Synthesis and Reactivity Ruthenium Tridentate *bis*-Phosphinite Ligand Complexes

Michael J. Sgro and Douglas W. Stephan*

Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 Canada

Supporting Information

Index

1) Calculation of H-H Bond Distances using H-D Coupling	S 2
2) Table S1 Calculation of J _{HDActual} and H-H Bond Distances	S 2
3) Calculation of H-H Bond Distances using T_1 Values.	S 2
4) Table S2 Calculation of $T_{1(H2)}$ and H-H Bond Distances.	S 3
5) Figure S1 ¹ H NMR spectra of 18 under D_2 showing H/D exchange	S 4
at one of the site in the CH_2 fragment α to NH.	
6) NMR data for 18	S5
7) NMR data for $7+H_2$	S 8
8) NMR data for 19	S 10
9) NMR data for 20	S12
10) Table S3 Data for the Dehydrogenation of HMe_2NBH_3 .	S14
11) Fisure S2 Plot of the consumption of HMe_2NBH_3 as a function	S15
of time using 2.5 mol % 8 and 12	
12) Figure S4 Concentration-time Plots for B-containing products	S16
of dehydrogenation using 2.5 mol % 8.	
13) Figure S5 POV-Ray depiction of the cation of the molecular	S17
structure of 13.	
14) References	S17

-S2-

Calculation of H-H Bond Distances Using H-D Coupling

In complexes **18**, **7**+H2 and **20** H-D the coupling constants observed were artificially small, likely a result of the formation of different isotopomers. Only those isotopomers containing H-D should exhibit coupling allowing a more precise H-D coupling constant to be determined. Using these values H-H distances can calculated using the equation previously described by Morris.¹

Complex	J _{HDobs} (Hz).	J _{HDActual} (Hz)	H-H Distance (pm)
18	5.4	21.6	106
$7 + H_2$	7.3	29.2	93
20	7.4	29.6	93

Table S1 Calculation of J_{HDActual} and H-H Bond Distances

Calculation of H-H Bond Distances Using T₁ Values

As the relaxation of a hydride in rapid exchange with an H_2 ligand is known to affect the observed T_{1min} value of a complex, Morris *et al.* have previously described a means to correct for this effect if the T_1 value for the hydride can be determined after the signal separates from the dihydrogen ligand (equation 1).²

$3/T_{1(obs.)} = 2/T_{1(H2)} + 1/T_{1(H)}$ Equation 1

As T_1 values of the hydride could not be obtained for any of the complexes described, such a correction could not be accurately made. However, metal hydrides are expected to have a $T_{1(H)}$ on the order of half a second,³ and literature values for the hydride relaxation time in similar compounds have shown $T_{1(H)}$ times around 400 ms (corrected for a 600 MHz spectrometer).² Thus, hydride T_1 times of 200 ms, 400 ms and 1s were used so the H-H distance could be estimated to give an indication of where on the hydride-dihydrogen:trihydride continuum the complexes are. Notably, while the values are not exact, due to the nature of the relationship for the $T_{1(H)}$ time in equation 1, as the hydride relaxation time increases its effect is minimized and $T_{1(obs)}$ approaches $T_{1(H2)}$.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Complex	T _{1(obs.)} (ms)	T _{1(H)} (ms)	T _{1(H2)} (ms)	H-H Distance slow spinning H ₂ (pm)	H-H Distance fast spinning H ₂ (pm)
18	86	200	67	128	101
18	86	400	62	126	100
18	86	1000	59	125	99
$7 + H_2$	39	200	28	110	87
$7 + H_2$	39	400	27	110	87
$7 + H_2$	39	1000	26	109	87
19	44	200	32	113	89
19	44	400	30	112	89
19	44	1000	30	111	88
20	55	200	40	117	93
20	55	400	38	116	92
20	55	1000	37	116	92

Table S2 Calculation of $T_{1(\mathrm{H2})}$ and H-H Bond Distances

Figure S1 ¹H NMR spectra of 18 under D_2 showing H/D exchange at one of the site in the CH_2 fragment α to NH.

-S5-

(18)

-S6-

(18)

 $^{31}P{^{1}H} NMR (CD_2Cl_2)$

-S7-

(18)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

-S8-

 $(7) + H_2$

 1 H NMR (CD₂Cl₂)

-S9-

 $(7) + H_2$

 $^{31}P{^{1}H} NMR (CD_2Cl_2)$

-S10-

(19)

¹H NMR (CD₂Cl₂)

(19)

 $^{13}C{^{1}H} NMR (CD_2Cl_2)$

-S11-

(19)

 $^{13}C{^{1}H} NMR (CD_2Cl_2)$

-S12-

(20)

(20)

-S13-

(20)

 $^{13}C{^{1}H} NMR (CD_2Cl_2)$

-S14-

Catalyst	Time (h)*	Loading (mol % Ru)	Conversion (%)	TON
4	24	5	12.7	3
5	24	5	8.5	2
6	24	5	100	20
7	24	5	100	20
8	24	5	100	20
9	24	5	19	4
10	24	5	100	20
12	24	5	100	20
15	24	5	10.4	2
16	24	5	8.2	2
6	24	2.5	100	40
7	24	2.5	100	40
8	24	2.5	100	40
10	24	2.5	100	40
12	24	2.5	36	14
6	24	1	57	57
7	24	1	100	100
8	24	1	49	49
10	24	1	67	67
12	24	1	18	18

Table S3 Data for the Dehydrogenation of HMe₂NBH₃ to [Me₂NBH₂]₂

Conditions: Reactions completed in a 2 dram push top vial equipped with a magnetic stir bar at 25°C. *Most reactions were complete prior to 24 h but all reactions were left to ensure maximum TON were achieved -S15-

Fig. S2 Plot of the consumption of HMe₂NBH₃ as a function of time using 2.5 mol % 8 and 12. Key: 8 (diamonds), 10 (squares).

Figure S3 Concentration-time Plots for B-containing products of dehydrogenation using 2.5 mol % 8 and 0.18 M HMe₂NBH₃. Key: HMe₂NBH₃ (circles) Me₂NBH₂ (diamonds) [Me₂NBH₂]₂ (squares) HMe₂NBH₂NMe₂BH₃ (triangles).

-S16-

Figure S4 POV-Ray depiction of the molecular structure of **13** showing the CO-hydride disorder at the metal center and ligand disorder. C: black, O: red, P: orange, N: aquamarine, F: deep pink, B: yellow green, Ru: scarlet; Hydrogen atoms omitted for clarity.

References

- 1. R. H. Morris, *Coord. Chem. Rev.*, 2008, **252**, 2381-2394.
- 2. M. T. Bautista, K. A. Earl, P. A. Maltby, R. H. Morris, C. T. Schweitzer and A. Sella, *J. Am. Chem. Soc.*, 1988, **110**, 7031-7036.
- 3. R. H. Crabtree, in The Organometallic Chemistry of the Transition Metals, Wiley, 5th edn., 2009, pp. 263-295.