
C -0.69804 1.19448	0.00019	C -4.78473 -2.62002 -0.00005
н 1.23454 2.22840 -	-0.00004	Н -6.91981 -2.72686 -0.00085
н -1.23455 -2.22840	0.00015	C -7.84704 -0.23753 -0.00104
C -2.93497 1.98192	0.00039	н -8.05300 0.38482 -0.89074
C = 1.36184 3.66042	0.00045	н -8.53668 -1.09658 0.00052
C = 2.61054 + 23029	0 00064	н -8.05289 0.38814 0.88633
C = 1.36184 - 3.66042	0.00009	C -4.66091 -4.13506 0.00156
C = 2.93496 = 1.98192	-0 00018	н -4.10088 -4.46138 0.89675
C = 2.61054 - 4.23029	-0 00001	н -5.64070 -4.63863 -0.00868
H = 2.90519 = 5.27764	0 00079	н -4.08130 -4.46172 -0.88078
H = 0.37293 4 10972	0 00040	C 7.84704 0.23752 0.00009
H $0.37293 - 4.10972$	0 00025	н 8.05280 -0.38782 -0.88754
н 2 90519 -5 27763	0 00002	н 8.53668 1.09657 -0.00125
Pt = 3 40505 0 08660	0 00023	н 8.05310 -0.38515 0.88954
N = 156156 2 27840	0 00032	C 4.66091 4.13505 -0.00109
N 1.56156 -2.27840 -	-0.00001	H 4.08800 4.46169 0.88567
C -5.00368 3.41867	0.00100	н 5.64075 4.63863 0.00205
н -5.30417 3.98282	0.90145	н 4.09413 4.46141 -0.89195
н -5.30442 3.98426 -	-0.89846	
н -5.49592 2.43463	0.00031	
C 5.00368 -3.41866 -	-0.00036	Coordinates for the optimized triplet
н 5.30441 -3.98363	0.89950	amound state of <b>2h</b> Energy AC -
н 5.30419 -3.98344 -	-0.90042	ground state of <b>30</b> . Free Energy $\Delta G =$
н 5.49592 -2.43462 -	-0.00032	-2159 687480 H
N -3.55780 3.20937	0.00060	-2137.007400 11.
N 3.55780 -3.20937 -	-0.00015	C 0.86260 1.16612 -0.00007
Pt 3.40505 -0.08660 -	-0.00028	C 1.44660 -0.10278 -0.00008

C	0 52010	-1 27260	_0 00005
C	0.53919	-1.2/200	-0.00005
С	-0.86260	-1.16612	-0.00003
С	-1.44660	0.10278	-0.00002
C	-0 53919	1 27260	-0 00004
	1 50600	2.27200	0.00001
н	1.50608	2.05184	-0.00009
Η	-1.50609	-2.05183	-0.00001
С	-2.65410	2.34149	0.00003
C	-0 87771	3 80363	-0 00003
c a	0.07771	1.50000	0.00003
C	-2.04237	4.53002	0.00001
С	0.87771	-3.80364	-0.00004
С	2.65410	-2.34149	-0.00007
a	2.002.20	4 52002	0 00004
C	2.04237	-4.53002	-0.00004
Н	-2.19920	5.60665	0.00002
Η	0.16059	4.12264	-0.00008
н	-0 16059	-4 12264	-0 00001
 	0.10000		0.00001
н	2.19920	-5.60665	-0.00003
Ρt	-3.36983	0.52331	0.00003
Ν	-1.25408	2.45889	-0.00001
N	1 25408	-2 45889	_0 00005
2	1.20100	2.15005	0.00005
Ċ	-4.52006	4.02493	0.00019
Η	-4.75109	4.62141	0.90033
Н	-4.75114	4.62182	-0.89966
н	-5 12372	3 10483	0 00002
 	J.IZJ/Z	1 00100	0.00002
Ċ	4.52006	-4.02493	-0.00016
Η	4.75110	-4.62195	0.89961
Η	4.75115	-4.62126	-0.90038
н	5 12372	-3 10482	0 00019
NT	2 112/0	2 62010	0 00005
IN	-3.11240	5.03910	0.00003
Ν	3.11248	-3.63911	-0.00003
Ρt	3.36983	-0.52331	-0.00010
0	3.88897	1.50957	-0.00019
0	5 47466	-1 01653	0 00000
0		1 01(5)	0.00000
0	-5.4/46/	1.01652	0.00006
0	-3.88896	-1.50958	-0.00002
С	5.08382	1.99710	-0.00020
C	6 28783	1 25435	-0 00001
a	6 42461	0 14050	0.00009
C	0.43451	-0.14958	0.00008
С	5.10016	3.55029	-0.00022
С	7.84842	-0.79597	0.00038
Н	7.20747	1.83522	0.00008
C	-6 28783	_1 25436	0 00003
C	-0.20705	-1.23430	0.00003
C	-6.43451	0.14958	0.00007
С	-5.08382	-1.99710	-0.00002
С	-5.10017	-3.55029	-0.00011
C	-7 84843	0 79598	0 00015
	7.01015	1 02520	0.00013
п	-7.20746	-1.03522	0.00003
С	7.96745	-1.68144	-1.26747
Η	8.93753	-2.21193	-1.27125
н	7.15857	-2.42886	-1.30628
тт	7 00015	1 06004	2 10566
п	7.90915	-1.00094	-2.10500
С	7.96691	-1.68149	1.26827
Η	8.93692	-2.21209	1.27238
Н	7.90832	-1.06899	2.18643
н	7 15791	-2 42882	1 30675
	,	0 00460	1.00070
C	9.00600	0.22460	0.00066
Η	8.98992	0.87000	-0.89592
Н	8.98906	0.87049	0.89687
Н	9.97033	-0.31605	0.00127
Ċ	6 51630	4 16201	-0 00052
U U	7 00005	2 07106	
п 	1.09325	3.0/1U0	0.095/3
Η	7.09279	3.87117	-0.89710
Η	6.43831	5.26466	-0.00041

СнннСнннСнннСнннСнннСнннСнннСннн	$\begin{array}{c} 4.\\ 3.\\ 4.\\ 4.\\ 4.\\ 3.\\ -4.\\ -4.\\ -4.\\ -4.\\ -4.\\ -4.\\ -4.\\ -4$	34529 33243 26109 88084 34583 26165 33297 88174 34563 33277 26145 88120 26133 33265 51631 09298 09308 43834 00603 98958 98949 97035 98949 97035 98723 98723 93726 15825 93714 90862	$\begin{array}{c}       4 \\       4 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\$	3033         3224         3285         32954         3283         32250         32725         32950         32950         32950         32950         329718         32939         32939         32939         32939         32939         32939         32939         32939         32939         7116         25465         27023         1611         3150         2886         32935         3146         2882         2035	-1.26 -1.30 -1.26 -2.18 1.26 1.26 1.26 -1.26 -1.26 1.26 -1.26 1.26 1.26 -1.26 1.26 -1.26 1.26 -1.26 1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -1.26 -2.18 -2.18	5738 5666 5660 5726 5660 5886 5750 5892 5689 5627 5750 5639 5639 5639 5639 5639 5639 5639 5639	
Co	ordi	nates	for th	e op	timize	d trip	olet
gro	und	state	of <b>3c</b> .	Free	Energ	gy ΔG	=
-29	26.4	484187	7 H.				
СССССННСССССНН	-0. -1. -0. 0. 1. 0. -1. 1. 2. 0. 1. -0. -2. -1.	92551 43003 46562 92550 43003 46561 62669 62668 51541 65733 77766 65734 51542 77767 87277	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L627 3999 0137 L628 3999 0136 5750 5751 0586 5061 4237 5062 0587 4238 2008	-0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12	1573 0867 2418 1568 0879 2435 1724 1716 3947 5359 5706 5316 3903 5647 5698	

-5.72609

0.71854

2.53187

4.28604

-2.53188

-0.16627 -0.09163

-0.14182

-0.14148

-0.13976

Η

Ρt

Ν

Ν

С

-1.87278

3.32533

1.11299

4.28389

-1.11299

Н	4.48520	4.87984	-1.04828
тт	1 16100	1 01 2 7 1	0 75074
н	4.40108	4.913/1	0./50/4
Η	4.94958	3.40989	-0.11330
a	1 20200	1 2000	0 1 2 0 0 2
C	-4.20309	-4.20005	-0.13092
Η	-4.48524	-4.88019	-1.04721
U	_1 16101	_1 01220	0 75192
п	-4.40104	-4.91339	0./5102
Η	-4.94959	-3.40990	-0.11274
N	2 89940	3 81368	-0 14797
IN	2.00040	5.01500	0.14/0/
Ν	-2.89941	-3.81369	-0.14737
D+	-3 32533	-0 71854	-0 09133
10	2.22000	1 00001	0.00100
0	-3.93020	1.27934	0.00366
0	-5.38083	-1.35737	-0.10277
~	E 20002	1 25725	0 10210
0	5.38083	1.35/35	-0.10319
0	3.93020	-1.27935	0.00351
a	E 16010	1 60077	0 05006
C	-2.10010	1.092//	0.05926
С	-6.31818	0.87499	0.05413
C	-6 38265	_0 52020	_0 02226
C	-0.30205	-0.52929	-0.02220
Η	-7.27803	1.39588	0.12381
C	6 31818	-0 87499	0 05397
-	0.01010	0.07199	0.05557
С	6.38265	0.52929	-0.02255
С	5.16010	-1.69276	0.05915
- TT	7 07000	1 20007	0 10071
н	/.2/802	-1.3958/	0.123/1
С	-7.74134	-1.18737	-0.03710
C	0 01100	1 70500	1 25060
C	-0.24400	-1.70502	-1.20000
С	-8.49163	-1.31263	1.15859
C	-9 50375	-2 33036	-1 26278
-	2.50575	2.55050	1.20270
С	-9.74412	-1.95412	1.10734
C ·	-10.26939	-2.47024	-0.08991
	0 00702	0 71700	0 01176
н	-9.89/93	-2./1/88	-2.211/6
Η ·	-10.32383	-2.05486	2.03450
C	-5 31/50	2 1 9 / 2 1	0 17665
C	-5.51450	3.10431	0.1/005
С	-4.79954	3.84030	1.32956
C	-5 94365	3 93602	_0 84989
-	5.51505	5.55002	0.01909
С	-4.94114	5.23403	1.43703
С	-6.04917	5.33223	-0.70118
a		6 00060	0 42100
C	-5.55814	0.00262	0.43188
Η	-4.56235	5.73458	2.33832
ч	-6 52677	5 91252	-1 50188
11	0.52077	5.51252	1.30100
С	5.31451	-3.18430	0.17661
C	4 79967	-3 84023	1 32960
a		2 02605	0.04007
Ċ	5.94352	-3.93605	-0.84997
С	4.94128	-5.23396	1.43712
C	6 01906	- 5 33335	_0 70122
C	0.04900	- J. J J Z Z J	-0.70122
С	5.55817	-6.00259	0.43192
н	4 56259	-5 73447	2 33847
		5.75117	1 50105
н	6.5265/	-5.91258	-1.50195
С	7.74135	1.18737	-0.03745
a	0 01106	1 70405	1 25007
C	0.24400	1./0495	-1.25907
С	8.49166	1.31269	1.15821
C	9 50372	2 33030	-1 26323
C	5.50572	2.55050	1.20525
С	9.74414	1.95418	1.10691
C	10 26939	2 47023	-0 09039
~			
Н	9.89788	2.11111	-2.21224
Η	10.32387	2.05497	2.03405
C	-6 10101	2 20/20	_2 10020
C	-0.40404	3.20428	-2.10928
Η	-5.80049	2.50953	-2.49760
н	-7 45855	2 79096	-1 93479
**		4 02001	1.75170
Н	-6.63491	4.03804	-2.90150
С	-4.14082	3.06265	2.45216
ъ	_4 70106	2 22007	2 70502
п	-4./0100	4.44991	2.19593
Η	-3.18847	2.60606	2.13054
н	-3 93933	3 71760	3 31704
**	2.2222	5.11100	J.J./UH

С	-5.66296	7.50848	0.55769
Η	-5.84260	7.81627	1.60333
Η	-4.72982	8.00708	0.23000
Η	-6.48284	7.91116	-0.06235
С	-11.60678	-3.18134	-0.11472
Η	-11.48051	-4.27997	-0.05563
Η	-12.24202	-2.87963	0.73632
Н	-12.16151	-2.97027	-1.04645
С	-7.45693	-1.56683	-2.54617
Н	-7.25166	-0.50525	-2.77922
Н	-6.47464	-2.06561	-2.47313
Н	-8.00701	-2.00251	-3.39752
С	-7.96784	-0.78194	2.47961
Н	-6.93832	-1.13083	2.67752
Н	-7.93550	0.32297	2.49529
Η	-8.60799	-1.11140	3.31604
С	6.48372	-3.28433	-2.10946
Η	5.79984	-2.50997	-2.49798
Н	7.45799	-2.79053	-1.93499
Н	6.63498	-4.03819	-2.90151
С	4.14106	-3.06253	2.45223
Н	4.78216	-2.22987	2.79594
Η	3.18871	-2.60591	2.13065
Η	3.93950	-3.71745	3.31714
С	5.66303	-7.50845	0.55781
Н	5.84340	-7.81614	1.60334
Н	4.72963	-8.00705	0.23084
Н	6.48245	-7.91122	-0.06278
С	7.45689	1.56669	-2.54654
Η	7.25161	0.50509	-2.77952
Н	6.47460	2.06547	-2.47352
Н	8.00696	2.00232	-3.39793
С	7.96790	0.78208	2.47928
Н	6.93837	1.13093	2.67717
Н	7.93562	-0.32283	2.49505
Η	8.60804	1.11164	3.31568
С	11.60678	3.18133	-0.11525
Н	12.16150	2.97019	-1.04697
Н	11.48052	4.27997	-0.05625
Η	12.24203	2.87969	0.73580

Coordinates for the optimized triplet ground state of **3d**. Free Energy  $\Delta G = -2621.626130$  H.

С	-0.53566	-1.32381	-0.25517
С	-1.41700	-0.29369	0.08174
С	-0.83986	1.04554	0.33576
С	0.53567	1.32384	0.25504
С	1.41701	0.29372	-0.08185
С	0.83987	-1.04552	-0.33584
Н	-0.93223	-2.32637	-0.44702
Н	0.93223	2.32640	0.44688
С	3.14457	-1.47475	-0.68374
С	1.80753	-3.32754	-0.95339
С	3.11189	-3.69646	-1.16315
С	-1.80749	3.32749	0.95361
С	-3.14455	1.47474	0.68373
С	-3.11184	3.69638	1.16355

н	3 53991	-4 66762	-1 40109
н Н	0 88859	-3 90532	-0 99330
н Ц	-0 88855	3 90526	0 99354
и и	-3 53985	4 66750	1 40163
л+	2 27171	0 42281	_0 27630
гс N	1 82739	-1 96274	-0 65486
N	-1 82738	1 96274	0 65486
C IN	5 38/50	-257612	_1 06192
с u	5 60210	-2.57012	-2 03227
и п	5 60334	-1 51674	_1 03686
п С	-5 38445	2 57607	1 06224
с u	-5.50445	2.57007	2 03262
п U	-5.69200	1 51669	1 02719
N	3 91479	-2 56867	-1 00636
N	$-3 \ 91474$	2.50007	1 00659
	-3 37170	_0 42279	0 27618
	-3 35708	-2 46866	-0 19506
0	-5 51280	_0 53119	0.1700
0	-J.J1200	0 53123	_0 51739
0	3.31273 2.25712	2 16970	0.10/00
C	_4 38415	_3 24872	
C	-5 72486	-2 88124	0.24204
C	-6 21759	-1 60630	0.01000
C	_1 01622	-4 70685	_0 63129
C	-7 73492	-1 38838	0 62996
с u	-6 46230	-1.50050	-0 06229
C	5 72490	2 88125	
C	6 21761	1 60633	_0.37444
C	4 38419	3 24876	0 24180
C	4 01629	4 70688	0.24100
C	7 73497	1 38832	-0 63004
с н	6 46235	3 67669	0.05004
C	-8 24292	-0.33214	-0 38601
с u	-9 30763	-0.10373	_0 19453
н	-7 66692	0.60452	-0 31493
н	-8 15612	-0.70759	-1 42206
C	-7 90278	-0 84782	2 07403
н	-8 96621	-0 61912	2 27175
н	-7 56887	-1 59351	2 81849
н	-7 31335	0 07088	2 22550
С	-8.58525	-2.66729	0.47963
н	-8.53083	-3.08282	-0.54269
н	-8.28076	-3.45384	1,19333
Н	-9.64519	-2.42797	0.68251
С	-5.22483	-5.66351	-0.68537
Н	-5.72961	-5.74806	0.29385
н	-5.96986	-5.34542	-1.43667
Н	-4.88045	-6.67506	-0.96825
С	-3.34534	-4.66573	-2.02950
Н	-2.48482	-3.97678	-2.03300
Н	-2.99363	-5.67500	-2.31294
Н	-4.05855	-4.32363	-2.80154
С	-3.00162	-5.23609	0.41566
Н	-2.65201	-6.24552	0.13032
Н	-2.12912	-4.56658	0.49026
Н	-3.46328	-5.30516	1.41758
С	3.00169	5.23617	-0.41587
Н	2.12918	4.56668	-0.49048
Н	2.65211	6.24559	-0.13050
Н	3.46335	5.30525	-1.41778
С	3.34542	4.66575	2.02929
Η	4.05861	4.32358	2.80131

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.67502 3.97684 5.66352 5.34542 5.74805 6.67508 2.66722 3.45360 3.08300 2.42778 0.84751 0.61876 -0.07120 1.59309 0.33223 -0.60442 0.10377 0.70784 -3.35739 -4.48558 -2.95184 -5.20002 -4.80456 -3.66861 -2.07267 -4.79438 -6.07552 -3.34537 -5.35164 3.35737 4.48557 2.95186 5.20004 4.80453 3.66866 2.07268 4.79443 6.07555 3.34545	2.31276 2.03276 0.68515 1.43644 -0.29408 0.96803 -0.47985 -1.19381 0.54235 -0.68246 -2.07401 -2.27159 -2.22539 -2.81862 0.38615 0.31513 0.19485 1.42214 0.08643 -0.16033 1.41982 0.90391 -1.19465 2.48204 1.61610 2.22732 0.69718 3.51340 3.05919 -0.08604 0.16084 -1.41947 -0.90331 1.19519 -2.48161 -1.61586 -2.22676 -0.69647 -3.51299
H -6.16817 H -7.59829	3.34545 5.35171	-3.51299 -3.05856
Coordinates	for the on	timized tri
ground state	of <b>Se</b> . Free	Energy $\Delta C$
-1688.284455	H.	
C 1.22836 C 1.18755 C 0.00000 C -1.18755	-0.67019 -2.15453 -2.89042 -2.15453	0.00016 0.00049 0.00032 -0.00011
C = 1.22836 C = 0.00000	0.01299	-0.00025 -0.00010

plet - E

С	1.22836	-0.67019	0.00016
С	1.18755	-2.15453	0.00049
С	0.00000	-2.89042	0.00032
С	-1.18755	-2.15453	-0.00011
С	-1.22836	-0.67019	-0.00025
С	0.00000	0.01299	-0.00010
Η	0.00000	1.10709	-0.00021
С	-3.52349	-1.78425	-0.00077
С	-2.94003	-4.01734	-0.00037
С	-4.30667	-3.92089	-0.00073
Η	-2.29043	-4.88819	-0.00009
Н	-5.06501	-4.70129	-0.00080
С	3.52349	-1.78425	0.00092
С	2.94003	-4.01734	0.00152
С	4.30667	-3.92089	0.00183

Η	2.29043	-4.88819	0.00165
Η	5.06501	-4.70128	0.00227
Ν	-2.45526	-2.70647	-0.00041
Ν	-4.65377	-2.57044	-0.00099
Ν	2.45526	-2.70647	0.00097
Ν	4.65377	-2.57044	0.00147
С	6.02555	-2.06731	0.00160
Η	5.98911	-0.96718	0.00115
Η	6.55778	-2.42153	0.90197
Η	6.55821	-2.42224	-0.89823
С	-6.02555	-2.06731	-0.00140
Η	-6.55777	-2.42202	-0.90158
Η	-6.55822	-2.42175	0.89862
Η	-5.98911	-0.96718	-0.00155
Η	0.00000	-3.98645	0.00051
С	-6.82944	2.47430	-0.00076
С	-5.34062	2.15883	-0.00001
С	-4.41789	3.22618	0.00185
Η	-4.83966	4.23517	0.00274
С	-3.00587	3.13678	0.00273
С	-2.19014	4.42002	0.00493
0	-5.06268	0.89943	-0.00120
0	-2.29260	2.06502	0.00191

С	2.19013	4.42002	-0.00307
С	3.00586	3.13678	-0.00191
С	4.41788	3.22618	-0.00160
Η	4.83965	4.23517	-0.00219
С	5.34062	2.15884	-0.00064
С	6.82944	2.47430	-0.00053
0	2.29259	2.06502	-0.00133
0	5.06268	0.89943	0.00012
Ρt	-3.04746	0.10063	-0.00051
Ρt	3.04746	0.10063	0.00007
Η	7.30534	2.02199	0.88846
Η	7.30549	2.02185	-0.88938
Η	7.03253	3.55710	-0.00063
Η	1.53293	4.43947	0.88453
Η	1.53351	4.43822	-0.89113
Η	2.82167	5.32275	-0.00350
Η	-1.53386	4.43771	0.89325
Η	-1.53260	4.43997	-0.88241
Η	-2.82167	5.32275	0.00563
Η	-7.03254	3.55709	0.00043
Η	-7.30474	2.02303	-0.89061
Η	-7.30610	2.02080	0.88722

## References

- [1] D. Drew, J. R. Doyle, *Inorg. Synth.* **1990**, *28*, 346-349.
- Y. Unger, D. Meyer, O. Molt, C. Schildknecht, I. Muenster, G. Wagenblast, T. Strassner, *Angew. Chem.* 2010, *122*, 10412-10414; *Angew. Chem., Int. Ed.* 2010, *49*, 10214-10216.
- [3] C. Zhang, P. Yang, Y. Yang, X. Huang, X.-J. Yang, B. Wu, *Synth. Commun.* **2008**, *38*, 2349-2356.
- [4] G. M. Sheldrick, Version 2.10 ed., University of Goettingen, Goettingen, Germany, **2002**.
- [5] a) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Cryst.* **1994**, *27*, 435; b) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* **1999**, *32*, 115-119; c) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. L. De, C. Giacovazzo, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* **2005**, *38*, 381-388.
- [6] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112-122.
- [7] A. J. C. Wilson, Editor, International Tables for Crystallography, Vol. C; Mathematical, Physical and Chemical Tables, Kluwer, **1992**.
- [8] R. W. W. Hooft, Nonius B.V., Delft, The Netherlands, **1999**.
- [9] A. J. M. Duisenberg, J. Appl. Crystallogr. **1992**, 25, 92-96.
- [10] A. J. M. Duisenberg, L. M. J. Kroon-Batenburg, A. M. M. Schreurs, *J. Appl. Crystallogr.* **2003**, *36*, 220-229.
- [11] A. L. Spek, Acta Cryst. 2009, D65, 148-155.
- [12] G. M. Sheldrick, University of Goettingen, Goettingen, Germany, **1997**.
- [13] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466-470.
- [14] a) L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565; b) M. N. Burnett, C. K. Johnson, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2000.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; [15] Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian 03, Revision D.01 ed., Wallingford CT, 2004.
- [16] a) S. H. Vosko, L. Wilk, M. Nusair, *Canadian Journal of Physics* **1980**, *58*, 1200-1211; b) A. D. Becke, *Physical Review A: Atomic, Molecular, and Optical*

Physics **1988**, *38*, 3098-3100; c) C. Lee, W. Yang, R. G. Parr, *Physical Review B: Condensed Matter and Materials Physics* **1988**, *37*, 785-789; d) B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* **1989**, *157*, 200-206; e) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *Journal of Physical Chemistry* **1994**, *98*, 11623-11627.

- [17] a) J. P. Perdew, *Physical Review B* **1986**, *34*, 7406-7406; b) J. P. Perdew, *Physical Review B* **1986**, *33*, 8822-8824.
- [18] a) R. Ditchfield, W. J. Hehre, J. A. Pople, *J. Chem. Phys.* 1971, *54*, 724-728;
  b) W. J. Hehre, R. Ditchfield, J. A. Pople, *J. Chem. Phys.* 1972, *56*, 2257-2261; c) P. C. Hariharan, J. A. Pople, *Chem. Phys. Lett.* 1972, *16*, 217-219; d) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, *28*, 213-222; e) P. C. Hariharan, J. A. Pople, *Mol. Phys.* 1974, *27*, 209-214; f) V. A. Rassolov, J. A. Pople, M. A. Ratner, T. L. Windus, *J. Chem. Phys.* 1998, *109*, 1223-1229.
- [19] a) P. J. Hay, W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 270-283; b) P. J. Hay, W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 299-310; c) W. R. Wadt, P. J. Hay, *J. Chem. Phys.* **1985**, *82*, 284-298.
- [20] R. I. Dennington, T. Keith, J. M. Millam, W. Eppinnett, W. L. Hovell, R. Gilliland, 3.09 ed., Gaussian Inc., Wallingford, CT, **2003**.
- [21] C. Y. Legault, CYLview, 1.0b ed., Université de Sherbrooke, 2009.
- [22] Y. Unger, PhD Thesis, Technische Universität Dresden (Dresden), 2010.