Supporting Information

Dehydrogenative desulfurization of thiourea derivatives to give carbodiimides, using hydrosilane and an iron complex

Kazumasa Hayasaka,^a Kozo Fukumoto^b and Hiroshi Nakazawa^a

^aDepartment of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan

^bKobe City College of Technology, Kobe 651-2194, Japan

E-mail: nakazawa@sci.osaka-cu.ac.jp

General method for control experiments

THF (3.0 mL), **1** (57.5 mg, 3.0 mmol), ^{*i*}PrNHC(S)NH^{*i*}Pr (3.0 mmol), and silane (3.0 mmol) were charged in a Schlenk tube, and the solution was heated at 60 °C for 24 h. 1,3,5-trimethylbenzene (428 μ L, 3.0 mmol) was added to the solution as an internal standard and GC-MS spectrum was measured. The amount of ^{*i*}PrN=C=N^{*i*}Pr produced was evaluated by relative intensity of signals of the product and the internal standard. These results were shown in Table S2.

	S ^{II} Pr ^I C ⁱ Pr <u>CpFe(CO)₂</u> Me N HH HH	<u>(1), R₃SiH</u> IF, 24 h → _{iPr} N=C=N
Entry	Silane	GC-MS Yield (%)
1	Et ₃ SiH	34
2	ⁿ Pr ₃ SiH	29
3	^{<i>i</i>} Pr ₃ SiH	44
4	ⁿ Bu ₃ SiH	24
5	^t Bu ₃ SiH	30
6	(EtO)Me ₂ SiH	27
7	(EtO) ₂ MeSiH	31
8	(EtO) ₃ SiH	56
9	PhMe ₂ SiH	20
10	Ph ₂ MeSiH	29
11	Ph ₃ SiH	45

Table S2. Conversion of thiourea into carbodiimide by using various hydrosilanes with the help of 1

THF (3.0 mL), **1** (0.3-9.0 mmol), ^{*i*}PrNHC(S)NH^{*i*}Pr (3.0 mmol), and (EtO)₃SiH (1.5-15.0 mmol) were charged in a Schlenk tube, and the solution was heated at 60 °C for 24 h. 1,3,5-trimethylbenzene (428 μ L, 3.0 mmol) was added to the solution as an internal standard and GC-MS spectrum was measured. The amount of ^{*i*}PrN=C=N^{*i*}Pr produced was evaluated by relative intensity of signals of the product and the internal standard. These results were shown in Table S3.

	ⁱ Pr_N ^{/C} N ^{/Pr_CpFe(CC H H})) ₂ Me (1), (EtO) ₃ SiH °C, THF, 24 h → [/] Pr	
Entry	$[M] : [S] : [Si]^{a}$	GC-MS Yield (%) ^b	TON
1	1:1:1	59	-
2	1:1:2	25	-
3	2:1:1	76	-
4	2:1:2	30	-
5	3:1:1	60	-
6	1:2:1	20	0.4
7	1:2:2	29	0.6
8	1:2:5	22	0.4
9	1:10:10	10	1.0

Table S3. Molar ratio of 1 : ^{*i*}PrNHC(S)NH^{*i*}Pr : (EtO)₃SiH

^aMolar ratio of **1** : ^{*i*}PrNHC(S)NH^{*i*}Pr : (EtO)₃SiH. ^bThe values are based on the concentration of $^{$ *i* $}$ PrNHC(S)NH^{*i*}Pr.

Result of X-ray diffraction study of 5.

Figure S1. ORTEP drawing of 5 showing the number system.

Fe-C1	1.724(5)	C1–Fe–C2	93.54(18)	C2-N2-C6	116.7(3)
Fe-C2	1.917(4)	C1-Fe-N1	97.61(18)	C2-N2-Si	122.8(3)
Fe-N1	1.937(3)	N1-Fe-C2	38.14(13)	C6-N2-Si	120.5(2)
C2-N1	1.259(4)	Fe-C2-N1	71.8(2)		
C2-N2	1.366(4)	Fe-C2-N2	152.6(3)	N1-Fe-C2-N2	-179.7(7)
N1-C3	1.464(5)	N1-C2-N2	135.6(3)		
N2-C6	1.495(5)	Fe-N1-C2	70.1(2)		
N2-Si	1.761(3)	Fe-N1-C3	141.3(2)		
		C2-N1-C3	143.4(3)		

Table S1. Selected bond distances (Å), angles (°) and a dihedradangle (°).