Electronic Supporting Material

π -Excess $\sigma^2 P$ ligands: Synthesis of biaryl-type 1,3-benzazaphosphole hybrid ligands and formation of P^P'-M(CO)₄ chelate complexes

Basit Niaz,^{a,b)} Mohammed Ghalib,^{a)} Peter G. Jones,^{c)} and Joachim Heinicke^{a)}

- [a] Prof. Dr. J. W. Heinicke*, Dr. B. Niaz Institut f
 ür Biochemie – Anorganische Chemie Ernst-Moritz-Arndt-Universit
 ät Greifswald Felix-Hausdorff-Str. 4, D-17487 Greifswald Fax: (+)49 3834 864377 E-mail: heinicke@uni-greifswald.de
- [b] Dr. B. Niaz, b Present address: Department of Chemistry, Hazara University Mansehra, Pakistan
- [c] Prof. Dr. P. G. Jones Institut f
 ür Anorganische und Analytische Chemie Technische Universit
 ät Braunschweig Hagenring 30, D-38106 Braunschweig
- 1. Detection of 2-thiophenmethanol as side product in the synthesis of 2e
- 2. ³¹P and ¹³C NMR spectra of new compounds
- 3. Tables with atomic coordinates, bond lengths and angles of 9a

1. Detection of 2-thiophenmethanol as side product in the synthesis of 2e.

After refluxing 2-phosphanyl-4-methylaniline (1) and thiophen-2-carboxaldehyde in xylene in the presence of *p*-toluene sulfonic acid the solvent and volatiles were condensed in vacuum into a cooling trap. In the condensate a small amount of 2-thiophenmethanol was detected by GC-MS measurements of the condensate and a reference sample, synthesized according to ref. [1]. The assignment was confirmed additionally by good accordance of the characteristic mass spectra with those of the library spectrum. We thank P. Gierok and Prof. Dr. M. Lalk (Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald) for the measurements, using GC Agilent 6890N, MS Agilent 5973, Software MS-Chemstation, inlet temperature 280°C, oven 70°C 1min, 1.5°C/min to 76°C, 5°C/min to 330°C for 10min; 1mL/min, column DB-5ms from Agilent (30m x i.d. 0.25mm x 0.25µm film).

[1] M. D'Auria, A. De Mico, F. D'Onofrio, G. Piancatelli, J. Org. Chem. 1987, 52, 5243-5247.

1. NMR-Spectra

³¹P NMR spectrum **2a**.

¹³C NMR spectrum (aryl and methyl range) of **2a**.

³¹P NMR spectrum of **2b**.

¹³C NMR spectrum of **2b**.

³¹P NMR spectrum of **2c.**

³¹P NMR spectrum of **2d**.

أساع الأسطية أطا

150

100

50

200

76.121 B. Niaz:BN-78i 31P{1H}-Spektrum Loesungsmittel: CDC13 Ref.: extern, H3PO4 = 0.0 ppm (+/- 0.3) Messzeit:10min. EMAU Greifswald - Avance II - 300 Current Data Parameters NAME NI_BN-78i EXPNO 31 PROCNO 1 F2 - Acquisition Parameters F2 - Acc Date_ Time INSTRUM PROBHD PULPROG 20100806 9.51 9.51 spect 5 mm PABBO BB-2gpg30 32768 CDC13 256 TD NS DS 4 4 50000.000 Hz 1.525879 Hz 0.3277300 sec 23100 10.000 usec 6.00 usec 299.4 K SWH FIDRÉS FID AQ RG DW DE TE D1 2.00000000 sec 0.03000000 sec 1.89999998 sec d11 DELTA 1 TDO ======= CHANNEL fl ======== 31P 10.25 usec NUC1 P1 2.00 dB 121.4953510 MHz PL1 SF01 ====== CHANNEL f2 ======= CPDPRG2 waltz16 waitz16 1H 80.00 usec 19.00 dB 22.00 dB -1.00 dB 300.1312005 MH2 NUC2 PCPD2 PL12 PL13 PL2 SF02 F2 - Processing parameters 32768 SI SF WDW SSB 121.4948510 MHz EM 0 3.00 Hz LB GB PC 0 1.40 ويساويه والمطاوية المؤالة أتله

-50

0

-100

-150

ppm

¹³C NMR spectrum (aryl range) of **2d**.

¹³C NMR spectrum (alkyl range) of **2d**.

³¹P NMR spectrum of **2e**.

¹³C NMR spectrum (aryl and methyl range) of **2e**.

³¹P NMR spectrum of **2f**.

³¹P NMR spectrum of **2g**.

¹³C NMR spectrum (aryl and methyl range) of **2g**.

³¹P NMR spectrum of **2h**.

						NIA 31P Loe: Ref Mes EMA	Z:BN-64f -1H-gekoppelt- sungsmittel: (.:extern, H3P(szeit: 30 min. U, Avance II -	-NMR-Spektrum CDC13 04 (Kapillare in - 300	CDC13) = 0.0 ppm
				$\downarrow_{\rm H}^{\rm P}$	>			Current Data H NAME EXPNO PROCNO F2 - Acquisit: Date Time INSTRUM PROBHD PULEROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 	arameters NI_BN-64f 33 1 on Parameters 20100203 17.10 spect 5 mm PABBO BB- 2q30 65536 CDC13 716 4 50000.000 Hz 0.762939 Hz 0.6554100 sec 2890 10.000 usec 6.00 usec 297.6 K 2.00000000 sec 1 NEL f1 ======= 31P 10.25 usec 2.00 dB 121.4953510 MHz mg parameters 32768 121.4948502 MHz EM 0 1.00 Hz 0 1.40
			ng gan h ^y tel ng san a san a san	al mar de la segure de la desta de la d	maiyungi angay konstango) yamay konstango)		enegi en sistemative state alla se deservative de se de s	-	
200	150	100	50		-50	-100	-150	ndd	

¹³C NMR spectrum of **2h**.

³¹P NMR spectrum of **3h**.

		79.367					NIAZ:BN- 31P{1H}- Loesungs Ref.: ex Messzeit EMAU Gre	64c Spektrum Spekt mittel: CDCl3 ttern, H3PO4 = : 10 min. difswald - Avan	rum 0.0 ppm (+/~ 0.3) ce II - 300
				P N I CH ₂ Br				Current Data NAME EXPNO PROCNO F2 - Acquisi Date Time F0BHD PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 d11	Parameters NI_EN-64c 31 1 tion Parameters 20100127 9.21 spect 5 mm PABBO BB- 2gpg30 32768 CDCL3 87 4 50000.000 Hz 1.525579 Hz 0.3277300 sec 23100 10.000 usec 6.00 usec 297.6 K 2.00000000 sec 0.03000000 sec
								DELTA TDO CH2 NUC1 P1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL12 PL13 PL3 PL2	1.89999998 sec 1 ANNEL f1 ======== 31P 10.25 usec 2.00 dB 121.4953510 MHz ANNEL f2 ======= waltz16 1H 80.00 usec 19.00 dB 22.00 dB -1.00 dB
								F12 SF02 F2 - Proces: SF WDW SSB LB GB FC	300.1312005 MHz sing parameters 32768 121.4948510 MHz EM 0 4.000 Hz 0 1.40
200	150	 	 50		-50	-100	-150	,	

¹³C NMR spectrum of **3h**.

³¹P NMR spectrum of **6a**.

¹³C NMR spectrum of **6a**.

³¹P NMR spectrum of **8a**.

¹³C NMR spectrum of **8a**.

³¹P NMR spectrum of **9a**.

¹³C NMR spectrum of **9a**.

3. Tables with atomic coordinates, bond lengths and angles of 9a

Table 3.1. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)	
Мо	6418.1(1)	3096.4(1)	2203.6(1)	12.4(1)	
N(1)	7092.9(10)	7708.4(16)	3168.2(8)	14.6(3)	
C(2)	6558.4(11)	6828.2(18)	2799.9(9)	11.9(3)	
P(3)	6834.9(3)	5088.0(5)	2929.3(2)	12.0(1)	
C(3A)	7717.2(11)	5554.1(18)	3456.7(9)	13.1(3)	
C(4)	8330.7(12)	4713.1(19)	3803.9(9)	14.4(3)	
C(5)	8959.0(12)	5342(2)	4211.6(10)	17.4(4)	
C(6)	8962.3(13)	6837(2)	4284.1(11)	19.5(4)	
C(7)	8369.5(13)	7684(2)	3952.1(10)	19.1(4)	
C(7A)	7744.0(12)	7039.9(18)	3532.7(9)	14.2(3)	
C(8)	9637.8(13)	4463(2)	4562.5(11)	23.3(4)	
C(9)	6789.4(15)	1660(2)	2892.9(11)	22.1(4)	
O (1)	7010.2(12)	825.7(16)	3302.4(8)	33.6(4)	
C(10)	6153.6(15)	1592(2)	1487.7(11)	22.3(4)	
O(2)	6037.2(13)	720.2(17)	1078.0(9)	37.8(4)	
C(11)	5219.2(14)	3021(2)	2646.0(10)	21.0(4)	
O(3)	4573.7(11)	2956.0(18)	2927.7(9)	36.1(4)	
C(12)	7661.9(13)	3178(2)	1871.7(10)	18.7(4)	
O(4)	8373.3(10)	3240.5(17)	1733.5(8)	29.5(4)	
P(1)	5985.6(3)	5141.3(5)	1408.2(2)	10.7(1)	
C(21)	5795.1(12)	7347.9(18)	2432.0(9)	13.0(3)	
C(22)	5452.4(12)	6671.5(19)	1829.2(9)	13.7(3)	
C(23)	4700.0(12)	7210(2)	1531.2(10)	18.8(4)	
C(24)	4297.0(13)	8402(2)	1801.3(11)	21.9(4)	
C(25)	4638.0(12)	9078(2)	2384.6(9)	18.9(4)	
C(26)	5375.4(12)	8550.7(19)	2696.7(10)	16.6(4)	
C(31)	6853.8(11)	5974.2(19)	910.7(9)	13.4(3)	
C(32)	7351.5(12)	5095(2)	484.6(9)	17.0(4)	
C(33)	7978.2(13)	5657(2)	45.6(11)	23.4(4)	
C(34)	8119.3(14)	7106(2)	33.7(11)	26.4(5)	
C(35)	7637.3(14)	7983(2)	463.0(11)	24.5(4)	
C(36)	7002.5(13)	7427(2)	897.4(10)	18.8(4)	
C(41)	5241.8(11)	4683.0(19)	695.9(9)	13.2(3)	

C(42)	4610.0(12)	3671(2)	828.7(10)	17.8(4)
C(43)	4022.1(13)	3307(2)	312.4(10)	20.9(4)
C(44)	4060.0(13)	3933(2)	-344.7(10)	19.4(4)
C(45)	4686.2(13)	4937(2)	-484.6(10)	19.4(4)
C(46)	5273.1(13)	5312(2)	31.5(10)	16.0(4)

Mo-C(9)	1.973(2)	P(1)-C(31)	1.8284(18)
Mo-C(10)	2.011(2)	P(1)-C(41)	1.8340(18)
Mo-C(12)	2.039(2)	P(1)-C(22)	1.8496(18)
Mo-C(11)	2.050(2)	C(21)-C(26)	1.404(2)
Mo-P(3)	2.4219(5)	C(21)-C(22)	1.417(2)
Mo-P(1)	2.5442(5)	C(22)-C(23)	1.398(3)
N(1)-C(2)	1.369(2)	C(23)-C(24)	1.387(3)
N(1)-C(7A)	1.381(2)	C(24)-C(25)	1.386(3)
C(2)-C(21)	1.464(2)	C(25)-C(26)	1.386(3)
C(2)-P(3)	1.7173(17)	C(31)-C(36)	1.393(3)
P(3)-C(3A)	1.7574(18)	C(31)-C(32)	1.396(3)
C(3A)-C(4)	1.407(2)	C(32)-C(33)	1.390(3)
C(3A)-C(7A)	1.412(2)	C(33)-C(34)	1.387(3)
C(4)-C(5)	1.383(3)	C(34)-C(35)	1.385(3)
C(5)-C(6)	1.419(3)	C(35)-C(36)	1.391(3)
C(5)-C(8)	1.501(3)	C(41)-C(42)	1.396(3)
C(6)-C(7)	1.376(3)	C(41)-C(46)	1.396(3)
C(7)-C(7A)	1.399(2)	C(42)-C(43)	1.386(3)
C(9)-O(1)	1.160(2)	C(43)-C(44)	1.383(3)
C(10)-O(2)	1.148(2)	C(44)-C(45)	1.387(3)
C(11)-O(3)	1.141(3)	C(45)-C(46)	1.387(2)
C(12)-O(4)	1.140(3)		
C(9)-Mo-C(10)	91.33(7)	P(3)-Mo-P(1)	79.598(13)
C(9)-Mo-C(12)	87.31(9)	C(2)-N(1)-C(7A)	115.17(15)
C(10)-Mo-C(12)	90.70(9)	N(1)-C(2)-C(21)	122.29(15)
C(9)-Mo-C(11)	88.32(9)	N(1)-C(2)-P(3)	110.84(13)
C(10)-Mo-C(11)	93.81(9)	C(21)-C(2)-P(3)	126.38(13)
C(12)-Mo-C(11)	173.79(8)	C(2)-P(3)-C(3A)	92.17(8)
C(9)-Mo-P(3)	94.45(6)	C(2)-P(3)-Mo	126.51(6)
C(10)-Mo-P(3)	171.81(7)	C(3A)-P(3)-Mo	136.83(6)
C(12)-Mo-P(3)	83.80(5)	C(4)-C(3A)-C(7A)	119.56(16)
C(11)-Mo-P(3)	92.15(6)	C(4)-C(3A)-P(3)	131.09(14)
C(9)-Mo-P(1)	174.05(6)	C(7A)-C(3A)-P(3)	109.31(13)
C(10)-Mo-P(1)	94.61(6)	C(5)-C(4)-C(3A)	120.06(17)
C(12)-Mo-P(1)	92.23(5)	C(4)-C(5)-C(6)	119.00(17)
C(11)-Mo-P(1)	91.66(6)	C(4)-C(5)-C(8)	120.64(18)

Table 3.2 Bond lengths [Å] and angles [°].

C(6)-C(5)-C(8)	120.34(17)
C(7)-C(6)-C(5)	122.17(18)
C(6)-C(7)-C(7A)	118.40(17)
N(1)-C(7A)-C(7)	126.76(16)
N(1)-C(7A)-C(3A)	112.43(16)
C(7)-C(7A)-C(3A)	120.79(17)
O(1)-C(9)-Mo	179.34(18)
O(2)-C(10)-Mo	177.2(2)
O(3)-C(11)-Mo	176.06(18)
O(4)-C(12)-Mo	175.24(17)
C(31)-P(1)-C(41)	100.79(8)
C(31)-P(1)-C(22)	102.68(8)
C(41)-P(1)-C(22)	102.73(8)
C(31)-P(1)-Mo	116.00(6)
C(41)-P(1)-Mo	115.26(6)
C(22)-P(1)-Mo	117.09(6)
C(26)-C(21)-C(22)	118.64(16)
C(26)-C(21)-C(2)	118.59(16)
C(22)-C(21)-C(2)	122.76(15)
C(23)-C(22)-C(21)	118.66(16)
C(23)-C(22)-P(1)	119.07(14)
C(21)-C(22)-P(1)	122.24(13)
C(24)-C(23)-C(22)	121.67(17)
C(25)-C(24)-C(23)	119.79(18)
C(26)-C(25)-C(24)	119.63(17)
C(25)-C(26)-C(21)	121.59(17)
C(36)-C(31)-C(32)	118.95(17)
C(36)-C(31)-P(1)	123.83(14)
C(32)-C(31)-P(1)	117.06(14)
C(33)-C(32)-C(31)	120.73(18)
C(34)-C(33)-C(32)	119.91(19)
C(35)-C(34)-C(33)	119.70(19)
C(34)-C(35)-C(36)	120.61(19)
C(35)-C(36)-C(31)	120.09(19)
C(42)-C(41)-C(46)	118.67(16)
C(42)-C(41)-P(1)	118.28(14)
C(46)-C(41)-P(1)	123.04(14)
C(43)-C(42)-C(41)	120.53(17)
C(44)-C(43)-C(42)	120.34(18)

C(43)-C(44)-C(45)	119.73(17)
C(44)-C(45)-C(46)	120.18(16)
C(45)-C(46)-C(41)	120.54(16)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(01)O(1)#1	0.808(16)	2.167(17)	2.959(2)	167(2)
C(42)-H(42)O(4)#2	0.95	2.50	3.151(2)	126.2
C(43)-H(43)O(4)#2	0.95	2.67	3.234(3)	118.8

Table 3.3 Hydrogen bonds [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x,y+1,z

#2 x-1/2,-y+1/2,z