Supporting Information

Arsenate recognition in aqueous media by a simple tripodal urea

Ranjan Dutta, Purnandhu Bose and Pradyut Ghosh*

5 Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Kolkata 700 032, India. Fax: (+91) 33-2473-2805 E-mail: icpg@iacs.res.in

10

15

25

Table of Contents

Materials and Methods

Synthesis of complex 1

- 5 Fig. 1S.¹H- NMR spectrum of complex 1
 - **Fig. 2S**.¹³C-NMR spectrum of complex**1**
 - Fig. 3S.¹H-NMR titration spectra of L with aliquots of HAsO₄²⁻in DMSO-*d*₆/D₂O
 - **Fig. 4S**. Plot of chemical shift of CH_c proton of Lvs equiv. of $HAsO_4^{2-}$
 - **Fig. 5S**. Job's plot of **L** with $HAsO_4^{2-}$

10 Fig. 6S. ¹H-NMR spectra of L with aliquots of $SO_4^{2-}inDMSO-d_6/D_2O$ Fig. 7S. Plot of chemical shift of CH_c proton of Lvs equiv. of SO_4^{2-} Fig. 8S. Job's plot of L with SO_4^{2-}

Fig. 9S. ¹H-NMR spectra of **L** with aliquots of $HPO_4^{2-}inDMSO-d_6/D_2O$

Fig. 10S. Plot of chemical shift of CH_c proton of Lvs equiv. of HPO_4^{2-}

- 15 **Fig. 11S**. Job's plot of **L** with HPO_4^{2-}
 - Fig. 12S. ¹H-NMR spectra of L with aliquots of CO₃⁻in DMSO-*d*₆/D₂O
 - **Fig. 13S**. Plot of chemical shift of CH_c protons of L vs equiv. of CO_3^{2-}
 - **Fig. 14S**. Job's plot of **L** with CO_3^{2-}
 - Fig. 15S. Qualitative ¹H-NMR spectra of L with F⁻, Cl⁻, Br⁻ and AcO⁻
- 20 Fig. 16S. Plot of chemical shift of NH_{a/b} protons of L in control titration experiment Fig. 17S. ¹H-NMR titration spectra of L with aliquots of HAsO₄²⁻in buffer.
 Fig. 18S. Plot of chemical shift of CH_c proton of L vs equiv. of HAsO₄²⁻ in buffer Fig. 19S. Job's plot of L with HAsO₄²⁻ in buffer
 Fig. 20S. ¹H-NMR spectra of L with aliquots of SO₄²⁻in DMSO-d_d/D₂O in buffer
- 25 **Fig. 21S**. Plot of chemical shift of CH_c proton of Lvs equiv. of SO_4^{2-} in buffer

Fig. 22S. Job's plot of **L** with SO_4^{2-} in buffer

- **Fig. 23S**. ¹H-NMR spectra of **L** with aliquots of HPO_4^{2-} in DMSO- d_6/D_2O in buffer
- **Fig. 24S**. Plot of chemical shift of CH_c proton of L vs equiv. of HPO_4^{2-} in buffer
- **Fig. 25S**. Job's plot of **L** with HPO_4^{2-} in buffer
- 30 Fig. 26S. Plot of chemical shift of CH_{c/d} protons of L in control titration experiment in buffer Fig. 27S. Comparative FTIR analyses of L and complex 1
 To the 15 Control bit table of a set to 1
 - Table 1S. Crystallographic table of complex 1

Fig. 28S. Spacefill model and capsular dimension of crystal structure of complex 1
Fig. 29S. Scatter plot for complex 1
Table 2S. Hydrogen bonding parameters for complex 1
Fig. 30S. TGA analysis of complex 1
5 Fig. 31S. PXRD pattern of complex 1
Fig. 32S. TEM-EDX profile of complex 1
References

10

MATERIALS AND METHODS

<u>Materials</u>: Tris-(2-aminoethyl)-amine (TREN), pentafluorophenyl isocyanate, tetrabutylammonium iodide were purchased from Sigma-Aldrich and were used as received. Dichloromethane (DCM) was freshly distilled with Calcium hydride. Sodium hydrogenarsenate (Na₂HAsO₄), sodium sulfate 15 (Na₂SO₄) and sodium dihydrogenphosphate (NaH₂PO₄) were purchased from Merck, India and were used as received. All solvents were procured from Merck.

<u>Methods</u>: FTIR was recorded on SHIMADZU FTIR-8400S infrared spectrophotometer with KBr pellets. ¹H-NMR and ¹³C-NMR spectra were obtained on a 500/300 MHz and 125/75 MHz BrukerDPX-500 MHz NMR and BrukerAvance300 Spectrometer. Transmission Electron Microscope-

20 Energy Dispersive X-ray (TEM-EDX) analyses were carried out on a JEOL JEM-2010 electron microscope operated at an accelerating voltage of 100 kV. pH measurements are performed in Metrohm glass electrode.

¹<u>H-NMR titration studies</u>: All ¹H-NMR titration experiments for **L** with different anions were conducted on a Bruker300 MHz at 298 K respectively. Stock solution of host was prepared in DMSO-

25 d_6 :D₂O (9:1, v/v) solvent mixture. Sodium salts of arsenate (HAsO₄²⁻), sulfate (SO₄²⁻), dihydrogenphosphate (H₂PO₄⁻) and carbonate (CO₃²⁻) were used to prepared the stock solution of anion in DMSO- d_6 : D₂O (1:1.1) solvent system. To evaluate the association constants and stoichiometry of binding in cases of these four anions with L, ¹H-NMR titrations were performed at 298 K. Aliquots of anions were added from a standard stock solution of anion to the solution of L. The

30 association constants, K, were calculated by fitting the change in the CH_c chemical shift with a 1:1 association model with non-linear least square analysis. Job's plot revealed a best fit for 1:1 host to

guest binding mode. The equation $\Delta \delta = \{([A]_0+[L]_0+1/K)\pm(([A]_0+[L]_0+1/K)^2-4[L]_0[A]_0)^{1/2}\}\Delta \delta_{\max}/2[L]_0$ was used for calculating association constants.

pH measurement experiment:

- GC grade dimethyl sulfoxide (DMSO) and double distilled water is used for all the pH measurement 5 experiment. Stock solution of anion i.e. arsenate and phosphate are buffered by mixing borax (10 mM)/boric acid (200 mM) in DMSO-H₂O (1:1.1, v/v) solvent mixture. Solution of L is buffered by mixing borax (2 mM)/boric acid (200mM) in DMSO-H₂O (9:1, v/v) solvent mixture. Na₂HAsO₄ and NaH₂PO₄ salts are used to prepare the stock solution of respective anion. Further the concentration of anion is maintained as that the scale of ¹H NMR titration experiment scale i.e 30 mM for anion and ~ 3
- 10 mM for **L**. The pH of buffered stock solution for arsenate and phosphate are measured as 9.5 and 8.5 respectively. All the pH experiments are performed thrice.

<u>X-ray Crystallography</u>: Crystals suitable for single crystal X-ray diffraction studies were selected from the mother liquor and immersed in paratone oil and then mounted on the tip of a glass fibre and cemented using epoxy resin. Intensity data for the crystals of complex 1was collected using MoK_{α} (λ

- 15 = 0.7107 Å) radiation on a Bruker SMART APEX II diffractometer equipped with CCD area detector at 100 K. The data integration and reduction were processed with SAINT² software provided with the software package of SAMRT APEX II. An empirical absorption correction was applied to the collected reflections with SADABS³. The structures were solved by direct methods using SHELXTL⁴ and were refined on F^2 by the full-matrix least-squares technique using the SHELXL-97⁵ program
- 20 package. Graphics were generated using PLATON⁶ and MERCURY 2.4.⁷The non-hydrogen atoms were refined anisotropically till the convergence. In the case of complex **1**, all the hydrogen atoms were located from the difference Fourier map and refined isotropically. One tetrabutylammonium cation and one dimethyl sulfoxide solvent molecules in complex **1** are disordered. Disordered S1 atoms of the dimethyl sulfoxide over three positions are treated by FVAR command. C72, C73, C74,
- 25 C79, C81, C84, C85, C86, C87 and C88 are isotropically refined. CCDC-**910790** (complex **1**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

SYNTHESIS

Synthesis of Complex 1:60 mg (0.08 mmol) of L was dissolved in DMSO/H₂O (20:1 v/v) and then 58 mg (2 equiv.) of *n*-Bu₄N⁺Tand excess Na₂HAsO₄was added to the above solution. Then the mixture was stirred at room temperature for 10 minutes and then heated to 60°C. The mixture was then filtered 5 allowed to evaporate for crystallization. After 3-4 days, colorless diamond like crystals of complex $[L_2(HAsO_4^{-2}) \cdot (n-Bu_4N^+)_2.(DMSO)_2]$ (1) suitable for single crystal X-ray diffraction analysis were obtained in 80% yield. $\frac{1}{H}$ NMR (500 MHz, DMSO-*d*₆): δ 0.927 (t, 12H,NCH₂CH₂CH₂CH₃,*J*= 7.25 Hz), 1.294-1.322 (m, 8H, NCH₂CH₂CH₂CH₃), 1.558 (8H, NCH₂CH₂CH₂CH₃), 2.375 (6H, NCH₂CH₂), 2.950 (6H, NCH₂CH₂), 3.134-3.168 (m, 8H, NCH₂CH₂CH₂CH₃), 8.041 (br, 3H, NH_b), 9.506(br, 3H, 10 NH_a); $\frac{13}{C}$ NMR (125 MHz, DMSO-*d*₆): δ 13.4 (NCH2CH2CH2CH2CH3), 19.2(NCH2CH2CH2CH2CH3), 23.0 (NCH2CH2CH2CH3) 38.1(NCH2), 54.8 (NCH2CH2), 57.5 (NCH2CH2CH2CH3), 115.8 (m of s, ArCCF, *J*_{CCF} = 15.3 Hz), 134.8-135.7 (m of d, ArCF), 138.2-138.9 (m of d, ArCF), 140.9-141.2 (m of d, ArCF), 144.3-144.5 (m of d, ArCF), 155.2 (s, *C*=O).

Fig. 1S. ¹H-NMR spectra of complex **1** in DMSO- d_6 at 298K.

Fig. 2S. ¹³C-NMR spectra of complex **1** in DMSO- d_6 at 298K.

Fig. 3S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- $d_6/D_2O(9:1)(v/v)$ with added standard Na₂HAsO₄ solution in DMSO- $d_6/D_2O(1:1.1)(v/v)$ ([**L**]₀ = 27.97mM). Ratio of concentration [HAsO₄²⁻]/[**L**]: (i) 0, 10 (ii) 0.19, (iii) 0.38, (iv) 0.57, (v) 0.77, (vi) 0.96, (vii) 1.15, (viii) 1.34, (ix) 1.53, (x) 1.72, (xi) 2.30, (xii) 3.06, (xiii) 4.12 and (xiv) 4.50 ([**L**] is varied from 2.92 to 1.99 mM by the addition of aliquots of 27.97mM Na₂HAsO₄).

¹⁰ **Fig. 4S**. Plot shows the change in chemical shift of the $-CH_c$ of **L** with increasing amounts of standard Na₂HAsO₄ solution at 298K.

¹⁰ **Fig. 6S**. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6 with added standard Na₂SO₄ solution in DMSO- $d_6/D_2O(1:1.1)(v/v)$ ([**L**]₀ = 4.27 mM). Ratio of concentration [SO₄^{2–}]/[**L**]: (i) 0, (ii) 0.14, (iii) 0.27, (iv) 0.41, (v) 0.55, (vi) 0.69, (vii) 0.82, (viii) 0.96, (ix) 1.10, (x) 1.23, (xi) 1.64, (xii) 2.15, (xiii) 2.74 and (xiv) 2.97 ([**L**] is varied from 4.27 to 3.39 mM by the ¹⁵ addition of aliquots of 48.68 mM Na₂SO₄).

15 **Fig. 4S**. Plot shows the change in chemical shift of the $-CH_c$ of **L** with increasing amounts of standard Na₂SO₄ solution at 298K.

Fig. 9S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6 /D2O (9:1)(v/v) with added standard NaH₂PO₄ solution in DMSO- d_6 /D₂O (1:1.1)(v/v) ([**L**]₀ = 4.01mM). Ratio of concentration [H₂PO₄⁻]/[**L**]: (i) 0, (ii) 0.11, (iii) 0.22, (iv) 0.33, (v) 0.43, (vi) 0.54, (vii) 0.65, (viii) 0.76, (ix) 0.87, (x) 0.98, (xi) 1.30, (xii) 1.70, (xiii) 2.21 and (xiv) 2.39([**L**] is varied from 4.01 to 3.17 mM by the addition of aliquots of 36.26 mM NaH₂PO₄).

Fig. 10S. Plot shows the change in chemical shift of the $-CH_c$ of L with increasing amounts of standard NaH₂PO₄ solution at 298K.

Fig. 11S. Job's plot of L with NaH_2PO_4 in DMSO- $d_6/D_2O(1:1.1)(v/v)$ at 298K.

Fig. 12S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6/D_2O (9:1)(v/v) with added standard Na₂CO₃ solution in DMSO- d_6/D_2O (1:1.1)(v/v) ([**L**]₀ = 2.46 mM). Ratio of concentration [CO₃⁻]/[**L**]: (i) 0, (ii) 0.13, (iii) 0.25, (iv) 0.38, (v) 0.51, (vi) 0.63, (vii) 0.76, (viii) 0.88, (ix) 1.01, (x) 1.14, (xi) 1.52, (xii) 1.94, (xiii) 2.53 and (xiv) 2.74([**L**] is varied from 2.46 to 1.94 mM by the addition of aliquots of 25.88 mM Na₂CO₃).

Fig. 13S. Plot shows the change in chemical shift of the $-CH_c$ of L with increasing amounts of standard Na₂CO₃ solution at 298K.

Fig. 14S. Job's plot of **L** with Na₂CO₃in DMSO-*d*₆/D₂O (1:1.1)(v/v) at 298K.

Fig. 15S. Partial ¹H-NMR spectra of L (DMSO- d_6/D_2O , 9:1, v/v) with excess of AcO⁻, F⁻, Cl⁻ and Br⁻ (DMSO- d_6/D_2O , 1.1:1, v/v).

Fig. 16S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6 with added solution of DMSO- d_6/D_2O (1:1.1)(v/v) solvent. Volume of added solvent: i) 0µl, ii) 10µl, iii) 20 µl, iv) 40 µl, v) 60 µl.

Fig. 17S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6/D_2O (9:1)(v/v)/borax/boric acid with added standard Na₂HAsO₄ solution in borax (10 mM)/boric acid (200 mM) in DMSO- d_6/D_2O (1:1.1)(v/v) ([**L**]₀ = 2.89 mM). Ratio of concentration [HAsO₄²⁻]/[**L**]: (i) 0, (ii) 0.098, (iii) 0.197, (iv) 0.296, (v) 0.395, (vi) 0.493, (vii) 0.592, (viii) 0.691, (ix) 0.789, (x) 0.888, (xi) 1.08, (xii) 1.28, (xiii) 1.55 and (xiv) 2.07([**L**] is varied from 2.89 to 2.27 mM by the addition of aliquots of 23.81 mM Na₂HAsO₄).

Fig. 18S. Plot shows the change in chemical shift of the $-CH_c$ of L with increasing amounts of standard Na₂HAsO₄ solution at 298K in borax/boric acid buffer.

Fig. 19S. Job's plot of **L** with Na₂HAsO₄ in DMSO- d_6/D_2O (1:1.1)(v/v) at 298K in borax/boric acid buffer.

Fig. 20S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6/D_2O (9:1)(v/v)/borax/boric acid with added standard Na₂SO₄ solution in borax (10 mM)/boric acid (200 mM) in DMSO- d_6/D_2O (1:1.1)(v/v) ([**L**]₀ = 2.97mM). Ratio of concentration [SO₄²⁻]/[**L**]: (i) 0, (ii) 0.15, (iii) 0.30, (iv) 0.45, (v) 0.61, (vi) 0.76, (vii) 0.91, (viii) 1.06, (ix) 1.21, (x) 1.36, (xi) 1.67, (xii) 1.97, (xiii) 2.37 and (xiv) 3.18 ([**L**] is varied from 2.97 to 2.33 mM by the addition of aliquots of 37.55 mM Na₂SO₄).

Fig. 21S. Plot shows the change in chemical shift of the $-CH_c$ of L with increasing amounts of standard Na_2SO_4 solution at 298K in borax/boric acid buffer.

Fig. 22S. Job's plot of **L** with Na₂SO₄ in DMSO- $d_6/D_2O(1:1.1)(v/v)$ at 298K in borax/boric acid buffer.

Fig. 23S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6/D_2O (9:1)(v/v)/borax/boric acid with added standard NaH₂PO₄ solution in borax (10 mM)/boric acid (200 mM) in DMSO- d_6/D_2O (1:1.1)(v/v) ([**L**]₀ = 3.75 mM). Ratio of concentration [H₂PO₄⁻]/[**L**]: (i) 0, (ii) 0.11, (iii) 0.21, (iv) 0.32, (v) 0.42, (vi) 0.53, (vii) 0.64, (viii) 0.75, (ix) 0.85, (x) 0.96, (xi) 1.17, (xii) 1.39, (xiii) 1.67 and (xiv) 2.24([**L**] is varied from 3.75 to 2.93 mM by the addition of aliquots of 33.33 mM NaH₂PO₄).

Fig. 24S. Plot shows the change in chemical shift of the $-CH_c$ of L with increasing amounts of standard NaH₂PO₄ solution at 298K in borax/boric acid buffer.

Fig. 25S. Job's plot of **L** with NaH_2PO_4 in DMSO- $d_6/D_2O(1:1.1)(v/v)$ at 298K in borax/boric acid buffer.

Fig. 26S. Partial ¹H-NMR (300 MHz) spectral changes of **L** in DMSO- d_6 with added solution of DMSO- d_6/D_2O (1:1.1)(v/v) solvent in borax/boric acid buffer. Volume of added solvent: i) 0µl, ii) 10µl, iii) 20 µl, iv) 40 µl, v) 60 µl.

Fig.27S. Comparative FT-IR analyses of L (red) and complex **1** (blue) in KBr discs ('*' indicates the C-H stretching frequency of tetrabutylammonium cation in complex **1**).

Table 1S. Crystallographic table of complex 1

Parameters	Complex 1		
Emperical formula	$C_{360}H_{320}F_{120}N_{64}O_{44}S_8As_8$		
Formula weight	2212.03		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
a (Å)	21.4103(19)		
b (Å)	26.030(2)		
c (Å)	20.5147(18)		
α (°)	90.00		
β (°)	111.082(2)		
γ (°)	90.00		
$V(Å^3)$	10667.8(16)		
Z	4		
d_{calc} (g/cm ³)	1.377		
Crystal size (mm ³)	0.45 x 0.20 x 0.18		
F(000)	4505		
μ Mo K α (mm ⁻¹)	0.451		
T(K)	150 (2)		
θ range (deg)	0.99-25.00		
Independent Reflections	18770		
Observed Reflections	14429		
Parameters	1283		
R1;wR2	0.0997, 0.2890		
$GOF(F^2)$	0.850		

Fig. 28S. a) Space-fill representation of $HAsO_4^{2-}$ encapsulateddimeric capsular assembly of complex 1; b) ball-stick representation showing the dimension of complex 1capsule.

Fig.29S.The scatter plot of X–H^{\cdots}O *vs*. H^{\cdots}O distances of the hydrogen bonds in complex 1(X = N/O).

D-H···A	d (H···A), Å	d (D…A), Å	< D-H-A °
N3-H3····O7 ^a	2.010	2.808(8)	154
$N4-H4\cdots O10^{a}$	2.010	2.856(7)	169
$N5-H5\cdots O7^{a}$	2.000	2.812(7)	158
$N6-H6\cdotsO10^{a}$	2.440	3.101(7)	134
$N7-H7\cdotsO10^{a}$	1.990	2.776(9)	153
O8-H8…O11 ^a	1.840	2.659(10)	173
N9-H9O9 ^b	2.080	2.879(8)	154
N10-H10····O10 ^b	1.980	2.808(8)	162
N11-H1109 ^b	2.400	2.985(9)	126
N12-H12····O9 ^b	2.070	2.826(7)	146
N13-H13····O9 ^b	2.130	2.958(7)	162
$N14-H14\cdots O7^{b}$	2.010	2.797(7)	151
$a^{a}x, y, z; b^{1-x,-1/2+y,3/2-z}$			

Table 2S. Inter-atomic distances, and angles for the H-bonding Interactions of the encapsulated $HAsO_4^{2-}$ in complex **1**.

Fig. 30S. The TGA analysis of complex1 shows weight loss of 7.368% within around 150°C, which corresponds to the loss of two dimethyl sulfoxide and one water molecule.

Fig. 31S. (a) PXRD pattern of the crystal of complex **1** (simulated) and (b) PXRD pattern of complex **1** (experimental pattern).

Fig. 32S.TEM-EDX profile of complex 1.

References:

1) M. J. Hynes, J. Chem. Soc., Dalton Trans. 1993, 311.

2) SAINT and *XPREP*, 5.1 ed.; Siemens Industrial Automation Inc.: Madison, WI, 1995. G. M. Sheldrick.

3) *SADABS, empirical absorption Correction Program*; University of Göttingen: Göttingen, Germany, 1997.

4) G. M. Sheldrick, *SHELXTL Reference Manual: Version 5.1*; Bruker AXS: Madison, WI, 1997.

5) G. M. Sheldrick, *SHELXL-97: Program for Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1997.

6) A. L. Spek, *PLATON-97*; University of Utrecht: Utrecht, The Netherlands, 1997.

7) Mercury 2.3 Supplied with Cambridge Structural Database; CCDC: Cambridge, U.K., 2003-2004.