1

Coordination Complexes of NbX₅ (X = F, Cl) with (*N*,*O*)- and (*O*,*O*)-Donor Ligands and the First X-Ray Characterization of a Neutral NbF₅ Adduct

Marco Bortoluzzi, Fabio Marchetti, Guido Pampaloni, Margherita Pucino, Stefano Zacchini

Supplementary Material

Figure S1. DFT PBE calculated structure of NbF₅[$\kappa^1(O)$ -OC₆H₄CH=NHC₆H₃(CHMe₂)₂], **2**, with implicit solvation (CH₂Cl₂) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

Table S1. Selected computed bond lengths (Å) and angles (°) for 2.

Bond		Angle	
Nb-O	2.006	O–Nb–F (trans to O)	176.4
Nb-F (trans to O)	1.920	O–Nb–F (cis to O)	88.1
Nb–F (cis to O)	1.950		87.6
	1.941		83.8
	1.932		81.2
	1.931		
N-H	1.031		
(N) $H \cdots F$ (shortest)	2.381		
(N)H…O	2.000		

Figure S2. DFT-calculated possible structures of the product of the reaction of NbF₅ (1a) with saoH₂, with implicit solvation (CH_2C_{12}) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

3A **3B 3**C **3D** PBE/COSMO/DNP -0.9 0 -1.8-3.9 0 3**C** 3A 3**B** 3D -0,5 -1 -1,5 2--2,5 -3 -3 PBE/COSMO/DNP -3,5 -4 -4,5

Relative energies (Kcal mol⁻¹, referred to Nb unit, corrected for zero-point vibrational energy):

Table S2. Selected	l computed bo	nd lengths (Å	and angles ([°]) for 3D .
--------------------	---------------	---------------	--------------	--------------------------------

Bond		Angle	
Nb-O	2.117	O–Nb–O	88.0
	2.084	O–Nb–F (trans)	179.4
Nb–F (trans to O)	1.910		175.3
	1.903	O–Nb–F (cis)	81.4
Nb–F (cis to O)	1.917		87.6
	1.903		83.8
Nb–F (NbF ₆ ⁻ , <i>average</i>)	1.939		82.3
N-O	1.351		82.5
	1.351		92.0
О–Н	0.998		
	0.997		
(O)H…O	1.648		
	1.634		
N–H	1.039		
	1.035		
(O)H \cdots F (NbF $_6$ ⁻ , shortest)	1.818		
	1.732		

Figure S3-a. DFT PBE calculated possible structures of product of the reaction of NbCl₅, **1b**, with dpimpH, with implicit solvation (CH_2Cl_2) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

4aA

5

4aC

4aD

4aE

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy, referred to NbCl₅L formula):

 Table S3. Selected computed bond lengths (Å) and angles (°) for 4aE.

Bond		Angle	
Nb-Cl (cation)	2.346	Cl-Nb-Cl (cation)	170.1
	2.393	O–Nb–O	172.9
Nb-O	1.986	N–Nb–N	167.8
	1.942		
Nb–N	2.286		
	2.173		
Nb-Cl (anion, average)	2.397		

Figure S3-b. DFT PBE calculated possible structures of $[NbCl_2(dpimp)_2]^+$, with implicit solvation (CH₂Cl₂) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

 $4aE^+$

 $4aF^+$

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy):

	4aE ⁺	4aF ⁺	4aG ⁺	$4aH^+$
PBE/COSMO/DNP	-20.1	-12.7	-9.6	0

Figure S4-a. DFT PBE calculated possible structures of Nb₂Cl₉[$\kappa^1(O)$ -ON=CHC₆H₄OH] and Nb₂Cl₉[$\kappa^1(O)$ -OC₆H₄CH=NOH], with implicit solvation (CH₂Cl₂) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy)

Figure S4-b. DFT PBE calculated possible structures of Nb₂Cl₈[$\kappa^2(O)$ -ON=CHC₆H₄O], with implicit solvation (CH₂Cl₂) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy)

Figure S4-c. DFT PBE calculated possible structures of Nb₂Cl₇[$\kappa^1(O)$ -saoH][$\kappa^2(O)$ -sao], **5**, with implicit solvation (CH₂Cl₂) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy)

Figure S5. DFT-calculated possible ionic structures of the product of the reaction of NbF₅ (1a) with $HO(CH_2)_2NHPh$, with implicit solvation (CH₂Cl₂) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy, referred to Nb units).

	6A	6B
PBE/COSMO/DNP	-3.1	0

|--|

Bond		Angle	
Nb-O	1.936	O-Nb-O	162.5
	1.928	F-Nb-F (cation)	176.7
Nb-F (cation)	2.032		175.9
	2.034		
	1.936		
	1.930		
Nb-F (anion, average)	1.937		
N–H	1.055		
	1.028		
	1.043		
	1.058		

Figure S6. DFT PBE calculated possible structures of the product of the reaction of NbF₅ (1a) with bhpfH, with implicit solvation (CH_2Cl_2) and Grimme's correction for dispersion. Selected hydrogen atoms have been omitted for clarity.

Relative energies (Kcal mol⁻¹, corrected for zero-point vibrational energy, referred to Nb units).

	7A	7B	7C
PBE/COSMO/DNP	-5.4	0	-2.1

Bond		Angle	
Nb-O	2.141	O–Nb–F (trans to O)	177.0
Nb–F (trans to O)	1.908	O–Nb–F (cis to O)	82.2
Nb–F (cis to O)	1.923		85.8
	1.919		90.4
	1.918		85.0
	1.929	C–O–Nb	134.7
C-O (coordinated)	1.322	С7-С6-С2	129.8
С–ОН	1.320	C1-C2-C3	124.9
C1–C2	1.404	С6-С7-ОН	123.5
C2–C3	1.415		
С3-С4	1.393		
C4–C5	1.394		
C5–C6	1.414		
C6–C7	1.401		
О–Н	1.027		
(O)H…F (<i>shortest</i>)	2.559		
(O)H…O	1.525		

Table S5. Selected computed bond lengths (Å) and angles (°) for 7A (see Scheme 2 for atom numbering;PBEPBE/COSMO/DNP calculations).

Figure S7. ¹³C NMR spectrum (CD₂Cl₂) of NbF₅[$\kappa^1(O)$ -OC₆H₄CH=NHC₆H₃(CHMe₂)₂], **2**.

Figure S8. ¹H-¹³C HSQC spectrum (CD₂Cl₂) of NbF₅[$\kappa^1(O)$ -OC₆H₄CH=NHC₆H₃(CHMe₂)₂], 2.

Figure S9. ¹H-¹³C HMBC spectrum (CD₂Cl₂) of NbF₅[$\kappa^{1}(O)$ -OC₆H₄CH=NHC₆H₃(CHMe₂)₂], **2**.

Figure S10. ¹³C NMR spectrum (CD₂Cl₂) of [NbCl₂{ $\kappa^1(N)$: $\kappa^1(O)$ -dpimp}₂][NbCl₆], 4a.

Figure S11. ¹H-¹³C HMBC spectrum (CD₂Cl₂) of [NbCl₂{ $\kappa^1(N)$: $\kappa^1(O)$ -dpimp}₂][NbCl₆], 4a.

Figure S12. ¹³C NMR spectrum (CD₂Cl₂) of $[TaCl_2{\kappa^1(N):\kappa^1(O)-dpimp}_2][TaCl_6]$, **4b**.

Figure S13. ¹H-¹³C HSQC spectrum (CD₂Cl₂) of $[TaCl_2{\kappa^1(N):\kappa^1(O)-dpimp}_2][TaCl_6]$, 4b.

Figure S14. ¹H-¹³C HMBC spectrum (CD₂Cl₂) of $[TaCl_2{\kappa^1(N):\kappa^1(O)-dpimp}_2][TaCl_6]$, **4b**.

Figure S15. ¹³C NMR spectrum (CDCl₃) of 2-[(2,6-Diisopropylphenyl)iminomethyl]phenol (dpimpH).

22

Figure S16. ¹H-¹³C HSQC spectrum (CDCl₃) of 2-[(2,6-Diisopropylphenyl)iminomethyl]phenol (**dpimpH**).

Figure S17. ¹H-¹³C HMBC spectrum (CDCl₃) of 2-[(2,6-Diisopropylphenyl)iminomethyl]phenol (**dpimpH**).

Figure S18. ¹³C NMR spectrum (CD₃CN) of [NbF₄{ $\kappa^1(O)$ -ON(H)=CHC₆H₄OH}₂][NbF₆], 3.

Figure S19. ¹H-¹³C HSQC spectrum (CD₃CN) of [NbF₄{ $\kappa^1(O)$ -ON(H)=CHC₆H₄OH}₂][NbF₆], 3.

Figure S22. ¹H-¹³C HSQC spectrum (CD₂Cl₂) of Nb₂Cl₇[$\kappa^1(O)$ -saoH][$\kappa^2(O)$ -sao], **5**.

Figure S24. ¹³C NMR spectrum (CDCl₃) of salicylaldehyde oxime (saoH₂).

Figure S25. ¹H-¹³C HSQC spectrum of salicylaldehyde oxime (saoH₂).

Figure S27. ¹³C NMR spectrum (CD₂Cl₂) of NbF₅[$\kappa^{1}(O)$ -bhpfH], 7.

Figure S28. ¹H-¹³C HSQC spectrum (CD₂Cl₂) of NbF₅[$\kappa^1(O)$ -bhpfH], 7.

Figure S30. ¹³C NMR spectrum (CD₂Cl₂) of NbCl₄[$\kappa^2(O)$ -bhpf], 8.

Figure S31. ¹H-¹³C HSQC spectrum (CD₂Cl₂) of NbCl₄[$\kappa^2(O)$ -bhpf], 8.

Figure S34. ¹H-¹³C HSQC spectrum (CDCl₃) of 2-Benzoyl-6-hydroxy-6-phenylpentafulvene (bhpfH).

35