Supporting Information Anion-dependent host–guest properties of porous assemblies of coordination complexes (PACs), $[Cu(A)_2(py)_4]$ (A = PF₆, BF₄, CF₃SO₃, and CH₃SO₃; py = pyridine), based on Werner-type copper(II) compounds in the solid state Shin-ichiro Noro,**a,b,c Katsuo Fukuhara,b Kunihisa Sugimoto,d Yuh Hijikata,e Kazuya Kubo,a,b and Takayoshi Nakamura**a,b ^a Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan ^b Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan ^c PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan ^d Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan ^e Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan TableS1.P–FBonddistances(Å)forα-[Cu(PF₆)₂(py)₄](α-PAC-2-PF₆), γ -{[Cu(PF₆)₂(py)₄]·2acetone}(γ -PAC-2-PF₆ \supset 2acetone),and γ -{[Cu(PF₆)₂(py)₄]·2py}(γ -PAC-2-PF₆ \supset 2py). | α-PAC-2-PF ₆ | | | | |--------------------------------------|----------|-------------------------------|----------| | P(1)-F(1) ^a | 1.628(1) | P(1)–F(2) | 1.583(2) | | P(1)–F(3) | 1.587(1) | P(1)–F(4) | 1.589(1) | | P(1)–F(5) | 1.597(1) | P(1)–F(6) | 1.590(1) | | P(2)-F(7) ^a | 1.627(1) | P(2)–F(8) | 1.588(1) | | P(2)–F(9) | 1.599(1) | P(2)–F(10) | 1.588(1) | | P(2)–F(11) | 1.605(1) | P(2)–F(12) | 1.593(1) | | | γ-ΡΑΟ | C-2-PF ₆ ⊃2acetone | | | P-F(1) ^a | 1.630(1) | P-F(2) | 1.594(1) | | P-F(3) | 1.596(1) | P-F(4) | 1.587(1) | | P-F(5) | 1.593(1) | P-F(6) | 1.586(1) | | γ- PAC-2-PF ₆ ⊃2py | | | | | P-F(1) ^a | 1.624(3) | P-F(2) | 1.596(3) | | P-F(3) | 1.588(1) | | | ^a These F atoms are located on the axial sites of each metal ion. Fig. S1 Two-dimensional layer of α -PAC-2-BF₄ in the projection along the c-axis. The hydrogen atoms are omitted for clarity. Fig. S2 Two-dimensional layer of α -PAC-2-CF₃SO₃ in the projection along the c-axis. The hydrogen atoms are omitted for clarity. Fig. S3 Two-dimensional layer of α -PAC-2-CH₃SO₃ in the projection along the c-axis. The hydrogen atoms are omitted for clarity. **Fig. S4** View of intermolecular hydrogen-bonding interactions in γ -PAC-2-BF₄ \supset 2acetone. The py molecules of other mononuclear complexes are represented in faint colors. The hydrogen atoms are omitted for clarity. Fig. S5 Porous aggregate of γ -PAC-2-BF₄ \supset 2acetone in the projection along the c-axis. The guest molecules are omitted for clarity. **Fig. S6** One-dimensional channel structure of (a, c, and e) γ -PAC-2-PF₆ \supset 2acetone and (b, d, and f) γ -PAC-2-PF₆ \supset 2py. **Fig. S7** One-dimensional channel structure of γ -PAC-2-BF₄ \supset 2acetone. **Fig. S8** Cavity structure of β-PAC-2-CH₃SO₃ \supset 2.67H₂O. Fig. S9 TG curves of α -PAC-2-A (A = PF₆ (red), BF₄ (blue), CF₃SO₃ (green), and CH₃SO₃ (black)). First, all complexes lose coordinated py molecules. After that, the decomposition of anions starts, resulting in the formation of CuO as a final product. **Fig. S10** The simulated (blue) and observed (red) XRPD patterns of α -PAC-2-A (A = (a) PF₆, (b) BF₄, (c) CF₃SO₃, and (d) CH₃SO₃). **Fig. S11** Adsorption (filled symbols) and desorption (open symbols) isotherms for N_2 (77K, red) and CO_2 (195K (blue) and 273K (green)) in α -**PAC-2-A** (A = (a) PF₆, (b) BF₄, (c) CF₃SO₃, and (d) CH₃SO₃). **Fig. S12** XRPD patterns of (a) simulated α-PAC-2-PF₆ from single-crystal analysis, (b) α-PAC-2-PF₆, (c) γ -PAC-2-PF₆ \supset x(acetone) obtained by exposure of α-PAC-2-PF₆ to a saturated acetone vapor for 5 hours, and (d) simulated γ -PAC-2-PF₆ \supset 2acetone from single-crystal analysis. **Fig. S13** XRPD patterns of (a) simulated α-PAC-2-BF₄ from single-crystal analysis, (b) α-PAC-2-BF₄, (c) γ -PAC-2-BF₄ \supset x(acetone) obtained by an exposure of α-PAC-2-BF₄ to a saturated acetone vapor for 57.5 hours, and (d) simulated γ -PAC-2-BF₄ \supset 2acetone from single-crystal analysis. As you can see, α-PAC-2-BF₄ remained after an exposure to a saturated acetone vapor for 57.5 hours. Fig. S14 NBO charges of anions in α -PAC-2-A (A = (a) PF₆, (b) BF₄, (c) CF₃SO₃, and (d) CH₃SO₃).