Synthesis, Structures and Magnetic Properties of Fe (II) and

Co(II) Thiocyanato Coordination Compounds: On the
Importance of the Diamagnetic Counterparts for Structure

Determination.

Susanne Wöhlert, Lars Peters and Christian Näther

Fig. S1	Experimental and calculated XRPD of 1-Co	2
Fig. S2	Experimental and calculated XRPD of 2-Co	2
Fig. S3	Experimental and calculated XRPD of 3-Co	3
Fig. S4	Experimental and calculated XRPD of 1-Fe	3
Fig. S5	IR spectrum of 1-Co	4
Fig. S6	IR spectrum of 2-Co	4
Fig. S7	IR spectrum of 3-Co	5
Fig. S8	IR spectrum of 1-Fe	5
Fig. S9	ORTEP plot of 1-Fe	6
Fig. S10	ORTEP plot of 2-Co	6
Table S1	Selected bond lengths and angles for 1-Fe and 2-Co	7
Fig. S11	ORTEP plot of Co(NCS) 2 (2-methylpyrazine) 4 -2-methylpyrazine solvate	7
Table S2	Selected bond lengths and angles for 3-Co	8
Fig. S12	IR spectrum of the residue obtained in the first heating step of 1-Co	9
Fig. S13	IR spectrum of the residue obtained in the first heating step of 2-Co	9
Fig. S14	IR spectrum of the residue obtained in the first heating step of 3-Co	10
Fig. S15	IR spectrum of the residue obtained in the first heating step of 1-Fe	10
Fig. S16	IR spectrum of the residue obtained in the second heating step of 1-Co	11
Fig. S17	IR spectrum of the residue obtained in the second heating step of 2-Co	11
Fig. S18	IR spectrum of the residue obtained in the second heating step of 3-Co	12
Fig. S19	IR spectrum of the residue obtained in the second heating step of 1-Fe	12
Table S3	Selected bond lengths and angles for 5-Cd	13
Fig. S20	IR spectrum of 5-Cd	13
Fig. S21	Difference plot from the Rietveld refinement for $\mathbf{5 - C o}$	14
Fig. S22	Difference plot from the Rietveld refinement for 5-Fe	15
Fig. S23	χ_{M} and 1/ χ_{M} as function of temperature for 4-Co	16
Fig. S24	χ_{M} and 1/ χ_{M} as function of temperature for 4-Fe	16
Fig. S25	Initial curve at 2 K for 4-Co	17
Fig. S26	Initial curve at 2 K for 4-Fe	17
Fig. S27	Initial curve at 2 K for 5-Fe	18
Fig. S28	χ_{M} as function of temperature for 5-Fe	18
Fig. S29	Saturation magnetization experiment for 5-Co	19
Table S4	Results of the magnetic measurements for 5-Co	19
Fig. S30	XRPD investigations on solvent exchange in 2-Co	20

Fig. S1. Experimental XRPD pattern of 1-Co (A) together with the powder pattern calculated from single crystal data (B).

Fig. S2. Experimental XRPD pattern of 2-Co (A) together with the powder pattern calculated from single crystal data (B).

Fig. S3. Experimental XRPD pattern of 3-Co (A) together with the powder pattern calculated from single crystal data (B).

Fig. S4. Experimental XRPD pattern of 1-Fe (A) together with the powder pattern calculated from single crystal data (B).

Fig. S5. IR spectrum of $\mathrm{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathbf{1 - C o})$.

Fig. S6. IR spectrum of $\mathrm{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}$ (2-Co).

Fig. S7. IR spectrum of $\mathrm{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{4} \cdot 2$-methylpyrazine solvate (3-Co).

Fig. S8. IR spectrum of $\mathrm{Fe}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathbf{1 - F e})$.

Fig. S9. ORTEP plot of $\mathrm{Fe}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \quad$ (1-Fe). Symmetry transformation used to generate equivalent atoms: $\mathrm{A}=-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

Fig. S10. ORTEP plot of $\mathrm{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}$ (2-Co). Symmetry transformation used to generate equivalent atoms: $\mathrm{A}=-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

Table S1. Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for $\mathrm{Fe}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (1-Fe) and $\mathrm{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}(\mathbf{2}-\mathrm{Co})$. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}=-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

	$\mathbf{1 - F e}$	2-Co
$\mathrm{M}(1)-\mathrm{N}(1)$	$2.1104(15)$	$2.063(3)$
$\mathrm{M}(1)-\mathrm{N}(11)$	$2.2205(12)$	$2.176(2)$
$\mathrm{M}(1)-\mathrm{O}(1)$	$2.1258(11)$	$2.103(2)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{M}(1)-\mathrm{N}(1)$	180.0	$180.00(14)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{M}(1)-\mathrm{O}(1)$	$91.38(6)$	$93.02(10)$
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{O}(1)$	$88.62(6)$	$86.98(10)$
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{N}(11)$	$90.46(5)$	$88.60(10)$
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{N}(11 \mathrm{~A})$	$89.54(5)$	$91.40(10)$
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{O}(1 \mathrm{~A})$	180.0	180.0
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(11 \mathrm{~A})$	$88.90(5)$	$88.75(9)$
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(11)$	$91.10(5)$	$91.25(9)$

Fig. S11. ORTEP plot of $\operatorname{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{4} \cdot 2$-methylpyrazine solvate (3-Co).
The disordering of the non-coordinated 2-methylypyrazine ligand was omitted for clarity.

Table S2. Selected bond lengths / \AA and angles $/{ }^{\circ}$ for $\operatorname{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })_{4} \cdot 2-$ methylpyrazine solvate (3-Co).

compounds	3-Co
$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.063(3)$
$\mathrm{Co}(1)-\mathrm{N}(2)$	$2.066(2)$
$\mathrm{Co}(1)-\mathrm{N}(12)$	$2.191(2)$
$\mathrm{Co}(1)-\mathrm{N}(22)$	$2.193(2)$
$\mathrm{Co}(1)-\mathrm{N}(32)$	$2.186(2)$
$\mathrm{Co}(1)-\mathrm{N}(42)$	$2.168(2)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(2)$	$179.43(10)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(42)$	$89.79(10)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(32)$	$89.68(10)$
$\mathrm{N}(42)-\mathrm{Co}(1)-\mathrm{N}(32)$	$89.37(9)$
$\mathrm{N}(42)-\mathrm{Co}(1)-\mathrm{N}(12)$	$92.03(9)$
$\mathrm{N}(32)-\mathrm{Co}(1)-\mathrm{N}(12)$	$178.57(9)$
$\mathrm{N}(42)-\mathrm{Co}(1)-\mathrm{N}(22)$	$179.08(9)$
$\mathrm{N}(32)-\mathrm{Co}(1)-\mathrm{N}(22)$	$91.38(9)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(42)$	$89.85(10)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(32)$	$89.88(10)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(12)$	$90.43(9)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(12)$	$90.02(9)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(22)$	$89.69(10)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(22)$	$90.67(10)$
$\mathrm{N}(12)-\mathrm{Co}(1)-\mathrm{N}(22)$	$87.22(9)$

Fig. S12. IR spectrum of the residue, which was obtained in the first heating step of compound 1-Co.

Fig. S13. IR spectrum of the residue, which was obtained in the first heating step of compound 2-Co.

Fig. S14. IR spectrum of the residue, which was obtained in the first heating step of compound 3-Co.

Fig. S15. IR spectrum of the residue, which was obtained in the first heating step of compound 1-Fe.

Fig. S16. IR spectrum of the residue, which was obtained in the second heating step of compound 1-Co.

Fig. S17. IR spectrum of the residue, which was obtained in the second heating step of compound 2-Co.

Fig. S18. IR spectrum of the residue, which was obtained in the second heating step of compound 3-Co.

Fig. S19. IR spectrum of the residue, which was obtained in the second heating step of compound 1-Fe.

Table S3. Selected bond lengths / \AA and angles $/{ }^{\circ}$ for $\left[\mathrm{Cd}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })\right]_{n}(5-$ Cd). Symmetry transformation used to generate equivalent atoms: $\mathrm{A}=-\mathrm{x},-\mathrm{y}+2,-\mathrm{z}+1$; $\mathrm{B}=-$ $\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2 ; \mathrm{C}=\mathrm{x}-1 / 2,-\mathrm{y}+3 / 2, \mathrm{z}-1 / 2$.

$\mathrm{Cd}(1)-\mathrm{N}(1)$	$2.2751(19)$	$\mathrm{Cd}(1)-\mathrm{N}(11 \mathrm{C})$	$2.4582(17)$
$\mathrm{Cd}(1)-\mathrm{N}(2)$	$2.320(2)$	$\mathrm{Cd}(1)-\mathrm{S}(1 \mathrm{~A})$	$2.6769(6)$
$\mathrm{Cd}(1)-\mathrm{N}(12)$	$2.4260(18)$	$\mathrm{Cd}(1)-\mathrm{S}(2 \mathrm{~B})$	$2.6842(6)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(2)$	$171.84(8)$	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{S}(1 \mathrm{~A})$	$84.75(6)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(12)$	$86.51(7)$	$\mathrm{N}(12)-\mathrm{Cd}(1)-\mathrm{S}(1 \mathrm{~A})$	$91.75(5)$
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(12)$	$85.60(7)$	$\mathrm{N}(11 \mathrm{C})-\mathrm{Cd}(1)-\mathrm{S}(1 \mathrm{~A})$	$90.64(5)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(11 \mathrm{C})$	$101.36(7)$	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{S}(2 \mathrm{~B})$	$93.83(5)$
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(11 \mathrm{C})$	$86.62(7)$	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{S}(2 \mathrm{~B})$	$88.03(6)$
$\mathrm{N}(12)-\mathrm{Cd}(1)-\mathrm{N}(11 \mathrm{C})$	$171.62(6)$	$\mathrm{N}(12)-\mathrm{Cd}(1)-\mathrm{S}(2 \mathrm{~B})$	$88.35(5)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{S}(1 \mathrm{~A})$	$93.41(5)$	$\mathrm{N}(11 \mathrm{C})-\mathrm{Cd}(1)-\mathrm{S}(2 \mathrm{~B})$	$88.26(5)$
		$\mathrm{S}(1 \mathrm{~A})-\mathrm{Cd}(1)-\mathrm{S}(2 \mathrm{~B})$	$172.753(18)$

Fig. S20. IR spectrum of compound $\left[\mathrm{Cd}(\mathrm{NCS})_{2}(2-\text { methylpyrazine })\right]_{n}(\mathbf{5 - C d})$.

Fig. S21. Difference plot from the Rietveld refinement of $\left[\mathrm{Co}(\mathrm{NCS})_{2}(2 \text {-methylpyrazine })\right]_{n}(5$ Co). Given are observed intensities (circles), calculated intensities (line), the difference (below, arbitrary offset for improved visibility) and the tic-marks for the reflection positions. For the second measurement $\left(60-110^{\circ} 2 \vartheta\right)$, intensities were scaled by a factor 5 for the sake of clarity.

Fig. S22. Difference plot from the Rietveld refinement of $\left[\mathrm{Fe}(\mathrm{NCS})_{2}(\text { 2-methylpyrazine })\right]_{n}$ (5Fe). Given are observed intensities (circles), calculated intensities (line), the difference (below, arbitrary offset for improved visibility) and the tic-marks for the reflection positions. For the second measurement $\left(60-110^{\circ} 2 \vartheta\right)$, intensities were scaled by a factor 5 for the sake of clarity.

Fig. S23. Molar paramagnetic susceptibility $\left(\chi_{\mathrm{M}}\right)$ and $1 / \chi_{\mathrm{M}}$ (inset) as function of temperature at $H_{\mathrm{DC}}=1 \mathrm{kOe}$ for 4-Co.

Fig. S24. Molar paramagnetic susceptibility $\left(\chi_{\mathrm{M}}\right)$ and $1 / \chi_{\mathrm{M}}$ (inset) as function of temperature at $H_{\mathrm{DC}}=1 \mathrm{kOe}$ for $\mathbf{4 - F e}$.

Fig. S25. Initial curve in range of $0-90 \mathrm{kOe}$ at $T=2 \mathrm{~K}$ for 4-Co.

Fig. S26. Initial curve in range of $0-90 \mathrm{kOe}$ at $T=2 \mathrm{~K}$ for 4-Fe.

Fig. S27. Initial curve in range of $0-90 \mathrm{kOe}$ at $T=2 \mathrm{~K}$ for $\mathbf{5 - F e}$.

Fig. S28. Molar paramagnetic susceptibility $\left(\chi_{\mathrm{M}}\right)$ as function of temperature at $H_{\mathrm{DC}}=1 \mathrm{kOe}$ for two different batches of 5-Fe.

Fig. S29. Saturation magnetization experiment at $T=2 \mathrm{~K}$ in range of $\pm 90 \mathrm{kOe}$ for 5-Co.

Table S4. Results of the magnetic measurements at $H_{\mathrm{DC}}=40-90 \mathrm{kOe}$ for 5-Co.

$\boldsymbol{H}_{\mathbf{D C}} / \mathbf{k O e}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{8 0}$	$\mathbf{9 0}$
$C / \mathrm{cm}^{3} \mathrm{~K} \cdot \mathrm{~mol}^{-1}$	3.54	3.56	3.58	3.58	3.58	3.57
θ / K	-20.5	-20.6	-21.2	-21.4	-21.7	-22.2
$\mu_{\text {eff }}(\mathrm{exp}) / \mu_{\mathrm{B}}$	5.32	5.34	5.35	5.35	5.35	5.35
$\mu_{\text {eff }}(\mathrm{exp}) / \mu_{\mathrm{B}}$	3.87					

Fig. S30. Experimental XRPD of 2-Co (A) which were stored for 15 min . (B) and for 1 d in a humid atmosphere (C) together with the calculated powder pattern for 1-Co (D).

