Electronic Supplementary Information

Hexanuclear and Undecanuclear Iron(III) Carboxylates as Catalyst Precursors for Cyclohexane Oxidation

Miljan N. M. Milunovic,^a Luísa M. D. R. S. Martins,^{b,c} Elisabete C. B. A. Alegria,^{b,c} Armando J. L. Pombeiro, *^c Regina Krachler, ^a Günter Trettenhahn, ^d Constantin Turta, ^e Sergiu Shova, ^f Vladimir B. Arion *a ^aUniversity of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria E-mail: vladimir.arion@univie.ac.at; Fax: +43-1-4277-52680 ^bÁrea Departamental de Engenharia Química, ISEL, R. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal $^{\circ}$ Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: pombeiro@ist.utl.pt; Fax: (+351)218464455 ^dUniversity of Vienna, Institute of Physical Chemistry, Währinger Strasse 42, A-1090 Vienna, Áustria ^eInstitute of Chemistry of the Academy of Sciences of Moldova, Academiei str. 3, MD-2028, Chisinau, Moldova. ^f"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 lasi, Romania

CONTENT

	i aye
Crystal data (Table S1), Mössbauer spectrum of 1 (Figure S1)	2
Magnetization data for 2 (Figure S2)	3
Effect of Hpca, amount of oxidant, and catalyst on	
cyclohexanol/cyclohexanone yield (Figures S3–S8)	3-7
Dependence of the overall yield of the products on the reaction time in the	
presence of different iron species (Figure S9)	8
UV-vis spectrum of 2 in MeCN/dmf = 10:1 (Figure S10) and Arrhenius plot for	
the 2 –H ₂ O ₂ system (Figure S11)	9
Mössbauer spectra of 2-57Fe/H2O2/Hpca system immediately after preparation	
(Figure S12) and of 2^{-57} Fe/H ₂ O ₂ /Hpca system 30 min after preparation (Figure	
S13)	10

Dago

Empirical formula	$C_{114.5}H_{150.5}Fe_6O_{65}$	$C_{175.25}H_{220.85}CIFe_{11}N_{3.75}O_{97.05}$
Fw	2901.95	4582.51
Space group	<i>P</i> -1	<i>P</i> -1
a [Å]	15.3674(7)	19.4468(13)
<i>b</i> [Å]	16.1325(7)	23.6865(16)
c [Å]	16.2835(7)	25.9226(17)
α [°]	73.631(2)	78.197(4)
β[°]	80.246(3)	87.186(4)
٧[°]	65.635(2)	71.921(4)
$V[Å^3]$	3521.8(3)	11109.8(13)
Ζ	1	2
λ[Å]	0.71073	0.71073
$\rho_{\rm calcd} [{\rm g \ cm}^{-3}]$	1.368	1.370
crystal size [mm ³]	$0.50\times0.50\times0.17$	$0.40 \times 0.35 \times 0.35$
T [K]	100(2)	100(2)
μ [mm ⁻¹]	0.695	0.800
$R_1^{[a]}$	0.0798	0.0824
$wR_2^{[b]}$	0.2795	0.272
GOF ^[c]	1.046	1.067

Table S1 Crystal data and details of data collection for 1 and 2.

p)}^{1/2}, where *n* is the number of reflections and *p* is the total number of parameters refined.

Fig. S1 Mössbauer spectrum of 1 at 300 K (δ = 0.43 mm s⁻¹, ΔE_Q = 0.75 mm s⁻¹).

Fig. S2 Magnetization data for **2** at 2 K (left). Solid lines represent simulated according Brillouin function for S=1/2 (green line) and S=3/2 (blue line). Magnetic susceptibility (right) in a temperature range of 2 – 300 K under a field of 0.1 T.

Fig. S3 Effects of the Hpca amount (molar ratios relatively to 1) on the cyclohexanol (\blacktriangle) or cyclohexanone (\bullet) yield (mol%, based on substrate). Reaction conditions: $n(H_2O_2)/n(1)$ (2 × 10⁴), MeCN (3.0 mL), cyclohexane (5.0 mmol), Hpca (0 – 150 mmol), 45 min, r.t.

Fig. S4 Effects of the Hpca amount (molar ratios relatively to **2**) on the cyclohexanol (\blacklozenge) or cyclohexanone (\blacksquare) yield (mol%, based on substrate). Reaction conditions: $n(H_2O_2)/n(2)$ (2 × 10⁴), MeCN (3.0 mL), cyclohexane (5.0 mmol), Hpca (0 – 150 mmol), 6 h, r.t.

$n(H_2O_2)/n(cat)$

Fig. S5 Dependence of the cyclohexanol (\blacklozenge) or cyclohexanone (\blacksquare) yield (mol%, based on substrate) on the amount of oxidant (H₂O₂, molar ratio relatively to **1**) in the oxidation of cyclohexane. Reaction conditions: $n(H_2O_2)/n(1)$ (0 - 4 × 10⁴), MeCN (3.0 mL), cyclohexane (5.0 mmol), n(Hpca)/n(1) (25.0), 45 min., r.t.

Fig. S6 Dependence of the cyclohexanol (\blacklozenge) or cyclohexanone (\blacksquare) yield (mol%, based on substrate) on the amount of oxidant (H₂O₂, molar ratio relatively to **2**) in the oxidation of cyclohexane. Reaction conditions: $n(H_2O_2)/n(2)$ (0 - 4 × 10⁴), MeCN (3.0 mL), cyclohexane (5.0 mmol), n(Hpca)/n(2) (50.0), 6 h, r.t.

Fig. S7 Dependence of the cyclohexanol (\blacklozenge) or cyclohexanone (\blacksquare) yield (mol%, based on substrate) on the amount of catalyst **1** in the oxidation of cyclohexane. Reaction conditions: $n(H_2O_2)/n(1)$ (2 × 10⁴), MeCN (3.0 mL), cyclohexane (5.0 mmol), n(Hpca)/n(1) (25.0), 45 min., r.t.

n(cat)/n(CyH)

Fig. S8 Dependence of the cyclohexanol (\blacklozenge) or cyclohexanone (\blacksquare) yield (mol%, based on substrate) on the amount of catalyst **2** in the oxidation of cyclohexane. Reaction conditions: $n(H_2O_2)/n(2)$ (2 × 10⁴), MeCN (3.0 mL), cyclohexane (5.0 mmol), n(Hpca)/n(2) (50.0), 6 h, r.t.

Fig. S9 Dependence of the overall yield (mol%, based on substrate) of the products on the reaction time in the presence of different iron species: **1**, **2**, FeSO₄·7H₂O, Fe(CF₃SO₃)₃ or [Fe₃OL₆(H₂O₃)₃]NO₃·HL (HL = 3,4,5-trimethoxybenzoic acid). Reaction conditions: MeCN (3.0 mL), cyclohexane (5.0 mmol), 0.5 µmol of catalyst percursor, $n(H_2O_2)/n(\text{catalyst precursor})$ (2 × 10⁴), n(Hpca)/n(1) (25.0, •), n(Hpca)/n(2) (50.0, •), $n(\text{Hpca})/n(\text{FeSO}_4\cdot7\text{H}_2\text{O})$ (25.0, • or 50.0, ×), $n(\text{Hpca})/n(\text{Fe}(\text{CF}_3\text{SO}_3)_3)$ (25.0, * or 50.0, •), $n(\text{Hpca})/n([\text{Fe}_3\text{OL}_6(\text{H}_2\text{O}_3)_3]\text{NO}_3\cdot\text{HL})$ (25.0, □ or 50.0, -), r.t.

Fig. S10. UV-vis spectra of 2 in MeCN/dmf = 10:1 for 0, 1, 3 and 6 h.

Fig. S11 Arrhenius plot for the **2**–H₂O₂ system. { $c_2 = 1.25 \times 10^{-4}$ M; **2**:H₂O₂ = 1:2000; in MeCN/dmf = 10:1; *k* (*rate constant*) at 0, 15, 30, 45 °C}

Fig. S12 Mössbauer spectrum of 2-⁵⁷Fe/H₂O₂/Hpca system in MeCN measured immediately after its preparation at 80 K (δ = 0.49 mm s⁻¹, ΔE_Q = 0.62 mm s⁻¹, Γ_{left} = 0.52 mm s⁻¹, Γ_{right} = 0.36 mm s⁻¹).

Fig. S13 Mössbauer spectrum of 2-⁵⁷Fe/H₂O₂/Hpca system in MeCN at 80 K measured 30 min after its preparation (first lower doublet: $\delta = 0.44$ mm s⁻¹, $\Delta E_Q = 0.42$ mm s⁻¹, $\Gamma_{left} = \Gamma_{right} = 0.37$ mm s⁻¹; second upper doublet: $\delta = 0.43$ mm s⁻¹, $\Delta E_Q = 1.10$ mm s⁻¹, $\Gamma_{left} = \Gamma_{right} = 0.90$ mm s⁻¹; relative area 0.85:1.03).