ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Formation in aqueous solution of non-oxido V^{IV} complex with VN_6 coordination. Potentiometric, ESI-MS, spectroscopic and computational characterization

Elzbieta Lodyga-Chruscinska,^{*a*} Agnieszka Szebesczyk,^{*b*} Daniele Sanna,^{*c*} Kaspar Hegetschweiler,^{*d*} Giovanni Micera^{*e*} and Eugenio Garribba^{*e*,*}

- ^a Institute of General Food Chemistry, Technical University of Lodz, ul. Stefanowskiego 4/10, PL-90924, Lodz, Poland
- ^b Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., PL-50383, Wrocław, Poland
- ^c Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
- ^d Fachrichtung Chemie, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany
- ^e Dipartimento di Chimica e Farmacia, and Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy. E-mail: garribba@uniss.it; Fax: +39 079 229559; Tel: +39 079 229487.

EPR theory background

The ⁵¹V HFC tensor *A* has three contributions: the isotropic Fermi contact (A^{FC}), the anisotropic or dipolar hyperfine interaction (A^{D}), and the second-order term that arises from spin-orbit (SO) coupling (A^{SO}):¹

$$\boldsymbol{A} = \boldsymbol{A}^{\rm FC} \boldsymbol{1} + \boldsymbol{A}^{\rm D} + \boldsymbol{A}^{\rm SO} \tag{1}$$

where **1** is the unit tensor; A^{FC} and the components $A^{D}_{\mu\nu}$ and $A^{SO}_{\mu\nu}$ of the tensors A^{D} and A^{SO} are given by the following equations:

$$A^{\rm FC} = \frac{4\pi}{3} g_{\rm e} g_{\rm N} \beta_{\rm e} \beta_{\rm N} \left\langle S_z \right\rangle^{-1} \rho_{\rm N}^{\alpha - \beta} \tag{2}$$

$$A_{\mu\nu}^{\rm D} = \frac{1}{2} g_{\rm e} g_{\rm N} \beta_{\rm e} \beta_{\rm N} \left\langle S_z \right\rangle^{-1} \sum_{k,l} P_{k,l}^{\alpha-\beta} \left\langle \Phi_k \right| \frac{\mathbf{r}^2 \delta_{\mu\nu} - 3\mathbf{r}_{\mu} \mathbf{r}_{\nu}}{\mathbf{r}^5} \left| \Phi_l \right\rangle \tag{3}$$

$$A_{\mu\nu}^{\rm SO} = -\frac{1}{2S} g_{\rm e} g_{\rm N} \beta_{\rm e} \beta_{\rm N} \sum_{k,l} \frac{\partial P_{k,l}^{\alpha-\beta}}{\partial I_{\mu}} \left\langle \Phi_k \left| h_{\nu}^{\rm SOC} \right| \Phi_l \right\rangle$$
(4)

 $g_{\rm e}$ and $g_{\rm N}$ are the *g*-factors of the free electron and the nucleus, $\beta_{\rm e}$ and $\beta_{\rm N}$ the electron and nuclear magnetons, $\langle S_z \rangle$ the expectation value of the electronic spin on the *z* axis, $\rho_{\rm N}^{\alpha-\beta}$ the spin density at the nucleus, $P_{k,l}^{\alpha-\beta}$ the spin density matrix, **r** the distance between the unpaired electron and the nucleus, and $h_v^{\rm SOC}$ the spatial part of an effective one-electron spin-orbit operator.¹

The tensor A^{D} is always traceless: A_{x}^{D} , A_{y}^{D} and A_{z}^{D} are the elements of the diagonilized tensor, their sum being zero:

$$A_{\rm x}^{\rm D} + A_{\rm y}^{\rm D} + A_{\rm z}^{\rm D} = 0 \tag{5}$$

The values of the ⁵¹V anisotropic hyperfine coupling constants along the x, y and z axes result to be:

$$A_{\rm x} = A^{\rm FC} + A_{\rm x}^{\rm D} + A_{\rm x}^{\rm SO} \tag{6}$$

$$A_{\rm y} = A^{\rm FC} + A_{\rm y}^{\rm D} + A_{\rm y}^{\rm SO} \tag{7}$$

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

$$A_{\rm z} = A^{\rm FC} + A_{\rm z}^{\rm D} + A_{\rm z}^{\rm SO} \tag{8}$$

From eqs. (5)-(8), the value of A_{iso} is:

$$A_{\rm iso} = \frac{1}{3} \left(A_{\rm x} + A_{\rm y} + A_{\rm z} \right) = A^{\rm FC} + \frac{1}{3} \left(A_{\rm x}^{\rm SO} + A_{\rm y}^{\rm SO} + A_{\rm z}^{\rm SO} \right) = A^{\rm FC} + A^{\rm PC}$$
(9)

The term $\frac{1}{3} \left(A_x^{SO} + A_y^{SO} + A_z^{SO} \right)$ is named isotropic pseudocontact, $A^{PC,1}$

Gaussian neglects the second-order SO effects and eqs. (6)-(9) become:

$$A_{\rm x} = A^{\rm FC} + A_{\rm x}^{\rm D} \tag{10}$$

$$A_{\rm y} = A^{\rm FC} + A_{\rm y}^{\rm D} \tag{11}$$

$$A_{\rm z} = A^{\rm FC} + A_{\rm z}^{\rm D} \tag{12}$$

$$A_{\rm iso} = A^{\rm FC} \tag{13}$$

	Main transition	Character (%)	λ^{a}	$f \times 10^{5 b}$	$\lambda^{exptl} \ / \ \epsilon^{exptl} \ {}^{a,c}$
$\left[\mathrm{VO}(\mathrm{taci})(\mathrm{H_2O})_2\right]^{2+}$	$H(\alpha) \rightarrow L(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm xz} (66.3)$	781.4	20	845 / 15
	$H(\alpha) \rightarrow L+1(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm yz} (79.6)$	645.3	10	608 / 5
	$H(\alpha) \rightarrow L+3(\alpha)$	$d_{xy} \rightarrow d_{x^2-y^2}$ (61.8)	464.6	10	560 / 10
	$H(\alpha) \rightarrow L+6(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm z^2} (53.6)$	335.6	30	370 / 190
$\left[\mathrm{VO}(\mathrm{tmca})(\mathrm{H}_{2}\mathrm{O})_{2}\right]^{2^{+}d}$	$H-1(\alpha) \rightarrow L(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm xz} (75.9)$	645.6	30	690 /20
	$H-1(\alpha) \rightarrow L+1(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm yz} (77.2)$	586.0	10	080/20
	$\text{H-1}(\alpha) \rightarrow \text{L+2}(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm x^2-y^2} (82.4)$	502.8	10	450 / 30
$\left[V(taci)_2\right]^{4+}$	$H(\alpha) \rightarrow L(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm yz} (87.2)$	2046.1	5	
	$H(\alpha) \rightarrow L+1(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm xz} (87.3)$	1965.3	5	
	H-3(α) \rightarrow L(α) /	$\mathrm{O}^{\mathrm{lp}} \to d_{\mathrm{yz}} (35.1) /$	412 1	110	
	$H-1(\alpha) \rightarrow L+1(\alpha)$	$O^{lp} \rightarrow d_{xz} (29.1)$	413.1	110	
	$\text{H-2}(\alpha) \rightarrow \text{L+1}(\alpha)$	$O^{lp} \rightarrow d_{xz} (62.8)$	403.7	2250	375 / 1190
	$\text{H-1}(\beta) \rightarrow L(\beta)$	$\mathrm{O}^{\mathrm{lp}} \to d_{\mathrm{xy}} (49.3)$	337.5	470	
	$H-1(\beta) \rightarrow L(\beta)$	$O^{lp} \rightarrow d_{xy} (36.8)$	333.5	500	
	$\text{H-8}(\alpha) \rightarrow L(\alpha)$	$O^{\mathrm{lp}} \rightarrow d_{\mathrm{yz}} (35.4)$	316.0	4890	295 / 1790
[V(tmcaH ₋₂) ₂]	$H(\alpha) \rightarrow L(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm yz} (95.0)$	1091.3	5	
	$H(\alpha) \rightarrow L+1(\alpha)$	$d_{\rm xy} \rightarrow d_{\rm xz} (90.2)$	898.1	10	
	$H-1(\alpha) \rightarrow L(\alpha)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{yz}} (52.6)$	548.0	800	
	$\text{H-2}(\alpha) \rightarrow L(\alpha)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{yz}} (70.8)$	530.6	2770	480 / 935
	$\text{H-l}(\alpha) \rightarrow \text{L+l}(\alpha)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{xz}} (60.7)$	478.8	370	
	$H(\beta) \rightarrow L(\beta)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{yz}} (60.3)$	376.0	830	395/ 1335 ^e
	$\mathrm{H}(\beta) \to \mathrm{L}{+}2(\beta)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{xz}} (72.8)$	361.6	740	
	$\text{H-1}(\beta) \to \text{L+1}(\beta)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{xy}} (55.1)$	356.2	760	
	$\text{H-1}(\beta) \to \text{L+2}(\beta)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{xz}} (42.0)$	335.6	6920	
	$H(\beta) \rightarrow L+2(\beta)$	$\mathrm{N}^{\mathrm{lp}} \to d_{\mathrm{xz}} (32.7)$	333.2	20250	320 / 7100

Table S1 Main calculated and experimental electronic transitions calculated for $[VO(taci)(H_2O)_2]^{2^+}$, $[VO(tmca)(H_2O)_2]^{2^+}$, $[V(taci)_2]^{4^+}$ and $[V(tmcaH_{-2})_2]$ till 300 nm.

^{*a*} λ values measured in nm. ^{*b*} Oscillator strength. ^{*c*} ϵ values measured in M⁻¹ cm⁻¹. ^{*d*} $d_{xy} \rightarrow d_{z^2}$ predicted at 281.1 nm. ^{*e*} Shoulder of a more intense absorption.

Fig. S1 Experimental electronic absorption spectrum of $[VOLH_{-1}]^+$, recorded on the $V^{IV}O^{2+}/tmca$ (L) system with a total $V^{IV}O^{2+}$ concentration of 4×10^{-3} M, $L/V^{IV}O = 15$, pH 7.05 (in black). The spectra calculated by DFT methods for the two possible species $[VO(tmca)(OH)(H_2O)]^+$ and $[VO(tmcaH_{-1})(H_2O)_2]^+$ are shown in red and blue, respectively.

Fig. S2 ESI positive ion mass spectrum recorded on the $V^{IV}O^{2+}/\text{tmca}$ (L) system in a mixture MeOH/H₂O 1:1 v/v with a total L concentration of 1.0×10^{-4} M, L/V^{IV}O = 15, pH 10.30. In the inset the region between *m/z* 573 and 580. The peaks at *m/z* 461.3 and 519.3 were assigned to the ions $\{2\text{tmca} + \text{Na}^+\}$ and $\{2\text{tmca} + \text{NaCl} + \text{Na}^+\}$, that at *m/z* of 576.3 to $\{[V(\text{tmcaH}_{-2})_2] + \text{Na}^+ + 2\text{H}_2\text{O} + \text{MeOH}\}$.

Fig. S3 ESI positive ion mass spectrum recorded on the $V^{IV}O^{2+}/\text{tmca}$ (L) system in a mixture MeOH/H₂O 1:1 v/v with a total L concentration of 1.0×10^{-4} M, L/V^{IV}O = 15, pH 5.20. The peaks at *m*/*z* 461.3 and 519.3 were assigned to the ions {2tmca + Na⁺} and {2tmca + NaCl + Na⁺}.

Fig. S4 ESI negative ion mass spectrum recorded on the $V^{IV}O^{2+}/tmca$ (L) system in a mixture MeOH/H₂O 1:1 v/v with a total L concentration of 1.0×10^{-4} M, $L/V^{IV}O = 15$, pH 10.30. The peaks at m/z 560.6 and 676.5 were assigned to the ions {[V(tmcaH₋₂)₂] + NaCl + OH⁻} and {[V(tmcaH₋₂)₂] + NaCl + 2H₂O + SO₄²⁻}, those at m/z 794.4 and 852.4 to {[VO(OH)₃]⁻ + 5NaCl + Cl⁻ + OH⁻ + SO₄²⁻} and {[VO(OH)₃]⁻ + 6NaCl + Cl⁻ + OH⁻ + SO₄²⁻}.

Fig. S5 Molecular orbitals for $[VO(taci)(H_2O)_2]^{2+}$: (a) $H(\alpha)$, $V-d_{xy}$, (b) $L(\alpha)$, $V-d_{xz}$, (c) $L+1(\alpha)$, $V-d_{yz}$, (d) $L+3(\alpha)$, $V-d_{x^2-y^2}$ and (e) $L+6(\alpha)$, $V-d_{z^2}$.

Fig. S6 Molecular orbitals for $[VO(tmca)(H_2O)_2]^{2+}$: (a) H-1(α), V- d_{xy} , (b) L(α), V- d_{xz} , (c) L+1(α), V- d_{yz} and (d) L+2(α), V- $d_{x^2-y^2}$.

Fig. S7 Molecular orbitals for $[V(taci)_2]^{4+}$: (a) H-8(α), taci-O^{lp}, (b) H-3(α), taci-O^{lp}, (c) H-2(α), taci-O^{lp}, (d) H-1(α), taci-O^{lp}, (e) H(α), V- d_{xy} , (f) L(α), V- d_{yz} , (g) L+1(α), V- d_{xz} , (h) H-1(β), taci-O^{lp} and (i) L(β), V- d_{xy} . The superscript lp indicates an electron lone pair.

Fig. S8 Molecular orbitals for $[V(\text{tmcaH}_{-2})_2]$: (a) H-2(α), tmca-N^{lp}, (b) H-1(α), tmca-N^{lp}, (c) H(α), V- d_{xy} , (d) L(α), V- d_{yz} , (e) L+1(α), V- d_{xz} , (f) H-1(β), tmca-N^{lp}, (g) H(β), tmca-N^{lp}, (h) L(β), V- d_{yz} , (h) L+1(β), V- d_{xy} , and (i) (h) L+2(β), V- d_{xz} . The superscript lp indicates an electron lone pair.

Fig. S9 Spin density contour of (a) $[V(taci)_2]^{4+}$, (b) $[V(tdci)_2]^{4+}$, (c) $[V(inoH_{-3})_2]^{2-}$ and (d) $[V(tmcaH_{-2})_2]$. The three Cartesian axes are also represented.

Scheme S1 Possible coordination modes of a papa ligand.

Scheme S2 The two chair conformations of tmca.

References

1. F. Neese, *ORCA - An Ab Initio*, *DFT and Semiempirical Program Package*, *Version 2.9*, Max-Planck-Institute for Bioinorganic Chemistry, Mülheim a. d. Ruhr, Germany, 2012.