Supporting Information

Homo- and Heterobinuclear Cu²⁺ and Zn²⁺ Complexes of Abiotic Cyclic Hexaazapyridinocyclophanes As SOD Mimics

Raquel Belda, Salvador Blasco, Begoña Verdejo, Hermás R. Jiménez, Antonio Doménech, Conxa Soriano, Julio Latorre, Carmen Terencio and Enrique García-España.

- Fig. S1 Distribution diagram of receptor L1

- Fig. S2 X-ray crystal structure for $[(CuH_4L2)(H_2O)(ClO_4)](ClO_4)_5 \cdot 3(H_2O)$

- Table S1 Crystallographic Data for $[(CuH_4L2)(H_2O)(ClO_4)]$ (ClO₄)₅·3(H₂O)

- Fig. S3 Distribution diagram for the system Cu²⁺-L1.

- **Fig. S4** Distribution diagram for the system Zn²⁺-L1.

- **Fig. S5** 400 MHz proton NMR spectra in D₂O at 313 K of Cu₂L2-Im and Cu₂L2 at pH 7.0.

- **Table S2** ¹H NMR hyperfine-shifted resonances of Cu_2L2 , Cu_2L2Im complexes in D₂O at 313 K and pH 7.0.

- Scheme S1

Fig. S1 Distribution diagram of receptor L1

	(1)			
Empirical formula	$C_{21}H_{53}Cl_6CuN_7O_{28}$			
Fw	1127.94			
Crystal Size,mm	$0.20 \times 0.10 \times 0.06$			
Cryst.System/s.g.	$Pc 2_1 b$			
T.K	293(2)			
a,Å	8.4130(2)			
b,Å	18.1930(5)			
<i>c</i> , Å	28.4910(9)			
a,deg	90°			
β , deg	90°			
γ, deg	90°			
V, Å ³	4360.8(2)			
Ζ	4			
$d_{\rm calc}$, g/cm ³	1.718			
μ, mm^{-1}	0.970			
Reflect. collected	5746			
Unique reflections	4496			
Restraints	40			
Parameters	578			
R1, <i>w</i> R2 (all)	0.0588, 0.1569			
GOOF	1.067			

Table S1Crystallographic Data for $[(CuH_4L2)(H_2O)(ClO_4)]$ (ClO_4)_5 · 3(H_2O)

Fig. S3 Distribution diagram for the system Cu^{2+} -L1 (A) $[Cu^{2+}] = [L] = 10^{-3}$ M; (B) $[L] = 10^{-3}$ M, $[Cu^{2+}] = 2 \times 10^{-3}$ M

Fig. S4 Distribution diagram for the system Zn^{2+} -L1 (A) $[Zn^{2+}] = [L] = 10^{-3}$ M; (B) [L] $= 10^{-3}$ M, $[Zn^{2+}] = 2 \times 10^{-3}$ M

Fig. S5 400 MHz proton NMR spectra in D_2O at 313 K of (A) Cu_2L2 -Im at pH 7.0 and (B) Cu_2L2 at pH 7.0. The asterisks mark the residual solvent and impurity signals (*, H_2O ; **, HDO)

Table S2 ¹ H NMR hyperfine-shifted resonances of Cu_2L2 ,	Cu_2L2Im complexes in D_2O
at 313 K and pH 7.0.	

Syst.	Sig.	δ	Nº	Assign.	Temperature	T ₁	$\Delta \mathbf{v}_{1/2}$	T_2^{a}
		(ppm)	prot		Dependence	(ms)	(Hz).	(ms)
Cu ₂ L2	а	9.0	8	βCH ₂	Anti-Curie	2.1	200	1.6
	b	3.1	3	Hm,p-Py	Anti-Curie	4.3	81	3.9
	с	-3.2	24	αCH_2	Curie	<1	1339	0.24
	d	-9.8			Curie	<1	1339	0.24
Cu ₂ L2Im	e´	10.4	~3x2	αCH-Im	Curie	5.6	~880	~0.36
	a´	9.0	8	βCH_2	Anti-Curie	5.4	278	1.2
	b´	3.2	3	Hm,p-Py	Anti-Curie	7.3	81	3.9
	c´	-3.1	24	αCH_2	Curie	<1	1182	0.27
	ď	-9.9			Curie	<1	1391	0.23

[a] Measured from the line width at half-height

Scheme S1

