Electronic Supplementary Information for

One-pot synthesis of metal-organic framework@SiO₂ core-shell nanoparticles with enhanced visible-light photoactivity

Zong-Qun Li,^a Ai Wang,^a Chun-Yan Guo,^a Yan-Fang Tai^a and Ling-Guang Qiu*b

^a Department of Applied Chemistry and Environmental Engineering, Bengbu College, Bengbu 233000, P. R. China
^b Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China;

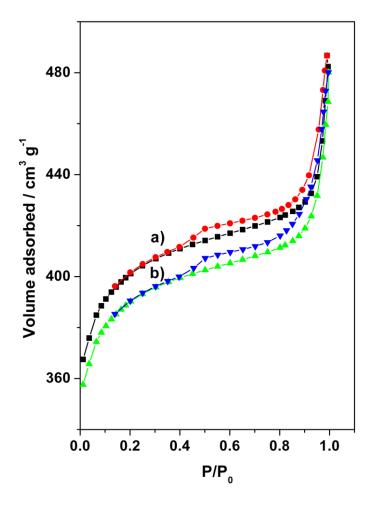


Fig. S1 Nitrogen adsorption-desorption isotherms of pure $Cu_3(BTC)_2$ (a) and $Cu_3(BTC)_2@SiO_2$ core-shell nanoparticles with reaction time 2.5 h (b).

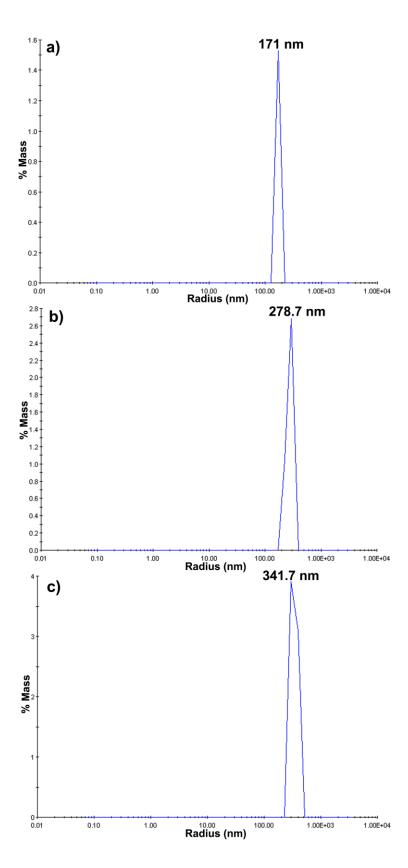


Fig. S2 Dynamic light scattering data of $Cu_3(BTC)_2@SiO_2$ core-shell nanoparticles with reaction time (a) 1.5 h, (b) 2 h, (c) 2.5 h, respectively.

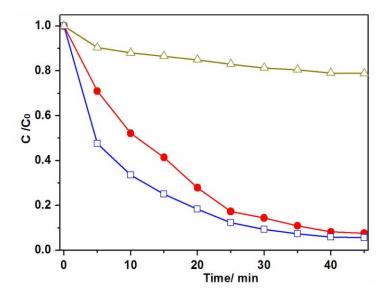


Fig. S3 The effect of different electron acceptor additives on the phenol photodegradation with the presence of Film 2.5 h under the visible light irradiation, (\triangle) KBrO₃, (\blacksquare) H₂O₂, (\square) (NH₄)₂S₂O₈, respectively.