Electric Supplementary Information

Dispersed Ru nanoclusters transformed from grafted trinuclear Ru complex on SiO₂ for selective alcohol oxidation

Satoshi Muratsugu^{*a,b,c}, Min Hwee Lim^{a,d}, Takahiro Itoh^{a,c}, Wipavee Thumrongpatanaraks^{a,e}, Mio Kondo^{a,c}, Shigeyuki Masaoka^{a,c}, T. S. Andy Hor^{d,f} and Mizuki Tada^{*a,b,c,g}

^a Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

^b Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan.

E-mail: smuratsugu@chem.nagoya-u.ac.jp

^c Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

^d Department of Chemistry, National University of Singapore, 3 Science Drive 3, S117543, Singapore.

^e Center for Catalysis, Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchatewi, Bangkok, 10400 Thailand.

^f Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, S117602, Singapore.

^g Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan. E-mail: mtada@chem.nagoya-u.ac.jp; Tel: +81-52-788-6200.

Fig. S1. (A, B) FT-IR spectra for Py-et-Si(OEt)₃ and **B** in (A) the vibration region and (B) in the ring-vibration and the rotation region. (C) FT-IR spectra for **A**, **A-Py₃**, **B**, **C**, and **A+SiO₂** (impregnated).

Fig. S2. ¹³C liquid-state NMR of Py-et-Si(OEt)₃ (in DMSO-*d*₆) and ¹³C SS MAS NMR of **B**.

Fig. S3. (A) k^3 -Weighted Ru K-edge EXAFS oscillations and (B) their Fourier transforms for Ru powder, RuO₂, **A**, **C**, **D**, **E**, and **F** (Ru: 3 wt%). Black solid lines in (B): observed data and red dashed lines: fitted data.

Fig. S4. Normalized Ru K-edge XANES spectra of Ru powder, RuO₂, A, C, D, E, and F.

Fig. S5. XRD spectra of Ru powder, RuO₂, D, E, and F (Ru: 3 wt%).

Fig. S6. TEM images of (A) D and (B) E.

Fig. S7. TEM images of **D** (Ru: 1 wt%, 3 wt%, and 6 wt%).

Fig. S8. k^3 -Weighted Ru K-edge EXAFS Fourier transforms for **D** (fresh, Ru: 3 wt%) and **D** (after the benzyl alcohol oxidation, Ru: 3 wt%) measured at 20 K.

Fig. S9. Conversion – time plot for the selective oxidation of benzyl alcohol on **D** (•), and test of heterogeneous nature after the removal of solid part (\Box). Reaction conditions: Ru₃ = 1.0 × 10⁻⁵ mol, Ru₃/benzyl alcohol/dodecane (internal standard) = 1/100/50 (molar ratio), 0.33 mol L⁻¹ of benzyl alcohol in toluene, 353 K, 101.3 kPa of O₂, 6 h.