Supporting Information

Dinuclear Complexes of Copper and Zinc with *m*-Xylene/Cyclohexane- Linked bis-Aspartic Acids: Synthesis, Characterization, Dioxygen Activation, and Catalytic Oxidation of Nitrobenzene in Pure Aqueous Solution

Shourong Zhu *^a, Zhixiang Qiu ^a, Tianjun Ni^{*b}, Xiujuan Zhao ^a, Shikai Yan ^c, Feifei Xing ^a, Yongmei Zhao^a, Yueling Bai ^a and Mingxing Li ^a

^aDepartment of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China

^bDepartment of Chemistry, Xinxiang Medical University, East of Jinsui Road, Xinxiang, Henan 453003, China

^cSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China email: <u>shourongzhu@shu.edu.cn</u>; Fax : +86-21-60947570 ; Tel : +86-21-66132403 Synthetic procedure of the ligands

Scheme s1. Synthetic procedure of ligand L_b

Scheme s2. Synthetic procedure of ligand Lc

Fig. s1. IR spectra of ligand Lb and Lc (KBr disc)

Fig. s2. ¹H NMR of Lb in D₂O

Fig. s3. ¹H NMR of Lc in D₂O

20100802-1 C13CPD D20

Fig. s4. ^{13}C NMR of L_c in D_2O

Fig. s5 EI-MS spectra of of Lc in aqueous solution

Fig. s6 Ionzation mode of Lc in positive MS spectrum

Fig. s7 Distribution curve of 1.00×10^{-3} M ligand and 2.00×10^{-3} M Zn(NO₃)₂ in aqueous solution at 25 °C, I=0.10 M KNO₃. top: L_b; bottom: L_c

Fig. s8 pH titration curve of 1.000×10^{-3} M Cu2-Lc in absence and presence of 10.00 eq H₂O₂ at $25.0 \pm 0.1^{\circ}$ C, I=0.10 M KNO₃. B/L is the molar ration of base to ligand.

Fig. s9 Spectral changes recorded for the reaction of 5.0×10^{-3} M L_b-2Cu (a) and Lc-2Cu (b) with 0.25 M H₂O₂ in pH=7.50, 0.02 M KH₂PO₄-NaOH-solution at 25 C. In pH 8.5 borax buffer, the spectral changes for Lc-2Cu reaction with H₂O₂ is much larger (c).

Fig. s10 Time dependence of 360 nm absorbance for the reaction of 5.0×10^{-4} M L-2Cu with different concentration H₂O₂ in 0.02 M KH₂PO₄-NaOH buffer solution at 25C, pH=7.50. Top: Lb-2Cu complex; Bottom: Lc-2Cu complex

Fig. s11 Plot of the observed second-order rate constants determined at 360 nm as a function of $[H_2O_2]$ for L_c-2Cu complexes

Fig. s12 UV-vis spectra changes after adding 10 μ L H₂O₂ to 3.0 ml 2.50×10⁻⁵ M Cu₂-Lb complex at pH 9.0 aqueous solution

Fig.s13 Spectra of 3.0 ml test solution contains 2.5×10^{-4} M dinuclear copper(II) complex 1.0 ml (pH=8.00), 1.5×10^{-3} M FeSO₄ 1.0mL, 2.0×10^{-2} M sodium salicylate 0.30 mL, and 6.0×10^{-3} M H₂O₂ 0.7ml. The spectra were measured after 30 min (a) No L-2Cu(water instead), (b) Lb-2Cu, (c) Lc-2Cu.

Fig. s14 UV-vis spectra of 1.0×10^{-4} M DPPH, 1.67×10^{-4} M L-2Cu complexes, and 1.33×10^{-2} H₂O₂ system. Test solution is water/methanol (2:1) mixture. (a): L_b-2Cu. (pH 8.0) only. (b): L_c-2Cu (pH 8.0) only. (c): DPPH, L_c-2Cu. (d) DPPH, L_b-2Cu. (e) DPPH only.

Fig. s15 L_b -2Cu positive mass spectrum (a), pH 7. (b), pH 9. (c), pH7-H₂O₂. (d), pH 9-H₂O₂.

Fig. s16 L_c -2Cu negative ion mass spectrum before (top) and after (bottom) adding H_2O_2 at pH

8.

Fig. s17 X-band EPR spectra of 2.5×10^{-3} M copper(II) complex in the absence and presence of 80 equivalent H₂O₂ at different pH at -60 °C. (top: Lb-2Cu complex; bottom: Lc-2Cu complex)

Fig s18 Kinetic traces recorded at 400 nm for the catalyzed degradation of Nitrobenzene. Reaction conditions: pH=8.00, 0.2 M KH₂PO₄-NaOH, 1.47×10^{-3} M Nitrobenzene , 3.75×10^{-5} M L-2Cu, 25°C, (—) 0.033 M H₂O₂, (—) 0.066 M H₂O₂, (—) 0.117 M H₂O₂, (—) 0.167 M

H₂O₂, (-----) 0.217 M H₂O₂.

Fig s19 Kinetic traces recorded at 400 nm for the catalyzed oxidation of Nitrobenzene at different temperature and pHs. Reaction conditions: pH=8.00, 0.2 M KH₂PO₄-NaOH, 1.47×10^{-3} M Nitrobenzene , 3.75×10^{-5} M L-2Cu₂ 0.167 M H₂O₂,

Fig. s20 Plots of $\ln k$ vs 1/T for L_b and L_c-2Cu complexes

[L _b -2Cu]	5.00×10 ⁻⁶	1.25×10 ⁻⁵	2.50×10 ⁻⁵	3.75×10 ⁻⁵	5.00×10 ⁻⁵	0
R-Square	0.9962	0.99793	0.99911	0.99911	0.99742	0.99954
k	2.25413E-4	4.56156E-4	8.73259E-4	0.00132	0.00169	6.22797E-5

Table s1. First-order rate constant (s⁻¹) for 1.47×10^{-3} M Nitrobenzene and 0.1667 M H₂O₂ system in different L_b-2Cu concentrations (pH=8.00, 0.2 M phosphate buffer at 25C)

Table s2. First-order rate constant (s⁻¹) for 1.47×10^{-3} M Nitrobenzene and 0.1667 M H₂O₂ system in different L_c-2Cu concentrations (pH=8.00,0.2 M phosphate buffer at 25C)

[L _c -2Cu]	5.00×10 ⁻⁶	1.25×10 ⁻⁵	2.50×10 ⁻⁵	3.75×10 ⁻⁵	5.00×10 ⁻⁵	0
R-Square	0.99924	0.99853	0.99866	0.9984	0.99665	0.99954
k	4.21378E-4	0.00113	0.00269	0.0038	0.0050	6.22797E-5

Table s3. First-order rate constant (s⁻¹) for 1.47×10^{-3} M Nitrobenzene and 3.75×10^{-5} M L_b-2Cu system in different H₂O₂ concentrations (pH=8.00,0.2 M phosphate buffer at 25C)

[H ₂ O ₂]	0.033	0.066	0.117	0.167	0.217
R-Square	0.99764	0.99843	0.99866	0.99911	0.99673
k	3.1835E-4	5.65061E-4	9.02423E-4	0.00132	0.00172

Table s4. First-order rate constant (s⁻¹) for 1.47×10^{-3} M Nitrobenzene and 3.75×10^{-5} M L_c-2Cu system in different H₂O₂ concentrations (pH=8.00,0.2 M phosphate buffer at 25C)

[H ₂ O ₂]	0.033	0.066	0.117	0.167	0.217
R-Square	0.99911	0.993	0.99741	0.9984	0.99556
k	6.93459E-4	0.00177	0.00278	0.0038	0.00486