Supplementary information

Structural and thermodynamic properties of molecular complexes of aluminum and gallium trihalides with bifunctional donor pyrazine: decisive role of Lewis acidity on 1D polymer formation

Tatiana N. Sevastianova,[†] Michael Bodensteiner,[‡] Anna S. Lisovenko,[†] Elena I. Davydova,[†] Manfred Scheer,[‡] Tatiana V. Susliakova,[†] Irina S. Krasnova, Alexey Y. Timoshkin^{†*}

 [†] Inorganic Chemistry Group, Department of Chemistry, St. Petersburg State University, University Pr. 26, Old Peterhof, St. Petersburg, 198504, Russia. E-mail: alextim@AT11692.spb.edu
 [‡] Department of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany, E-mail: manfred.scheer@chemie.uni-regensburg.de

Study of the pyrolytic products of Al₂Br₆pyz. In conclusion of the tensimetry experiment 5 the system was kept at 415 °C for 4 hours, and after the volatile compounds were separated (condensed into the compartment at room temperature upon heating of the system at 280-300 °C for 36 hours) and analyzed by mass-spectrometry (170 °C, 70 eV). Ions AlBr₂pyz⁺ (22%) and AlBr₃pyz⁺ (15%) indicate that some amount of the AlBr₃ pyz complex remained after pyrolysis. However, the most intensive ion signal AlBr₂NH₃⁺ (100%) indicates the formation of an AlBr₃NH₃ adduct. Presumably ammonia is generated via pyrolysis of pyrazine. Moreover, the detection of the ion AlBr₂C₅H₆N₂⁺ (15%) may be assigned to a fragmentation upon ionization of the AlBr₃-methylpyrazine complex. Its occurance suggests that the formation of methylated pyrazine occurs via Friedel-Crafts reactions in the melt, catalyzed by aluminum tribromide. Formation of methylated pyridine complexes was earlier observed via pyrolysis of GaCl₃ adduct with piperidine (A. S. Litvinenko, A. Y. Timoshkin and H. F. Schaefer, *Polyhedron*, 2006, **25**, 2465).

Figure S1. Molecular structure of complex AlBr₃·pyz·AlBr₃ (1) in the crystal. Selected interatomic distances (Å): Al1-N1 1.999(6), Al1-Br1 2.2538(18), Al1-Br2 2.267(2), Al1-Br3 2.2465(16). Selected bond angles (deg): Br1-Al1-Br2 113.40(6), Br1-Al1-Br3 116.88(7), Br1-Al1-N1 100.85(18), Br2-Al1-Br3 114.67(9), Br2-Al1-N1 104.43(16), Br3- Al1-N1 104.17(15).

Figure S2. Molecular structure of complex $GaCl_3 \cdot pyz \cdot GaCl_3$ (2) in the crystal. Selected interatomic distances (Å): Ga1-N1 2.044(7), Ga1-Cl1 2.135(2), Ga1-Cl2 2.147(2), Ga1-Cl3 2.129(2). Selected bond angles (deg): Cl1- Ga1-Cl2 112.99(8), Cl1-Ga1-Cl3 116.86(8), Cl1-Ga1-N1 101.6(2), Cl2-Ga1-Cl3 116.05(9), Cl2-Ga1-N1 103.10(19), Cl3-Ga1-N1 103.40(19).

Figure S3. Molecular structure of complex $(AlBr_3 \cdot pyz)_{\infty}$ (**3**) in the crystal. Selected interatomic distances (Å): Al3-N1 2.133(2), Al3-Br1 2.3099(15), Al3-Br2 2.3257(8). Selected bond angles (deg): Br1-Al3-Br2 115.95(3), Br1-Al3-N1 93.42(8), Br2-Al3-N1 86.38(7), Br2-Al3-Br2' 128.09(6), Br2-Al3-N1 90.63(7), N1-Al3-N1 173.16(13).

Figure S4. Molecular structure of complex $(GaCl_3 \cdot pyz)_{\infty}$ (4) in the crystal. Selected interatomic distances (Å): Ga1-N1 2.203(5), Ga1-Cl1 2.1855(14), Ga1-Cl2 2.174(2). Selected bond angles (deg): Cl1-Ga1-Cl2 117.32(4), Cl1-Ga1-N1 90.50(12), Cl1-Ga1-Cl1' 125.36(6), Cl1-Ga1-N1 87.51(12), Cl2-Ga1-N1 92.16(12), N1-Ga1-N1' 175.68(17).

Figure S5. Molecular structure of complex $GaI_3 \cdot pyz$ (**5**) in the crystal. Selected interatomic distances (Å): Ga1-N1 2.037(6), Ga1-I1 2.5137(10), Ga1-I2 2.5094(9), Ga1-I3 2.5081(11). Selected bond angles (deg): I1-Ga1-I2 116.57(4), I1-Ga1-I3 112.09(4), I1-Ga1-N1 102.54(16), I2-Ga1-I3 113.83(3), I2-Ga1-N1 105.09(16), I3-Ga1-N1 105.05(17).

empiric formula	$C_4H_4Al_2Br_6N_2$ (1)	$C_4H_4Cl_6Ga_2N_2$ (2)	$C_4H_4AlBr_3N_2$ (3)	$C_4H_4Cl_3GaN_2$ (4)	$C_{4}H_{4}I_{3}GaN_{2}$ (5)
	Al ₂ Br ₆ ·pyz	Ga ₂ Cl ₆ ·pyz	(AlBr ₃ ·pyz)∞	(GaCl ₃ ·pyz)∞	GaI ₃ ·pyz
M _r	613.45	432.23	346.77	256.16	530.51
crystal size [mm]	0.32 imes 0.13 imes 0.06	$0.49 \times 0.32 \times 0.23$	$0.60 \times 0.25 \times 0.18$	$0.13 \times 0.02 \times 0.02$	$0.43 \times 0.20 \times 0.20$
T [K]	123(1)	123(1)	123(1)	123(1)	123(1)
□ [Å]	1.54178 (Cu)	1.54178 (Cu)	0.71073 (Mo)	1.54178 (Cu)	0.71073 (Mo)
absorption correction type	semi-empirical	analytical	analytical	semi-empirical	analytical
space group	$P2_{1}/c$	$P2_{1}/c$	C2/c	C2/c	ΡĪ
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
<i>a</i> [Å]	6.9688(3)	6.6265(7)	11.2325(11)	11.1474(7)	7.1493(10)
<i>b</i> [Å]	15.8935(4)	15.4544(10)	6.7023(4)	6.3189(5)	9.3992(17)
<i>c</i> [Å]	7.5060(3)	7.1401(8)	11.8372(19)	11.5922(8)	9.5165(12)
□ [°]	90	90	90	90	60.776(16)
□ [°]	117.596(5)	115.721(13)	104.753(14)	101.953(7)	79.488(12)
	90	90	90	90	87.758(13)
V [Å ³]	736.78(6)	658.76(13)	861.77(18)	798.84(10)	547.79(17)
Ζ	2	2	4	4	2
$\Box_{\text{calcd}} [g/\text{cm}^3]$	2.765	2.179	2.673	2.130	3.216
$\Box [\mathrm{mm}^{-1}]$	20.616	15.948	14.072	13.328	10.908
□ range [°]	5.57 - 65.06	5.73 - 66.68	3.56 - 30.51	7.81 - 58.92	3.46 - 26.50
completeness to \Box	0.990	0.985	0.998	0.989	0.995
index range	$-7 \le h \le 6$	$-6 \le h \le 7$	$-15 \le h \le 16$	$-12 \le h \le 11$	$-9 \le h \le 9$
	$-18 \le k \le 18$	$-17 \le k \le 18$	$-7 \le k \le 9$	$-6 \le k \le 6$	$-12 \le k \le 12$
	$-8 \le l \le 8$	$-8 \le l \le 8$	$-16 \le l \le 16$	$-12 \le l \le 12$	$-12 \le l \le 12$
unique reflections $I > 2 \Box$ (R_{int})	1056 (0.0713)	1088 (0.1356)	1027 (0.0426)	510 (0.0421)	2125 (0.393)
data/restraints/parameters	1250/0/64	1151/0/64	1316/0/48	565/0/47	2573/0/91
GOF in F^2	1.040	1.099	0.986	1.068	1.025
$R_1/wR_2(I>2\Box(I))$	0.0355/0.0841	0.0936/0.2485	0.0322/0.0762	0.0473/0.1127	0.0409/0.0789
R_1/wR_2 (all data)	0.0444/0.0877	0.0957/0.2505	0.0461/0.0795	0.0536/0.1149	0.0550/0.0863
largest diff. [e Å ⁻³]	-1.014/0.910	-2.532/1.566	-0.769/1.265	-0.772/1.212	-1.436/1.358

Table S1. Crystal Structure Information for investigated complexes.

Figure S6. Structures of pyrazine complexes, theoretically considered in the present work, on the example of gallium trihalide complexes. (a) $GaCl_3 \cdot pyz$, (b) $(GaCl_3)_2 \cdot pyz$, (c) $GaCl_3 \cdot 2pyz$, (d) $(GaCl_3)_2 \cdot (pyz)_3$.

Table S2.	. Comparison of theoretically predicted	ed and experimental bond distances (in angstroms	5)
and bond a	angles (in degrees).		

Compound	Method	rM-N	rM-X	<n-m-x< th=""><th><x-m-x< th=""></x-m-x<></th></n-m-x<>	<x-m-x< th=""></x-m-x<>
AlCl ₃ ·pyz	B3LYP	2.028	2.134-2.138	101.9-102.8	115.1-116.2
AlCl ₃ ·pyz·AlCl ₃	B3LYP	2.063	2.1262.131	100.2-101.6	115.9-117.2
pyz·AlCl ₃ ·pyz	B3LYP	2.182	2.187	87.8-92.2	119.5-121.0
pyz·AlCl ₃ ·pyz·AlCl ₃ ·pyz	B3LYP	2.163;2.228	2.181-2.182	88.0-92.9	119.0-120.4
AlBr ₃ ·pyz	B3LYP	2.037	2.299-2.303	101.6-103.8	115.0-115.6
AlBr ₃ ·pyz·AlBr ₃	B3LYP	2.074	2.292-2.295	99.9-102.7	115.8-116.6
AlBr ₃ ·pyz·AlBr ₃ (1)	X-ray	1.999	2.247-2.267	100.85-104.43	113.4-116.9
pyz·AlBr ₃ ·pyz	B3LYP	2.208	2.359-2.361	87.4-93.0	119.7-120.5
pyz·AlBr ₃ ·pyz·AlBr ₃ ·pyz	B3LYP	2.182; 2.259	2.352-2.355	88.4-89.6	119.8-120.3
$(AlBr_3 \cdot pyz)_{\infty}$ (3)	X-ray	2.133	2.310-2.326	86.4-93.4	116.0-128.1
AlI ₃ ·pyz	B3LYP	2.053	2.530-2.534	101.1-104.3	114.8-115.2
AlI ₃ ·pyz·AlI ₃	B3LYP	2.090	2.522-2.526	99.6-103.5	115.7-116.2
pyz·AlI ₃ ·pyz	B3LYP	2.242; 2.244	2.594-2.603	86.7-94.0	115.0-122.6
pyz·AlI ₃ ·pyz·AlI ₃ ·pyz	B3LYP	2.215; 2.330	2.586-2.591	86.4-95.3	118.4-120.7
GaCl ₃ ·pyz	B3LYP	2.096	2.180-2.184	101.6-101.8	115.5-117.1
GaCl ₃ ·pyz·GaCl ₃	B3LYP	2.141	2.173-2.177	100.0-100.4	116.3-118.0
GaCl ₃ ·pyz·GaCl ₃ (2)	X-ray	2.044	2.135-2.147	101.6-103.4	113.0-116.9
pyz·GaCl ₃ ·pyz	B3LYP	2.276	2.223-2.224	88.1-91.9	119.6-120.8
pyz·GaCl ₃ ·pyz·GaCl ₃ ·pyz	B3LYP	2.243; 2.336	2.218-2.219	86.7-93.4	119.2-120.3
$(GaCl_3 \cdot pyz)_{\infty}$ (4)	X-ray	2.203	2.174-2.186	87.5-92.16	117.3-125.4
GaBr ₃ ·pyz	B3LYP	2.113	2.334-2.337	101.1-102.6	115.4-116.5
GaBr ₃ ·pyz·GaBr ₃	B3LYP	2.161	2.327-2.330	99.4-101.4	116.2-117.5
pyz·GaBr ₃ ·pyz	B3LYP	2.326	2.377-2.378	87.7-92.5	119.7-120.6
pyz·GaBr ₃ ·pyz·GaBr ₃ ·pyz	B3LYP	2.277; 2.416	2.371-2.373	85.9-94.2	119.3-120.4
GaI ₃ ·pyz	B3LYP	2.143	2.551-2.553	100.4-102.7	115.7-116.1
GaI ₃ ·pyz (5)	X-ray	2.027	2.504-2.509	102.6-105.1	112.1-116.7
GaI ₃ ·pyz·GaI ₃	B3LYP	2.193	2.542-2.547	99.2-101.3	116.7
pyz·GaI ₃ ·pyz	B3LYP	2.424; 2.425	2.586-2.589	87.6-93.1	120.0

Compound	E°0	H° ₂₉₈	S° ₂₉₈
AlCl ₃ ·Py	-1871.7591724	-1871.6513100	108.239
AlCl ₃ ·pyz	-1887.7870231	-1887.6915220	108.056
AlCl ₃ ·pyz·AlCl ₃	-3511.1580608	-3511.0489670	148.691
AlCl ₃ (pyz) ₂	-2152.2048075	-2152.0251440	136.595
$(AlCl_3)_2(pyz)_3$	-4040.0023628	-4039.7248410	209.795
AlBr ₃ ·Py	-8213.6228039	-8213.5155080	115.781
AlBr ₃ ·pyz	-8229.6506985	-8229.5557760	115.627
AlBr ₃ ·pyz·AlBr ₃	-16194.8858137	-16194.7779010	163.708
AlBr ₃ (pyz) ₂	-8494.0643503	-8493.8853240	146.622
$(AlBr_3)_2(pyz)_3$	-16723.7224514	-16723.4462290	225.077
AlI ₃ ·Py	-1384.4590963	-1384.352177	121.837
AlI ₃ ·pyz	-1400.4871976	-1400.392624	124.387
AlI ₃ ·pyz·AlI ₃	-2536.5599319	-2536.452716	175.051
$AlI_3(pyz)_2$	-1664.8951507	-1664.716600	151.946
$(AlI_3)_2(pyz)_3$	-3065.3841482	-3065.108822	233.288
GaCl ₃ ·Py	-3554.1541594	-3554.046971	111.664
GaCl ₃ ·pyz	-3570.182340	-3570.087489	111.512
$GaCl_3$ ·pyz·GaCl_3	-6875.949899	-6875.842102	156.295
GaCl ₃ (pyz) ₂	-3834.596631	-3834.417720	141.855
$(GaCl_3)_2(pyz)_3$	-7404.787740	-7404.511645	217.400
GaBr ₃ ·Py	-9896.0303362	-9895.9236330	119.336
GaBr ₃ ·pyz	-9912.0587356	-9911.9643780	119.266
GaBr ₃ ·pyz·GaBr ₃	-19559.7035548	-19559.5967440	171.477
GaBr ₃ (pyz) ₂	-10176.4685552	-10176.2902200	151.269
$(GaBr_3)_2(pyz)_3$	-20088.5318973	-20088.2569600	235.047
GaI ₃ ·Py	-3066.8807732	-3066.774365	126.040
GaI ₃ ·pyz	-3082.9096463	-3082.815563	126.682
Gal ₃ ·pyz·Gal ₃	-5901.4069503	-5901.300666	181.996
GaI ₃ (pyz) ₂	-3347.313909	-3347.136003	159.749

Table S3. Total energies E°_{0} , standard enthalpies H°_{298} (in Hartree) and entropies S°_{298} (in cal mol⁻¹ K⁻¹). B3LYP/TZVP level of theory.

Compound	X=Cl	X=Br	X=I
AlX ₃ ·py	7.4	6.2	4.5
AlX ₃ ·pyz	7.4	6.1	3.8
AlX ₃ ·pyz·AlX ₃	14.6	12.3	9.9
$AlX_3(pyz)_2$	11.3	9.1	5.7
$(AlX_3)_2(pyz)_3$	22.2	18.3	13.5
GaX ₃ ·py	6.4	5.4	3.9
GaX ₃ ·pyz	6.2	5.2	3.9
GaX ₃ ·pyz·GaX ₃	11.9	10.2	7.8
GaX ₃ (pyz) ₂	8.9	7.3	5.2
$(GaX_3)_2(pyz)_3$	18.1	15.1	-

Table S4. BSSE energies, kJ mol⁻¹. B3LYP/TZVP level of theory.

Table S5. Structural and energetic parameters of mixed 2:1 complexes. Standard dissociation enthalpies, $\Delta_{diss}H^{o}_{298}$, kJ mol⁻¹ and standard dissociation entropies $\Delta_{diss}S^{o}_{298}$, J mol⁻¹ K⁻¹. B3LYP/TZVP level of theory.

MX ₃ -pyz-M'X' ₃	r(N1-M)	r(N2-M')	$\Delta_{diss}H^{o}_{298}$	$\Delta_{diss} S^{o}_{298}$
AlCl ₃ -pyz-GaCl ₃	2.061	2.144	199.5	276.9
AlCl ₃ -pyz-AlBr ₃	2.062	2.075	213.0	282.1
AlCl ₃ -pyz-GaBr ₃	2.059	2.167	187.7	278.7
GaCl ₃ -pyz-AlBr ₃	2.143	2.072	189.7	281.7
GaCl ₃ -pyz-GaBr ₃	2.138	2.164	164.3	277.8
AlBr ₃ -pyz-GaBr ₃	2.070	2.166	177.9	282.9

Table S6. Summary of the tensimetry experiments, performed in the AlBr₃-pyz system.

Experiment	Temperature	Number of	AlBr ₃ :pyz	Chemical composition (mass of	Volume,
number	range, K	heating/cooling runs	ratio	the substance in mg)	ml
1	291-675	3	1:1	AlBr ₃ ·pyz (36.2)	27.40
2	293-649	4	1:1	AlBr ₃ ·pyz (45.5)	33.37
3	291-660	3	1:3.03	AlBr ₃ ·pyz (45.5), pyz (21.3)	30.60
4		5	2:1	(AlBr ₃) ₂ pyz (28.2)	55.50
5		12	2.03:1	AlBr ₃ (51.4); pyz (7.6)	59.05

Compound	E _{M-N}	T _{melt} , K	$\Delta_{melt}H$
$\frac{(A1Dram (2))}{(A1Dram (2))}$	05	540	ca b
$(AIBr_3 pyz)_{\infty}$ (3)	85	540	64±3
$(GaCl_3 \cdot pyz)_{\infty}$ (4)	77	461-463 [11] ^a ; 470 [12]	12±7 [12] ^b
(GaBr ₃ ·pyz)∞	64	361-363 [11] ^a	

Table S7. Melting points, Energies of the M-N bonds, E_{M-N} and melting enthalpies $\Delta_{melt}H$, kJ mol⁻¹.

^a synthesis in nonaqueous solutions; ^b estimated as difference between sublimation and vaporization enthalpies from tensimetry studies.

Figure S7. System for synthesis of complexes. 1, 2, 3 and 4 – places for the sealing off; \mathbf{A} – ampoule with known amount of pyrazine; \mathbf{B} – ampoule with known amount of AlBr₃; \mathbf{C} – compartment for the introduction of pyz; \mathbf{D} – ampoule for removal of the excess component; \mathbf{E} – reaction volume; \mathbf{F} – ampoule to remove the synthesized complex; \mathbf{G} – capillary for the mass spectrometry study.

Figure S8. Optimized structures and xyz coordinates for considered alu	minum	n compo	ounds.
B3LYP/TZVP level of theory.			
a) AlCl ₃ ·Py	х	Y	z

C	-1.579	1.169	-0.053
Ν	-0.895	0.010	-0.067
С	-1.572	-1.153	-0.054
С	-2.954	-1.194	-0.019
Н	-3.473	2.153	-0.008
Н	-0.985	2.072	-0.077
Н	-0.973	-2.054	-0.080
Н	-3.458	-2.150	-0.010
Н	-4.746	-0.003	0.026
Al	1.113	0.001	0.002
Cl	1.517	-0.174	2.095
Cl	1.639	-1.726	-1.149
Cl	1.656	1.886	-0.859

0.001

1.200

0.000

-0.018

-3.663

-2.962

С

С

b) AlCl₃pyz

	х	Y	z
Ν	3.671	0.002	-0.002
С	2.969	-1.130	-0.018
С	1.582	-1.142	-0.050
Ν	0.895	0.011	-0.063
С	1.589	1.159	-0.050
С	2.977	1.138	-0.019
н	3.524	-2.061	-0.008
н	1.009	-2.059	-0.075
н	1.020	2.079	-0.074
н	3.537	2.065	-0.009
AI	-1.131	0.001	0.002
Cl	-1.502	-0.192	2.095
Cl	-1.643	1.895	-0.845
Cl	-1.622	-1.719	-1.167

c) AlCl₃·pyz·AlCl₃

	Х	Y	Z
Ν	-1.377	0.012	-0.093
С	-0.683	1.157	-0.096
С	0.702	1.145	-0.097
Ν	1.377	-0.011	-0.093
С	0.683	-1.157	-0.096
С	-0.702	-1.145	-0.097
н	-1.248	2.080	-0.108
н	1.279	2.060	-0.113
н	1.248	-2.079	-0.108
н	-1.278	-2.060	-0.112
Al	3.437	-0.001	0.008
Cl	3.710	0.310	2.094
Cl	3.911	-1.943	-0.731
Cl	3.895	1.657	-1.249
Al	-3.438	0.001	0.008
Cl	-3.895	-1.654	-1.252
Cl	-3.710	-0.314	2.093
CI	-3.911	1.945	-0.727

ī.

	X	Y	z
Ν	-4.969	0.006	-0.030
С	-4.247	0.810	0.750
С	-2.861	0.771	0.775
Ν	-2.181	-0.091	0.006
С	-2.896	-0.902	-0.781
С	-4.285	-0.844	-0.791
н	-4.786	1.510	1.378
н	-2.284	1.423	1.416
н	-2.345	-1.599	-1.396
н	-4.854	-1.507	-1.432
AI	0.000	0.000	0.006
Cl	0.000	0.000	2.193
Cl	0.164	-1.897	-1.071
Cl	-0.164	1.897	-1.071
Ν	2.181	0.091	0.007
С	2.896	0.902	-0.781
С	4.285	0.844	-0.791
Ν	4.969	-0.006	-0.030
С	4.247	-0.810	0.750
С	2.861	-0.771	0.775
Н	2.345	1.599	-1.396
н	4.854	1.507	-1.432
н	4.786	-1.511	1.378
н	2.284	-1.423	1.416

	х	Y	z
Ν	0.000	-1.390	0.313
С	0.000	-0.695	1.451
С	0.000	0.695	1.451
Ν	0.000	1.390	0.313
С	0.000	0.691	-0.830
С	0.000	-0.691	-0.830
Н	0.000	-1.258	2.374
н	0.000	1.258	2.374
Н	0.000	1.249	-1.755
н	0.000	-1.249	-1.755
Al	0.000	3.614	0.169
CI	1.880	3.466	-0.928
CI	-1.880	3.466	-0.928
CI	0.000	3.798	2.342
AI	0.000	-3.614	0.169
CI	-1.880	-3.466	-0.928
CI	1.880	-3.466	-0.928
CI	0.000	-3.798	2.342
Ν	0.000	-5.757	-0.124
С	0.000	-6.214	-1.385
С	0.000	-7.574	-1.652
Ν	0.000	-8.490	-0.683
С	0.000	-8.029	0.564
С	0.000	-6.669	0.855
н	0.000	-5.480	-2.178
Н	0.000	-7.932	-2.675
Н	0.000	-8.758	1.365
Н	0.000	-6.298	1.870
Ν	0.000	5.757	-0.124
С	0.000	6.669	0.855
С	0.000	8.029	0.564
Ν	0.000	8.490	-0.683
С	0.000	7.574	-1.652
С	0.000	6.214	-1.385
н	0.000	6.298	1.870
н	0.000	8.758	1.365
Н	0.000	7.932	-2.675
Н	0.000	5.480	-2.178

f) AlBr₃·Py

g) AlBr₃·pyz

h) AlBr₃·pyz·AlBr₃

	х	Y	Z
С	-4.242	0.080	-0.114
С	-3.526	1.271	-0.114
С	-2.143	1.223	-0.113
Ν	-1.471	0.057	-0.111
С	-2.164	-1.098	-0.113
С	-3.546	-1.123	-0.113
н	-4.026	2.230	-0.117
н	-1.539	2.120	-0.119
н	-1.577	-2.007	-0.122
н	-4.062	-2.074	-0.116
н	-5.325	0.089	-0.116
Al	0.541	-0.001	0.004
Br	0.905	-0.462	2.232
Br	1.115	-1.718	-1.426
Br	1.224	2.097	-0.672

	х	Y	z
Ν	4.244	0.081	-0.125
С	3.556	-1.060	-0.119
С	2.169	-1.090	-0.114
Ν	1.466	0.054	-0.112
С	2.146	1.211	-0.119
С	3.534	1.208	-0.125
н	4.123	-1.983	-0.121
н	1.610	-2.016	-0.119
н	1.565	2.123	-0.126
н	4.082	2.142	-0.132
AI	-0.567	-0.003	0.007
Br	-0.887	-0.431	2.243
Br	-1.216	2.091	-0.699
Br	-1.109	-1.740	-1.402

	x	Y	z
Ν	-1.379	0.020	-0.102
С	-0.677	1.160	-0.103
С	0.709	1.140	-0.105
Ν	1.379	-0.020	-0.102
С	0.677	-1.160	-0.103
С	-0.709	-1.140	-0.105
н	-1.235	2.087	-0.110
н	1.287	2.053	-0.119
н	1.235	-2.087	-0.110
н	-1.287	-2.053	-0.119
Al	3.450	0.002	-0.008
Br	3.740	0.589	2.188
Br	4.004	-2.153	-0.570
Br	3.945	1.626	-1.551
Al	-3.450	-0.002	-0.008
Br	-3.945	-1.626	-1.551
Br	-3.740	-0.589	2.188
Br	-4.004	2.154	-0.570

	х	Y	z
Ν	-4.996	-0.097	0.013
С	-4.277	0.761	0.737
С	-2.890	0.750	0.739
Ν	-2.204	-0.137	0.005
С	-2.917	-1.000	-0.728
С	-4.307	-0.970	-0.716
Н	-4.819	1.482	1.338
н	-2.320	1.449	1.334
н	-2.364	-1.716	-1.319
н	-4.872	-1.676	-1.314
Al	0.000	0.000	-0.012
Br	0.000	0.000	2.348
Br	0.243	-2.033	-1.182
Br	-0.243	2.033	-1.182
Ν	2.204	0.137	0.005
С	2.917	1.000	-0.728
С	4.307	0.970	-0.716
Ν	4.996	0.097	0.013
С	4.277	-0.761	0.737
С	2.890	-0.750	0.739
Н	2.364	1.716	-1.319
н	4.872	1.676	-1.314
н	4.819	-1.482	1.338
Н	2.320	-1.449	1.334

	х	Y	Z
Ν	-1.391	0.048	-0.040
С	-0.646	0.600	-1.003
С	0.739	0.552	-0.962
Ν	1.391	-0.048	0.040
С	0.646	-0.600	1.003
С	-0.739	-0.552	0.962
Н	-1.169	1.088	-1.813
Н	1.332	0.999	-1.747
Н	1.169	-1.087	1.813
Н	-1.332	-0.999	1.747
41	3.649	0.031	0.042
Br	3.785	-1.446	1.868
Br	3.615	-0.823	-2.153
Br	3.424	2.342	0.420
41	-3.649	-0.031	-0.042
Br	-3.424	-2.342	-0.421
Br	-3.615	0.822	2.153
Br	-3.785	1.446	-1.867
Ν	-5.829	-0.094	0.032
С	-6.572	-1.191	-0.152
С	-7.961	-1.130	-0.096
Ν	-8.617	0.003	0.138
С	-7.867	1.090	0.320
С	-6.482	1.054	0.269
Н	-6.046	-2.115	-0.341
Η	-8.551	-2.026	-0.247
Н	-8.382	2.024	0.513
Н	-5.887	1.943	0.421
N	5.829	0.094	-0.032
С	6.572	1.191	0.151
С	7.961	1.130	0.096
Ν	8.617	-0.003	-0.138
С	7.867	-1.091	-0.3 20
С	6.482	-1.054	-0.269
Н	6.046	2.115	0.341
Н	8.552	2.026	0.247
Н	8.382	-2.024	-0.5 13
Н	5.887	-1.943	-0.420

l) AlI₃·pyz

m) $AlI_3 \cdot pyz \cdot AlI_3$

	х	Y	z
Ν	-1.808	-0.040	0.000
Al	0.220	0.038	0.000
1	0.828	-1.193	2.134
1	0.828	2.503	0.000
1	0.828	-1.193	-2.134
С	-4.570	-0.274	0.000
С	-2.392	-1.255	0.000
С	-2.585	1.057	0.000
С	-3.967	0.977	0.000
С	-3.765	-1.408	0.000
н	-1.727	-2.108	0.000
н	-2.066	2.007	0.000
н	-4.553	1.886	0.000
н	-4.189	-2.403	0.000
н	-5.649	-0.366	0.000

	Х	Y	Z
Ν	-4.439	0.000	-1.124
С	-3.756	1.133	-0.975
С	-2.400	1.149	-0.679
Ν	-1.722	0.000	-0.532
С	-2.400	-1.149	-0.679
С	-3.756	-1.133	-0.975
н	-4.299	2.063	-1.094
н	-1.843	2.070	-0.567
н	-1.843	-2.070	-0.567
н	-4.299	-2.063	-1.094
AI	0.249	0.000	0.041
1	0.022	0.000	2.561
Т	1.178	-2.136	-0.957
Т	1.178	2.136	-0.957

	Х	Y	z
Ν	1.382	-0.013	-0.121
С	0.682	-1.156	-0.119
С	-0.703	-1.142	-0.120
Ν	-1.382	0.013	-0.121
С	-0.682	1.156	-0.119
С	0.703	1.142	-0.120
н	1.241	-2.082	-0.128
н	-1.277	-2.059	-0.134
н	-1.241	2.082	-0.128
н	1.277	2.059	-0.134
Al	-3.470	-0.006	-0.020
I.	-3.767	-0.416	2.451
1	-4.124	2.286	-0.857
I.	-4.054	-1.937	-1.541
Al	3.470	0.006	-0.020
I.	4.054	1.937	-1.541
I	3.767	0.416	2.451
Т	4.124	-2.286	-0.857

	Х	Y	Z
Ν	-5.010	0.212	-0.396
С	-4.286	-0.860	-0.720
С	-2.910	-0.902	-0.560
Ν	-2.236	0.146	-0.063
С	-2.954	1.226	0.263
С	-4.335	1.248	0.092
н	-4.816	-1.716	-1.121
н	-2.338	-1.779	-0.827
Н	-2.416	2.073	0.664
н	-4.902	2.132	0.361
AI	0.000	0.000	0.059
I.	0.000	0.000	-2.545
L	0.252	2.176	1.448
I.	-0.252	-2.176	1.448
Ν	2.236	-0.146	-0.063
С	2.954	-1.226	0.263
С	4.335	-1.248	0.092
Ν	5.010	-0.212	-0.396
С	4.286	0.860	-0.720
С	2.910	0.902	-0.560
н	2.416	-2.073	0.664
н	4.902	-2.132	0.361
н	4.816	1.716	-1.121
н	2.338	1.779	-0.827

	х	Y	z
L	-3.903	-0.204	2.588
Al	-3.710	-0.048	0.012
L	-3.578	-2.283	-1.285
L	-3.503	2.245	-1.181
Ν	-5.911	0.140	-0.143
Ν	-1.393	-0.075	0.063
Ν	-8.667	0.571	-0.300
С	-6.698	-0.637	-0.895
С	-6.506	1.137	0.530
С	-7.875	1.342	0.446
С	-8.069	-0.412	-0.967
н	-6.223	-1.441	-1.439
н	-5.877	1.771	1.138
н	-8.341	2.150	0.997
н	-8.694	-1.050	-1.581
Ν	1.393	-0.075	-0.063
С	-0.643	-0.075	1.169
С	-0.743	-0.073	-1.105
С	0.643	-0.075	-1.169
С	0.743	-0.073	1.105
н	-1.159	-0.078	2.119
н	-1.334	-0.071	-2.009
н	1.159	-0.078	-2.119
н	1.334	-0.071	2.009
L	3.578	-2.283	1.285
Al	3.710	-0.048	-0.012
I	3.903	-0.204	-2.588
L	3.503	2.246	1.181
Ν	5.911	0.140	0.143
Ν	8.667	0.571	0.300
С	6.698	-0.637	0.896
С	6.506	1.137	-0.530
С	7.875	1.342	-0.446
С	8.069	-0.412	0.967
н	6.223	-1.441	1.439
Н	5.877	1.771	-1.138
Н	8.341	2.150	-0.997
н	8.694	-1.050	1.581

	х	Y	z
С	-0.090	3.856	0.000
С	-0.091	3.151	-1.198
С	-0.091	1.767	-1.161
Ν	-0.089	1.093	0.000
С	-0.091	1.767	1.161
С	-0.091	3.151	1.198
н	-0.094	3.660	-2.152
н	-0.103	1.168	-2.062
н	-0.103	1.168	2.062
н	-0.094	3.660	2.152
н	-0.091	4.939	0.000
Ga	0.023	-0.976	0.000
Cl	2.178	-1.337	0.000
Cl	-0.997	-1.513	1.860
Cl	-0.997	-1.513	-1.860

b) GaCl₃·pyz

	х	Y	z
Ν	0.000	3.870	0.000
С	0.016	3.173	1.135
С	0.046	1.784	1.151
Ν	0.059	1.100	0.000
С	0.046	1.784	-1.151
С	0.016	3.173	-1.135
н	0.006	3.731	2.063
н	0.071	1.211	2.068
н	0.071	1.211	-2.068
н	0.006	3.731	-2.063
Ga	-0.001	-0.995	0.000
Cl	-2.148	-1.373	0.000
Cl	1.036	-1.470	-1.862
Cl	1.036	-1.470	1.862

	х	Y	Z
Ν	1.372	-0.007	-0.090
С	0.688	-1.155	-0.093
С	-0.699	-1.148	-0.094
Ν	-1.372	0.007	-0.090
С	-0.688	1.155	-0.093
С	0.699	1.148	-0.094
н	1.258	-2.075	-0.107
н	-1.276	-2.063	-0.110
н	-1.258	2.075	-0.107
н	1.276	2.063	-0.110
Ga	-3.511	0.001	0.006
Cl	-3.790	-0.207	2.151
Cl	-3.947	1.955	-0.850
Cl	-3.938	-1.762	-1.197
Ga	3.511	-0.001	0.006
Cl	3.938	1.762	-1.196
Cl	3.790	0.207	2.151
Cl	3.947	-1.955	-0.851

	Х	Y	Z
Ν	5.055	-0.009	-0.045
С	4.342	-0.785	0.770
С	2.954	-0.744	0.805
Ν	2.274	0.089	0.010
С	2.977	0.872	-0.812
С	4.366	0.815	-0.831
Н	4.888	-1.462	1.417
Н	2.380	-1.371	1.473
Н	2.417	1.546	-1.446
н	4.932	1.454	-1.500
Ga	0.000	0.000	0.011
C	0.000	0.000	2.235
Cl	-0.148	1.927	-1.086
C	0.148	-1.927	-1.086
Ν	-2.274	-0.089	0.010
С	-2.977	-0.872	-0.812
С	-4.366	-0.815	-0.831
Ν	-5.055	0.009	-0.045
С	-4.342	0.785	0.770
С	-2.954	0.744	0.805
Н	-2.417	-1.546	-1.446
Н	-4.932	-1.454	-1.500
н	-4.888	1.462	1.417
Н	-2.380	1.371	1.474

	х	Y	z
Ν	1.382	0.085	0.000
С	0.693	0.041	-1.142
С	-0.693	-0.043	-1.142
Ν	-1.382	-0.085	0.000
С	-0.693	-0.041	1.142
С	0.693	0.043	1.142
н	1.257	0.085	-2.063
н	-1.257	-0.087	-2.063
н	-1.257	-0.085	2.064
н	1.257	0.087	2.064
Ga	-3.717	-0.004	0.000
Cl	-3.752	-1.126	1.914
Cl	-3.513	2.204	-0.001
Cl	-3.752	-1.127	-1.913
Ga	3.717	0.005	0.000
Cl	3.752	1.127	1.914
Cl	3.513	-2.204	0.001
Cl	3.752	1.126	-1.914
Ν	5.959	-0.072	0.000
С	6.670	-1.203	0.000
С	8.060	-1.164	-0.001
Ν	8.740	-0.021	-0.001
С	8.018	1.100	-0.001
С	6.630	1.085	0.000
Н	6.115	-2.131	0.000
н	8.633	-2.084	-0.001
Н	8.558	2.039	-0.001
н	6.050	1.998	0.000
Ν	-5.959	0.071	0.000
С	-6.630	-1.086	0.000
С	-8.018	-1.100	0.000
Ν	-8.740	0.020	0.000
С	-8.060	1.164	-0.001
С	-6.670	1.202	-0.001
Н	-6.049	-1.998	0.001
н	-8.558	-2.040	0.001
Н	-8.634	2.084	-0.001
Н	-6.115	2.131	-0.001

f) GaBr₃·Py

Х Ζ Υ С -4.333 0.063 -0.094 С -3.621 -0.099 1.255 С -2.237 1.210 -0.103 0.046 Ν -1.568 -0.104 С -2.251 -0.102 -1.111 С -3.635 -1.139 -0.097 Н -4.123 2.213 -0.100 н -1.631 2.107 -0.115 Н -1.661 -2.017 -0.114 н -4.149 -2.091 -0.096 Н -5.416 0.069 -0.091 Ga 0.515 0.000 0.002 0.882 -0.422 2.274 Br Br 1.065 -1.775 -1.423 1.151 2.132 -0.732 Br

g) GaBr₃·pyz

h) GaBr₃·pyz·GaBr₃

	Х	Y	Z
Ν	4.341	0.063	-0.098
С	3.650	-1.076	-0.097
С	2.262	-1.101	-0.100
Ν	1.568	0.044	-0.103
С	2.245	1.199	-0.105
С	3.635	1.192	-0.103
н	4.215	-2.001	-0.095
н	1.699	-2.025	-0.110
Н	1.665	2.112	-0.117
н	4.186	2.125	-0.106
Ga	-0.542	-0.001	0.004
Br	-0.869	-0.408	2.279
Br	-1.138	2.131	-0.745
Br	-1 053	-1 786	-1 415

	Х	Y	Z
Ν	1.374	-0.018	-0.110
С	0.679	-1.159	-0.111
С	-0.708	-1.141	-0.113
Ν	-1.374	0.018	-0.110
С	-0.679	1.159	-0.111
С	0.708	1.141	-0.113
н	1.241	-2.084	-0.119
н	-1.288	-2.054	-0.127
н	-1.241	2.084	-0.119
Н	1.288	2.054	-0.127
Ga	-3.533	0.000	-0.006
Br	-3.802	-0.539	2.241
Br	-4.043	2.185	-0.634
Br	-4.003	-1.694	-1.534
Ga	3.533	0.000	-0.006
Br	4.003	1.694	-1.534
Br	3.802	0.539	2.241
Br	4.043	-2.185	-0.634

	Х	Y	Z
Ν	5.107	0.077	-0.024
С	4.396	-0.745	0.748
С	3.008	-0.726	0.769
Ν	2.322	0.132	0.006
С	3.023	0.960	-0.773
С	4.414	0.924	-0.780
н	4.945	-1.442	1.371
н	2.439	-1.393	1.401
Н	2.461	1.653	-1.385
н	4.975	1.600	-1.415
Ga	0.000	0.000	-0.001
Br	0.000	0.000	2.377
Br	-0.216	2.054	-1.178
Br	0.216	-2.054	-1.178
Ν	-2.322	-0.132	0.006
С	-3.023	-0.960	-0.773
С	-4.414	-0.924	-0.780
Ν	-5.107	-0.077	-0.024
С	-4.396	0.745	0.748
С	-3.008	0.726	0.769
н	-2.461	-1.653	-1.385
Н	-4.975	-1.600	-1.415
Н	-4.945	1.442	1.371
н	-2.439	1.393	1.401

j) (GaBr₃)₂(pyz)₃ С C Ģa Br Br

	Х	Y	Z
Ν	-1.385	-0.082	-0.004
С	-0.706	0.124	1.126
С	0.680	0.204	1.130
Ν	1.385	0.082	0.004
С	0.706	-0.124	-1.126
С	-0.680	-0.204	-1.130
н	-1.276	0.218	2.040
н	1.233	0.376	2.044
н	1.276	-0.218	-2.040
н	-1.233	-0.376	-2.044
Ga	3.800	-0.016	0.004
Br	3.536	-2.369	0.112
Br	3.820	1.086	-2.097
Br	3.859	1.277	1.992
Ga	-3.800	0.016	-0.004
Br	-3.859	-1.277	-1.992
Br	-3.820	-1.086	2.097
Br	-3.536	2.369	-0.112
Ν	-6.075	0.102	0.007
С	-6.747	-1.051	0.091
С	-8.135	-1.066	0.092
Ν	-8.858	0.051	0.011
С	-8.178	1.191	-0.072
С	-6.787	1.229	-0.075
н	-6.169	-1.962	0.158
н	-8.674	-2.004	0.161
н	-8.750	2.109	-0.140
н	-6.236	2.157	-0.142
Ν	6.075	-0.102	-0.007
С	6.747	1.051	-0.091
С	8.135	1.066	-0.092
Ν	8.858	-0.051	-0.011
С	8.178	-1.191	0.072
С	6.787	-1.229	0.075
н	6.169	1.962	-0.158
Н	8.674	2.004	-0.161
Н	8.750	-2.109	0.140
Н	6.236	-2.157	0.142

l) GaI₃·pyz

m) GaI_3 ·pyz· GaI_3

	х	Y	z
Ν	-1.868	-0.038	0.000
Ga	0.242	0.034	0.000
1	0.814	-1.216	2.156
I.	0.814	2.527	0.000
1	0.814	-1.216	-2.156
С	-4.627	-0.247	0.000
С	-2.457	-1.246	0.000
С	-2.629	1.066	0.000
С	-4.013	0.999	0.000
С	-3.833	-1.388	0.000
н	-1.798	-2.104	0.000
н	-2.100	2.011	0.000
н	-4.591	1.914	0.000
н	-4.267	-2.379	0.000
н	-5.706	-0.329	0.000

	Х	Y	Z
Ν	-4.529	0.000	-1.004
С	-3.842	1.134	-0.875
С	-2.477	1.148	-0.621
Ν	-1.801	0.000	-0.495
С	-2.477	-1.148	-0.621
С	-3.842	-1.134	-0.875
н	-4.389	2.063	-0.979
н	-1.914	2.068	-0.525
н	-1.914	-2.068	-0.525
н	-4.389	-2.063	-0.979
Ga	0.274	0.000	0.041
I.	0.092	0.000	2.585
Т	1.126	-2.166	-1.008
Т	1.126	2.166	-1.008

	х	Y	z
Ν	1.377	0.000	-0.096
С	0.693	-1.148	-0.090
С	-0.693	-1.148	-0.090
Ν	-1.377	0.000	-0.096
С	-0.693	1.148	-0.090
С	0.693	1.148	-0.090
н	1.263	-2.069	-0.104
н	-1.263	-2.069	-0.104
н	-1.263	2.069	-0.104
н	1.263	2.069	-0.104
Ga	-3.569	0.000	-0.012
I	-3.879	0.001	2.510
Т	-4.113	2.168	-1.234
I	-4.114	-2.168	-1.232
Ga	3.569	0.000	-0.012
I.	4.114	2.168	-1.232
Т	3.879	-0.001	2.510
I.	4.113	-2.168	-1.234

	Х	Y	Z
Ν	-5.204	0.257	-0.049
С	-4.505	-0.638	-0.748
С	-3.116	-0.665	-0.736
Ν	-2.415	0.216	-0.016
С	-3.105	1.115	0.689
С	-4.497	1.128	0.666
Н	-5.063	-1.356	-1.336
Н	-2.560	-1.395	-1.309
Н	-2.537	1.829	1.271
Н	-5.047	1.863	1.242
Ga	0.000	0.000	0.015
L	0.000	0.000	-2.574
L	0.325	2.216	1.308
L	-0.325	-2.216	1.308
Ν	2.415	-0.216	-0.016
С	3.105	-1.115	0.689
С	4.497	-1.128	0.666
Ν	5.204	-0.257	-0.049
С	4.505	0.638	-0.748
С	3.116	0.665	-0.736
Н	2.537	-1.829	1.271
Н	5.047	-1.863	1.242
Н	5.063	1.356	-1.336
Н	2.560	1.394	-1.310