Zn(II) coordination polymer of an in-situ generated 4-pyridyl (⁴Py) attached bis(amido)phosphate ligand, [PO₂(NH⁴Py)₂]⁻ showing preferential water uptake over aliphatic alcohols

Arvind K. Gupta, Sanjog S. Nagarkar and Ramamoorthy Boomishankar*

Department of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research, Dr.Homi Bhabha Road, Pune - 411008, India. Fax: +912025908186; Email: boomi@iiserpune.ac.in

Supporting Information

Table S1: Crystallographic Data

Compound	1	2	3	4	3a (data squeezed)
Chemical formula	$C_{20}H_{20}N_8PC1$	$C_{16}H_{21}N_6O_3P$	$C_{14}H_{20}N_5O_6PZn$	$C_{14}H_{20}N_5O_6PZn$	C ₁₂ H ₁₇ N ₄ O ₆ P Zn
Formula weight	438.86	376.36	450.69	450.69	409.64
Temperature	150(2)K	296(2)K	100(2)K	100(2)K	100(2)K
Crystal system	cubic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
Space group	I -43d	Рс	Pbca	P2(1)/n	Pbca
a (Å); α (°)	18.926(5); 90	10.922(6); 90	14.073(2); 90	11.522(15); 90	14.135(2); 90
b (Å); β(°)	18.926(5); 90	9.348(5); 110.05(3)	15.623(3); 90	13.900(19); 103.70(3)	15.420(3); 90
c (Å); γ (°)	18.926(5); 90	9.763(5); 90	18.459(3); 90	11.714(16); 90	18.524(3); 90
$V(A^3); Z$	6779(3); 12	936.42(9); 2	4058.3(12); 8	1822.7(4); 4	4037.5(12); 8
ρ (calc.) mg m ⁻³	1.290	1.335	1.475	1.642	1.348
μ (Mo K _{α}) mm ⁻¹	0.263	0.176	1.328	1.478	1.326
$2\theta_{\text{max}}$ (°)	56	56	50	56	56
R(int)	0.0417	0.0742	0.186	0.0544	0.0779
Completeness to θ	99.5 %	98.1 %	99.8%	99.2%	99.5%
Data / param.	1398 / 75	4083 / 243	3576 / 253	4492 / 244	4988/190
GOF	1.190	1.070	1.001	1.031	1.036
R1 [F>4 σ (F)]	0.0707	0.0476	0.0499	0.0470	0.0455
wR2 (all data)	0.2389	0.1389	0.1302	0.1194	0.1169
max. peak/hole (e.Å ⁻³)	1.064/ -0.329	0.438/ -0.448	0.973 / -0.445	1.471 / -1.089	1.026/-0.467
Compound	3a				
Chemical formula	$C_{12} H_{17} N_4 O_6 P Zn$	-			
Formula weight	409.64				
Temperature	100(2)K				
Crystal system	Orthorhombic				
Space group	Pbca				
$a(Å); \alpha(°)$	14.135(2); 90				
b (Å): β(°)	15.420(3); 90				
c (Å): γ (°)	18.524(3); 90				
$V(Å^3)$: Z	4037.5(12); 8				
ρ (calc.) mg m ⁻³	1.348				
$\mu(Mo K_{\alpha}) \text{ mm}^{-1}$	1.326				
$2\theta_{\text{max}}$ (°)	56				
R(int)	0.0831				
Completeness to θ	99.5%				
Data / param.	4988 / 215				
GOF	1.102				
R1 [F>4 σ (F)]	0.0598				
wR2 (all data)	0.1700				
max. peak/hole (e.Å ⁻³)	1.335 / -0.511				
r		J			

Compound	Bond lengths	Bond Angles
1	P(1)-N(1)#1: 1.631(3)	N(1)#1-P(1)-N(1)#2: 107.02(8)
	P(1)-N(1)#2: 1.631(3)	N(1)#1-P(1)-N(1)#3: 107.02(8)
	P(1)-N(1)#3: 1.631(3)	N(1)#2-P(1)-N(1)#3: 114.49(16)
	P(1)-N(1): 1.631(3)	N(1)#1-P(1)-N(1): 114.49(16)
		N(1)#2-P(1)-N(1): 107.02(8)
		N(1)#3-P(1)-N(1): 107.02(8)
2	P(1)-O(1): 1.4781(17)	O(1)-P(1)-N(3): 115.66(11)
	P(1)-N(3): 1.638(2)	O(1)-P(1)-N(2): 114.60(11)
	P(1)-N(2): 1.649(2)	N(3)-P(1)-N(2): 102.51(10)
	P(1)-N(1): 1.660(2)	O(1)-P(1)-N(1): 112.73(10)
		N(3)-P(1)-N(1): 105.17(11)
		N(2)-P(1)-N(1): 104.95(11)
3	Zn(1)-O(2): 1.927(3)	O(2)-Zn(1)-O(3): 121.88(16)
	Zn(1)-O(3): 1.945(4)	O(2)-Zn(1)-N(14)#1: 109.80(16)
	Zn(1)-N(14)#1: 1.993(4)	O(3)-Zn(1)-N(14)#1: 108.15(18)
	Zn(1)-N(24)#2: 2.007(4)	O(2)-Zn(1)-N(24)#2: 101.00(15)
	P(1)-O(1): 1.481(4)	O(3)-Zn(1)-N(24)#2: 102.52(17)
	P(1)-O(2): 1.503(3)	N(14)#1-Zn(1)-N(24)#2: 113.17(17)
	P(1)-N(1): 1.665(4)	O(1)-P(1)-O(2): 119.2(2)
	P(1)-N(2): 1.670(4)	O(1)-P(1)-N(1): 105.7(2)
		O(2)-P(1)-N(1): 108.1(2)
		O(1)-P(1)-N(2): 111.5(2)
		O(2)-P(1)-N(2): 104.6(2)
		N(1)-P(1)-N(2): 107.1(2)
4		P(1)-O(2)-Zn(1): 139.0(2)
4	Zn(1)-O(4): 2.044(2)	O(4)-Zn(1)-N(14)#1: 138.19(11)
	Zn(1)-N(14)#1: 2.045(3)	O(4)-Zn(1)-N(24)#2: 112.00(11)
	Zn(1)-N(24)#2: 2.067(3)	N(14)#1-Zn(1)-N(24)#2: 109.55(11)
	Zn(1)-O(2): 2.095(2)	O(4)-Zn(1)- $O(2)$: 90.33(10)
	2n(1)-O(3): 2.167(3)	N(14)#1-Zn(1)-O(2): 93.50(11)
	P(1) - O(1): 1.488(2)	N(24)#2-Zn(1)-O(2): 90.93(10)
	P(1)-O(2): 1.498(2) P(1) N(1): 1.680(2)	O(4)-Zn(1)-O(3): 80.96(10) N(14)#1.7n(1).O(2): 90.20(11)
	P(1)-N(1): 1.080(3) P(1)-N(2): 1.682(3)	N(14)#1-ZII(1)-O(5): 90.29(11) N(24)#2.7n(1) O(2): 96.18(10)
		$\Omega(24)$ #2-Zii(1)- $\Omega(3)$: 90.18(10) $\Omega(2)$ Zp(1) $\Omega(3)$: 170.34(9)
		O(2)- $Zii(1)$ - $O(3)$: 170.34(7) O(1)- $P(1)$ - $O(2)$: 119.75(14)
		O(1)-P(1)-O(2). 115.75(14) O(1)-P(1)-N(1): 105.16(15)
		O(2)-P(1)-N(1): 109.83(14)
		O(1)-P(1)-N(2): 110.13(14)
		O(2)-P(1)-N(2): 104.43(14)
		N(1)-P(1)-N(2): 106.99(15)
		P(1)-O(2)-Zn(1): 145.31(14)
3a	Zn(1)-O(1): 1.934(2)	O(1)-Zn(1)-O(3): 122.74(10)
	Zn(1)-O(3): 1.954(2)	O(1)-Zn(1)-N(14)#1: 108.16(10)
	Zn(1)-N(14)#1: 1.994(2)	O(3)-Zn(1)-N(14)#1: 107.40(10)
	Zn(1)-N(24)#2: 2.013(2)	O(1)-Zn(1)-N(24)#2: 100.51(9)
	P(1)-O(2): 1.484(2)	O(3)-Zn(1)-N(24)#2: 102.95(10)
	P(1)-O(1): 1.505(2)	N(14)#1-Zn(1)-N(24)#2: 115.30(10)
	P(1)-N(1): 1.668(2)	O(2)-P(1)-O(1): 119.61(12)
	P(1)-N(2): 1.676(2)	O(2)-P(1)-N(1): 105.66(12)
		O(1)-P(1)-N(1): 108.14(12)
		O(2)-P(1)-N(2): 111.49(12)
		O(1)-P(1)-N(2): 104.07(12)
		N(1)-P(1)-N(2): 107.33(13)
		P(1)-O(1)-Zn(1): 140.05(13)

Table S2: Selected bond-lengths and angles for 1, 2, 3, 4 and 3a

Compound	D-HA	d(HA)Å	d(DA)Å	<(DHA)°			
	N(1)-H(1)Cl(1)#4	1.96	2.801(4)	160.8			
	Symmetry transformations used to generate equivalent atoms:						
1	#1 - x + 2, -y + 3/2, z = #2 - y + 7/4, x - 1/4, -z + 1/4 = #3 y + 1/4, -x + 7/4, -z + 1/4						
	#4 -y+5/4,-x+7/4,z-1/4						
2	N(1)-H(1)O(1)#1	2.11	2.872(3)	146.9			
	N(2)-H(2)O(1S)#2	2.02	2.852(3)	163.7			
	N(3)-H(3)N(21)#3	2.12	2.897(3)	150.9			
	O(1S)-H(1S)O(2M)	#4 2.32(6)	2.902(6)	130(5)			
	O(1S)-H(2S)N(31)#	5 2.36(5)	2.877(4)	123(5)			
	O(2M)-H(2M)N(11)	1.91	2.700(5)	161.5			
	Symmetry transformations used to generate equivalent atoms:						
	#1 x,-y+1,z-1/2 #2 x,	-y+1,z+1/2 #	#3 x,-y+2,z-1/2				
	#4 x,-y,z-1/2 #5 x+1,y,z						
3	N(1)-H(1)O(1)#5	1.93	2.806(5)	170.3			
	N(2)-H(2)O(4)	1.96	2.797(6)	158.9			
	O(1W)-H(1W)O(1)#	5 2.11(3)	2.943(6)	161(7)			
	O(1W)-H(2W)O(1S)) 1.92(4)	2.773(9)	162(9)			
	Symmetry transformations used to generate equivalent atoms:						
	#1 - x + 1/2, y + 1/2, z = #2 - x + 1/2, -y + 2, z - 1/2 = #3 - x + 1/2, y - 1/2, z						
	#4 -x+1/2,-y+2,z+1/2	#5 -x+1,-y+2	,-z+1				
4	O(3)-H(1W)O(4)#5	2.01(3)	2.775(3)	170(4)			
	O(3)-H(2W)O(1)#6	1.89(3)	2.666(3)	170(4)			
	N(1)-H(1)O(6')#7	2.00	2.862(17)	166.5			
	N(1)-H(1)O(6)#7	2.13	2.955(5)	155.6			
	N(2)-H(2)O(5)	1.97	2.842(4)	169.7			
	Symmetry transformations used to generate equivalent atoms:						
	#1 x+1/2,-y+3/2,z+1/2 #2 x-1/2,-y+3/2,z+1/2						
	#3 x-1/2,-y+3/2,z-1/2 #4 x+1/2,-y+3/2,z-1/2						
	#5 -x,-y+1,-z+2 #6 -x+1/2,y-1/2,-z+5/2 #7 x,y+1,z						
	N(1)-H(1)O(2)#5	1.95	2.828(3)	171.9			
	N(2)-H(2)O(4)	1.97	2.805(3)	158.9			
- 3a	Symmetry transformations used to generate equivalent atoms:						
	#1 -x+3/2,y+1/2,z #2	-x+3/2,-y+2,z	z-1/2 #3 -x+3/	2,y-1/2,z			
	#4 -x+3/2,-y+2,z+1/2	#5 -x+2,-y+2	,-z+1				

Table S3: Table of hydrogen bonding parameters for 1, 2, 3, 4 and 3a

Figure S1: ESI(+) Mass spectra of **1**.

Figure S2: ESI(+) Mass spectra of **2**.

Figure S3: (a) View of the H-bonded 2D-sheet in **2** formed by the interaction of amino protons with P=O and pyridyl groups; (b) formation the 3D-network mediated by the solvated water molecules. The layers are slightly offset to show the 3D-nature of the network.

Interaction of one of the amino protons (N1-H1) with the nearby P=O group (O1) initially forms a 1D-chain structure along the c-axis. Interaction of the second amino-proton (N3-H3) with the pyridyl groups (N21) that belongs to N2 connects the adjacent chains resulting in a 2D-sheet structure running along the bc-plane (Figure S3a). Finally, the solvated water molecules act as a linker between the individual 2D-sheets and connects the remaining amino protons (N2-H2...O1S) and one of the pyridyl nitrogens (O1S-H2S...N31) forming the 3D-network. The solvated molecules of methanol are located along the 1D-channel inside the network and involved in H-bonding with water (O1S-H1S...O2M) and the remaining pyridyl moiety (O2M-H2M...N11) (Figure S3b).

Figure S4: Packing diagram of 3 (left), 3a (middle) and 4 (right) with solvated molecules shown in space fill representation. 3 contains solvated DMF and water, 3a contains disordered methanol and water and 4 contains disordered DMF. The solvent disorder in 3a could not be resolved and hence they are refined as partially occupied oxygen atoms. In 4 the whole DMF molecule was disordered over two positions of which only one of them is shown in the packing. *Color code for solvent atoms:* oxygen: orange; hydrogen: dusty green; nitrogen: light blue; carbon: light pink.

Figure S5: TGA graphs for various samples of 4

Figure S6: PXRD patterns for various samples of 4

Figure S7: TGA comparison plots for de-solvated and re-solvated samples of 3 and 4

Figure S9: Comparitive PXRD patterns for methanol exchanged (3a), de-solvated (3b) and various re-solvated samples

Figure S10: Comparitive PXRD patterns for methanol exchanged (3a), de-solvated (3b) and after CO₂ sorption (3e)

Figure S11: CO₂ and N₂ adsorption and desorption isotherms of **3b** at 195K and 77K, respectively. The BET surface area is calculated to be 133.4 m^2g^{-1}

Figure S12: CO₂ and N₂ adsorption and desorption isotherms of **3b** at room temperature.

Number of solvent molecules per formula (N) unit has been calculated by

 $N = \frac{Volume adsorbed (V) X Formula weight of the de-solvated sample (F)}{Molar volume of 1 mol. of a gas at STP (M)}$

M = 22.4 litre or 22400 mL for the gases at STP F = 360.59 g/mol From the graph, V = 615.91 ml/g for water, V = 45.63 for methanol and V = 8.79 for ethanol For water adsorption N(w) = 9.91 For methanol adsorption N(m) = 0.734 For ethanol adsorption N(e) = 0.141

The ratio of N(w) / N(m) = 13.5The ratio of N(w) / N(e) = 70.3

