Supporting Information

Reactivity differences between 2,4- and 2,5-disubstituted zirconacyclopentadienes: a highly selective and general approach to 2,4-disubstituted phospholes.

Guillaume Bousrez,^a Florian Jaroschik,^{*a} Dominique Harakat,^a Agathe Martinez,^a Emmanuel Nicolas,^b Xavier F. Le Goff,^b Jan Szymoniak^{*a}

^a Institut de Chimie Moléculaire de Reims, ICMR, UMR CNRS 7312, Université de Reims, BP 1039, 51687 Reims, France.

^b Laboratoire « Hétéroéléments et Coordination », Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France.

Fax: +33 326913166

Tel: +33 326913244

E-mail: florian.jaroschik@univ-reims.fr; jan.szymoniak@univ-reims.fr

Content

I. Spectroscopic data of compounds 3a-m	S2
II. Crystallographic data for 1b , 3a and 5a	S12
III. Details on DFT calculations of compounds 1a, 1b, 1d and 1e	S15
IV. References for Gaussian	S26
V. ¹ H, ¹³ C and ³¹ P NMR spectra for compounds 1b , 3a-l	S27

I. Spectroscopic data of compounds 3a-m

General procedure for the optimized preparation of phospholes 3.

A Schlenk tube was loaded with dichlorozirconocene (Cp₂ZrCl₂) (584 mg, 2.0 mmol), lanthanum (186 mg, 1.32 mmol) and THF (10 mL) under an atmosphere of argon. The resulting mixture was stirred vigorously at room temperature until a deep red color appeared. At this stage, the alkyne (4 mmol) was added to the reaction mixture and the stirring was continued until complete disappearance of the alkyne as shown by TLC. Then the optimized amount of dichlorophenylphosphine (1.05 - 1.70 mmol) was added at -78°C. After slow warming to room temperature, the reaction mixture was stirred for 18 h. After that time, petroleum ether (20 mL) was added to the brown solution and the solution was filtered over a short column of basic aluminum oxide using petroleum ether/ethyl acetate 8:2 as eluent. The solvent was evaporated and the crude residue was purified by flash column chromatography on silica gel using petroleum ether to yield phospholes **3**. Alternatively, solid phospholes were obtained by recrystallisation from the crude residue using diethyl ether.

Procedure for determining the ratio 3/4

The above reaction was carried out with 1.0 equivalent of dichlorophosphine. Before quenching the reaction mixture, a sample (2 mL) of the solution of phospholes was taken, quenched with water and extracted with diethyl ether. The solvent was evaporated and the residue was analyzed by ¹H NMR to determine the ratio **3/4** based on the protons of the phosphole and butadiene backbones.

1,2,4-triphenylphosphole (3a)

According to the general procedure using phenylacetylene (0.42 mL, 4.0 mmol) and dichlorophenylphosphine (0.14 mL, 1.0 mmol), 3a was obtained as a light yellow solid in 70.0 % yield (0.70 mmol, 218 mg).

¹H (500 MHz, CDCl₃)

7.08 (dd, $J_{P-H} = 40.0$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H1), 7.22-7.29 (m, 3H, H12, H15), 7.31 (d, $J_{H-H} = 8.0$ Hz, 2H, H11), 7.34-7.38 (m, 3H, H8, H16), 7.43 (d, $J_{H-H} = 7.0$ Hz, 2H, H7), 7.46 (d, $J_{P-H} = 7.5$ Hz, 2H, H14), 7.61 (d, $J_{H-H} = 8.0$ Hz, 2H, H10), 7.66 (dd, $J_{P-H} = 12.5$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H3), 7.73 (d, $J_{H-H} = 7.0$ Hz, 2H, H6).

 13 C (125 MHz, CDCl₃) 126.6 (d, J_{P-C} = 1.3 Hz, CH, C6), 126.8 (d, J_{P-C} = 9.5 Hz, CH, C10), 127.5 (CH, C12), 128.0 (CH, C1), 128.2 (CH, C8), 128.8 (CH, C7), 128.8 (d, J_{P-C} = 6.6 Hz, CH, C15), 128.9 (CH, C11), 129.7 (d, J_{P-C} = 1.5 Hz, CH, C16), 130.8 (d, J_{P-C} = 9.9 Hz, C, C13), 131.9 (d, J_{P-C} = 10.3 Hz) Hz, CH, C3), 134.0 (d, $J_{P-C} = 19.5$ Hz, CH, C14), 136.5 (d, $J_{P-C} = 15.9$ Hz, C, C9), 137.0 (d, $J_{P-C} = 3.0$ Hz, C, C5), 150.4 (d, $J_{P-C} = 7.8$ Hz, C, C2), 153.8 (d, $J_{P-C} = 2.0$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 11.3.

HRMS (EI) for C₂₂H₁₇P : calc. (m/z) 312.1068 ; found (m/z) 312.1068.

Melting point: 124°C

2,4-bis(4-methylphenyl)-1-phenylphosphole (3b)

According to the general procedure using 4-methylphenylacetylene (464 mg, 4.0 mmol) and dichlorophenylphosphine (0.14 mL, 1.0 mmol), **3b** was obtained as a yellow solid in 60.9 % yield (0.61 mmol, 207 mg).

¹H (500 MHz, CDCl₃) 2.36 (s, 3H, H18), 2.44 (s, 3H, H17), 7.03 (dd, $J_{P-H} = 40.0$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H1), 7.15 (d, $J_{H-H} = 8.0$ Hz, 2H, H11), 7.28 (m, 5H, H7, H15, H16), 7.47 (ddd, $J_{P-H} = 8.5$ Hz, $J_{H-H} = 8.5$ Hz, $J_{H-H} = 1.5$ Hz, 2H, H14), 7.55 (d, $J_{H-H} = 7.5$ Hz, 2H, H10), 7.64 (dd, $J_{P-H} = 13.0$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H3), 7.71 (d, $J_{H-H} = 8.0$ Hz, 2H, H6).

 ^{13}C (125 MHz, CDCl₃)

21.3 (CH₃, C17), 21.3 (CH₃, C18), 126.3 (CH, C1), 126.4 (d, $J_{P-C} = 0.9$ Hz, CH, C6), 126.6 (d, $J_{P-C} = 9.4$ Hz, CH, C10), 128.7 (d, $J_{P-C} = 8.4$ Hz, CH, C15), 129.5 (CH, 2C, C7, C11), 129.5 (d, $J_{P-C} = 1.3$ Hz, CH, C16), 131.2 (d, $J_{P-C} = 10.1$ Hz, CH, C3), 131.2 (d, $J_{P-C} = 10.3$ Hz, C, C13), 133.7 (d, $J_{P-C} = 16.0$ Hz, C, C9), 134.0 (d, $J_{P-C} = 19.4$ Hz, CH, C14), 134.2 (d, $J_{P-C} = 3.1$ Hz, C, C5), 137.3 (C, C12), 137.9 (C, C8), 150.3 (d, $J_{P-C} = 7.9$ Hz, C, C2), 153.6 (d, $J_{P-C} = 1.6$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 10.8.

HRMS (EI) for $C_{24}H_{21}P$: calc. (m/z) 340.1381 ; found (m/z) 340.1381.

2,4-bis(4-chlorophenyl)-1-phenylphosphole (3c)

According to the general procedure using 4-chlorophenylacetylene (476 mg, 4.0 mmol) and dichlorophenylphosphine (0.24 mL, 1.7 mmol), 3c was obtained as a light yellow solid in 45.7 % yield (0.78 mmol, 295 mg).

¹H (500 MHz, CDCl₃) 7.09 (d, $J_{P-H} = 38.0$ Hz, 1H, H1), 7.29-7.32 (m, 3H, H11, H16), 7.34-7.35 (m, 2H, H15), 7.38-7.44 (m, 4H, H7, H14), 7.53 (d, $J_{H-H} = 8.5$ Hz, 2H, H10), 7.57 (d, $J_{P-H} = 12.5$ Hz, 1H, H3), 7.64 (d, $J_{H-H} = 8.0$ Hz, 2H, H6).

¹³C (125 MHz, CDCl₃) 127.7 (CH, C11), 127.8 (d, $J_{P-C} = 1.3$ Hz, CH, C6), 127.9 (d, $J_{P-C} = 9.4$ Hz, CH, C10), 128.6 (d, $J_{P-C} = 1.0$ Hz, CH, C1), 128.9 (d, $J_{P-C} = 3.3$ Hz, CH, C15), 129.0 (d, $J_{P-C} = 2.0$ Hz, CH, C7), 130.0 (d, $J_{P-C} = 1.5$ Hz, CH, C16), 131.7 (d, $J_{P-C} = 10.4$ Hz, CH, C3), 133.4 (d, $J_{P-C} = 0.9$ Hz, C, C5), 134.0 (d, $J_{P-C} = 19.6$ Hz, CH, C14), 134.0 (C, C8), 134.8 (d, $J_{P-C} = 16.4$ Hz, C, C9), 135.2 (d, $J_{P-C} = 3.0$ Hz, C, C13), 135.8 (C, C12), 149.0 (d, $J_{P-C} = 7.8$ Hz, C, C2), 152.9 (d, $J_{P-C} = 2.1$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 12.3.

HRMS (EI) for $C_{22}H_{15}Cl_2P$: calc. (m/z) 380.0288 ; found (m/z) 380.0288.

2,4-bis(4-fluorophenyl)-1-phenylphosphole (3d)

According to the general procedure using 4-fluorophenylacetylene (480 mg, 4.0 mmol) and dichlorophenylphosphine (0.20 mL, 1.4 mmol), **3d** was obtained as a light yellow oil in 48.0 % yield (0.67 mmol, 234 mg).

¹H (500 MHz, CDCl₃) 6.97 (dd, $J_{P-H} = 39.0$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H1), 6.98 (dd, $J_{H-H} = 8.0$ Hz, $J_{F-H} = 8.0$ Hz, 2H, H11), 7.11 (dd, $J_{H-H} = 8.5$ Hz, $J_{F-H} = 8.5$ Hz, 2H, H7), 7.24-7.30 (m, 3H, H15, H16), 7.38 (ddd, $J_{P-H} = 8.5$ Hz, $J_{H-H} = 8.5$ Hz, $J_{H-H} = 1.5$ Hz, 2H, H14), 7.48 (dd, $J_{P-H} = 12.5$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H3), 7.52 (dd, $J_{H-H} = 7.5$ Hz, $J_{F-H} = 5.5$ Hz, 2H, H10), 7.67 (dd, $J_{H-H} = 8.5$ Hz, $J_{F-H} = 5.0$ Hz, 2H, H6).

¹³C (125 MHz, CDCl₃) 115.7 (d, $J_{P-C} = 2.9$ Hz, CH, C11), 115.9 (d, $J_{P-C} = 3.0$ Hz, CH, C7), 127.4 (CH, C1), 128.2 (dd, $J_{P-C} = 9.1$ Hz, $J_{F-C} = 8.1$ Hz, CH, C10), 128.2 (dd, $J_{P-C} = 3.8$ Hz, $J_{F-C} = 10.4$ Hz, CH, C6), 128.9 (d, $J_{P-C} = 8.5$ Hz, CH, C15), 129.9 (d, $J_{P-C} = 1.4$ Hz, CH, C16), 130.4 (d, $J_{P-C} = 9.6$ Hz, C, C13), 131.5 (dd, $J_{P-C} = 10.1$ Hz, CH, C3), 132.6 (dd, $J_{P-C} = 16.3$ Hz, $J_{F-C} = 3.5$ Hz, C, C9), 133.1 (dd, $J_{P-C} = 3.3$ Hz, $J_{F-C} = 3.3$ Hz, C, C5), 134.0 (d, $J_{P-C} = 19.5$ Hz, CH, C14), 149.3 (d, $J_{P-C} = 7.6$ Hz, C, C2), 153.1 (d, $J_{P-C} = 1.8$ Hz, C, C4), 161.6 (d, $J_{F-C} = 33.1$ Hz, C, C12), 163.6 (d, $J_{F-C} = 33.8$ Hz, C, C8).

¹⁹F (470 MHz, CDCl₃) -113.7, -114.6.

³¹P (200 MHz, CDCl₃) 11.9.

HRMS (EI) for $C_{22}H_{15}F_2P$: calc. (m/z) 348.0879 ; found (m/z) 348.0879.

2,4-bis(4-methoxyphenyl)-1-phenylphosphole (3e)

According to the general procedure using 4-methoxyphenylacetylene (0.46 mL, 4.0 mmol) and dichlorophenylphosphine (0.20 mL, 1.4 mmol), **3e** was obtained as a yellow solid in 36.5 % yield (0.51 mmol, 190 mg).

¹H (500 MHz, CDCl₃)

3.81 (s, 3H, H18), 3.88 (s, 3H, H17), 6.88 (d, $J_{H-H} = 8.0$ Hz, 2H, H11), 6.91 (d, $J_{P-H} = 38.0$ Hz, 1H, H1), 7.00 (d, $J_{H-H} = 8.0$ Hz, 2H, H7), 7.30 (m, 3H, H15, H16), 7.47 (ddd, $J_{P-H} = 8.0$ Hz, $J_{H-H} = 8.0$ Hz, 2H, H14), 7.56 (d, $J_{P-H} = 11.0$ Hz, 1H, H3), 7.58 (d, $J_{H-H} = 7.0$ Hz, 2H, H10), 7.70 (d, $J_{H-H} = 8.0$ Hz, 2H, H6).

¹³C (125 MHz, CDCl₃) 55.3 (CH₃, C18), 55.4 (CH₃, C17), 114.1 (CH, C11), 114.2 (CH, C7), 124.5 (CH, C1), 127.7 (CH, C6), 127.8 (d, $J_{P-C} = 9.4$ Hz, CH, C10), 128.7 (d, $J_{P-C} = 8.4$ Hz, CH, C15), 129.4 (d, $J_{P-C} = 16.4$ Hz, C, C9), 129.5 (d, $J_{P-C} = 1.0$ Hz, CH, C16), 129.8 (d, $J_{P-C} = 3.3$ Hz, C, C5), 130.2 (d, $J_{P-C} = 10.0$ Hz, CH, C3), 131.5 (d, $J_{P-C} = 10.9$ Hz, C, C13), 133.9 (d, $J_{P-C} = 19.4$ Hz, CH, C14), 150.0 (d, $J_{P-C} = 7.6$ Hz, C, C2), 153.3 (d, $J_{P-C} = 1.8$ Hz, C, C4), 159.2 (C, C12), 159.6 (C, C8).

³¹P (200 MHz, CDCl₃) 10.6.

HRMS (EI) for $C_{24}H_{21}O_2P$: calc. (m/z) 372.1279 ; found (m/z) 372.1279.

2,4-bis(2-naphtyl)-1-phenylphosphole (3f)

According to the general procedure using 2-naphtylacetylene (304 mg, 4.0 mmol) and dichlorophenylphosphine (0.20 mL, 1.4 mmol), **3f** was obtained as a yellow solid in 24.3 % yield (0.34 mmol, 140 mg).

¹H (500 MHz, CDCl₃)

7.27 (d, $J_{P-H} = 38.0$ Hz, 1H, H1), 7.29 (d, $J_{H-H} = 6.0$ Hz, 3H, H27, H28), 7.45-7.49 (m, 3H, H19, H20, H23), 7.51-7.58 (m, 3H, H7, H26), 7.53 (d, $J_{H-H} = 8.5$ Hz, 1H, H10), 7.82-7.85 (m, 3H, H18, H21, H24), 7.90 (d, $J_{H-H} = 4.0$ Hz, 2H, H6, H11), 7.93-7.97 (m, 2H, H12), 7.95 (d, $J_{P-H} = 13.5$ Hz, 1H, H3), 8.10 (s, 1H, H16), 8.24 (s, 1H, H14).

¹³C (125 MHz, CDCl₃)

124.7 (CH, C6), 125.0 (d, $J_{P-C} = 8.3$ Hz, CH, C24), 125.4 (d, $J_{P-C} = 1.6$ Hz, CH, C14), 125.6 (d, $J_{P-C} = 10.8$ Hz, CH, C16), 125.9 (CH, C7), 126.3 (CH, C23), 126.4 (CH, C19), 126.4 (CH, C20), 127.8 (CH, C10), 127.8 (CH, C11), 128.2 (CH, C18), 128.4 (CH, C9), 128.4 (CH, C21), 128.5 (CH, C12), 128.6 (CH, C1), 128.8 (d, $J_{P-C} = 8.8$ Hz, CH, C27), 129.7 (d, $J_{P-C} = 1.2$ Hz, CH, C28), 130.8 (d, $J_{P-C} = 10.0$ Hz, C, C25), 132.3 (d, $J_{P-C} = 10.3$ Hz, CH, C3), 132.9 (C, C17), 133.1 (C, C13), 133.6 (d, $J_{P-C} = 11.9$ Hz, C, C15), 133.9 (d, $J_{P-C} = 19.3$ Hz, CH, C26), 134.0 (C, C17), 134.1 (C, C13), 134.2 (d, $J_{P-C} = 2.9$ Hz, C, C5), 150.3 (d, $J_{P-C} = 7.7$ Hz, C, C2), 153.8 (d, $J_{P-C} = 1.8$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 11.7. HRMS (EI) for $C_{30}H_{21}P$: calc. (m/z) 412.1381; found (m/z) 412.1381.

1-phenyl-2,4-bis(2-thienyl)phosphole (3g)

According to the general procedure using 2-thienylacetylene (0.38 mL, 4.0 mmol) and dichlorophenylphosphine (0.14 mL, 1.0 mmol), 3g was obtained as a yellow solid in 57.1 % yield (0.57 mmol, 185 mg).

¹H (500 MHz, CDCl₃)

 $6.88 \; (dd, \, J_{P-H} = 38.5 \; Hz, \, J_{H-H} = 1.5 \; Hz, \, 1H, \, H1), \, 6.94 \; (dd, \, J_{H-H} = 5.0 \; Hz, \, J_{H-H} = 3.5 \; Hz, \, 1H, \, H10), \, 7.10 \; (dd, \, J_{H-H} = 5.0 \; Hz, \, J_{H-H} = 3.5 \; Hz, \, 1H, \, H7), \, 7.17 \; (d, \, J_{H-H} = 5.0 \; Hz, \, 1H, \, H12), \, 7.30-7.33 \; (m, \; 4H, \; H8, \; H15, \; H16), \, 7.37 \; (d, \; J_{H-H} = 3.5 \; Hz, \; 2H, \, H6), \, 7.43 \; (dd, \, J_{P-H} = 11.5 \; Hz, \, J_{H-H} = 1.5 \; Hz, \, 1H, \; H3), \, 7.50 \; (ddd, \, J_{P-H} = 8.0 \; Hz, \, J_{H-H} = 8.0 \; Hz, \, J_{H-H} = 1.5 \; Hz, \, 2H, \, H14).$

¹³C (125 MHz, CDCl₃) 124.7 (d, $J_{P-C} = 3.5$ Hz, CH, C12), 124.8 (d, $J_{P-C} = 1.6$ Hz, CH, C6), 124.9 ($J_{P-C} = 0.5$ Hz CH, C1), 125.1 (d, $J_{P-C} = 7.3$ Hz, CH, C10), 125.5 (d, $J_{P-C} = 0.6$ Hz, CH, C8), 127.9 (CH, C7), 127.9 (CH, C11), 128.9 (d, $J_{P-C} = 8.6$ Hz, CH, C15), 130.0 (d, $J_{P-C} = 1.5$ Hz, CH, C16), 130.5 (d, $J_{P-C} = 9.1$ Hz, CH, C3), 130.8 (d, $J_{P-C} = 11.8$ Hz, C, C13), 134.2 (d, $J_{P-C} = 20.4$ Hz, CH, C14), 139.9 (d, $J_{P-C} = 20.1$ Hz, C, C9), 140.8 (d, $J_{P-C} = 2.9$ Hz, C, C5), 143.8 (d, $J_{P-C} = 7.8$ Hz, C, C2), 147.0 (d, $J_{P-C} = 4.4$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 13.4.

HRMS (EI) for C₁₈H₁₃PS₂ : calc. (m/z) 324.0196 ; found (m/z) 324.0196.

2,4-bis(1-pentyl)-1-phenylphosphole (3h)

According to the general procedure using 1-heptyne (0.52 mL, 4.0 mmol) and dichlorophenylphosphine (0.14 mL, 1.0 mmol), **3h** was obtained as a colourless oil in 63.3 % yield (0.63 mmol, 190 mg).

¹H (500 MHz, CDCl₃)

0.84 (t, $J_{H-H} = 7.0$ Hz, 3H, H9), 0.91 (t, $J_{H-H} = 7.0$ Hz, 3H, H14), 1.23-1.26 (m, 4H, H8, H13), 1.35 (dd, $J_{H-H} = 7.5$ Hz, $J_{H-H} = 3.5$ Hz, 4H, H7, H12), 1.43-1.50 (m, 2H, H11), 1.58-1.63 (m, 2H, H6), 2.37 (t, $J_{H-H} = 8.5$ Hz, 2H, H10), 2.45 (t, $J_{H-H} = 7.5$ Hz, 2H, H5), 6.23 (dd, $J_{P-H} = 40.5$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H1), 6.48 (dd, $J_{P-H} = 14.5$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H3), 7.27-7.32 (m, 5H, H16, H17, H18).

¹³C (125 MHz, CDCl₃)

14.1 (CH₃, C14), 14.2 (CH₃, C9), 22.6 (CH₂, C8), 22.7 (CH₂, C13), 28.7 (d, $J_{P-C} = 2.1$ Hz, CH₂, C6), 30.5 (CH₂, C7), 30.6 (CH₂, C12), 30.8 (d, $J_{P-C} = 6.6$ Hz, CH₂, C11), 31.7 (d, $J_{P-C} = 9.0$ Hz, CH₂, C10), 33.5 (d, $J_{P-C} = 3.4$ Hz, CH₂, C5), 124.1 (CH, C1), 128.6 (d, $J_{P-C} = 8.1$ Hz, CH, C17), 129.2 (d, $J_{P-C} = 1.1$ Hz, CH, C18), 130.7 (d, $J_{P-C} = 10.4$ Hz, C, C15), 133.7 (d, $J_{P-C} = 19.0$ Hz, CH, C16), 134.3 (d, $J_{P-C} = 10.9$ Hz, CH, C3), 154.4 (d, $J_{P-C} = 7.8$ Hz, C, C2), 156.3 (d, $J_{P-C} = 4.6$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 8.1.

HRMS (ESI) for C₂₀H₂₉P [M+H]: calc. (m/z) 301.2007 ; found (m/z) 301.2079.

2,4-bis(tert-butyl)-1-phenylphosphole (3i)

According to the general procedure using tert-butylacetylene (0.48 mL, 4.0 mmol) and dichlorophenylphosphine (0.20 mL, 1.4 mmol), **3i** was obtained as a colourless oil in 47.3 % yield (0.66 mmol, 180 mg).

¹H (500 MHz, CDCl₃) 1.10 (s, 9H, H8), 1.24 (s, 9H, H6), 6.24 (dd, $J_{P-H} = 41.0$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H1), 6.75 (dd, $J_{P-H} = 15.0$ Hz, $J_{H-H} = 1.5$ Hz, 1H, H3), 7.23 (m, 2H, H10), 7.30 (m, 3H, H11, H12).

¹³C (125 MHz, CDCl₃) 29.8 (d, $J_{P-C} = 1.9$ Hz, CH₃, C6), 32.4 (d, $J_{P-C} = 5.9$ Hz, CH₃, C8), 34.7 (d, $J_{P-C} = 2.8$ Hz, C, C5), 35.7 (d, $J_{P-C} = 13.9$ Hz, C, C7), 122.7 (d, $J_{P-C} = 1.3$ Hz, CH, C1), 128.2 (d, $J_{P-C} = 8.6$ Hz, CH, C11), 129.3 (d, $J_{P-C} = 1.6$ Hz, CH, C12), 130.9 (d, $J_{P-C} = 10.8$ Hz, CH, C3), 132.2 (d, $J_{P-C} = 10.8$ Hz, C, C9), 134.2 (d, $J_{P-C} = 20.1$ Hz, CH, C10), 161.8 (d, $J_{P-C} = 7.1$ Hz, C, C4), 165.8 (d, $J_{P-C} = 9.1$ Hz, C, C2).

³¹P (200 MHz, CDCl₃) 1.4.

HRMS (EI) for $C_{18}H_{25}P$: calc. (m/z) 272.1694 ; found (m/z) 272.1694.

1-phenyl-2,4-bis(trimethylsilyl)phosphole (3j)

According to the general procedure using trimethysilylacetylene (0.56 mL, 4.0 mmol) and dichlorophenylphosphine (0.14 mL, 1.0 mmol), 3j was obtained as a colourless oil in 72.4 % yield (0.72 mmol, 220 mg).

¹H (500 MHz, CDCl₃) 0.07 (s, 9H, H5), 0.27 (s, 9H, H6), 7.24-7.27 (m, 4H, H8, H9), 7.29 (dd, $J_{P-H} = 18.5$ Hz, $J_{H-H} = 1.0$ Hz, 1H, H3), 7.31-7.32 (m, 1H, H10), 7.43 (dd, $J_{P-H} = 40.5$ Hz, $J_{H-H} = 1.0$ Hz, 1H, H1). ¹³C (125 MHz, CDCl₃) -0.9 (CH₃, C5), 0.2 (d, $J_{P-C} = 2.7$ Hz, CH₃, C6), 128.4 (d, $J_{P-C} = 8.8$ Hz, CH, C9), 129.6 (d, $J_{P-C} = 1.8$ Hz, CH, C10), 130.3 (d, $J_{P-C} = 9.0$ Hz, C, C7), 134.5 (d, $J_{P-C} = 19.4$ Hz, CH, C8), 147.4 (d, $J_{P-C} = 10.1$ Hz, CH, C3), 149.4 (d, $J_{P-C} = 10.8$ Hz, CH, C1), 150.3 (d, $J_{P-C} = 26.1$ Hz, C, C4), 154.8 (d, $J_{P-C} = 5.5$ Hz, C, C2).

²⁹Si (100 MHz)
-7.04 (d, J_{P-Si} = 25.8 Hz, Si2), -8.17 (d, J_{P-Si} =8.0 Hz, Si1)
³¹P (200 MHz, CDCl₃)
31.9.

HRMS (EI) for $C_{16}H_{25}PSi_2$: calc. (m/z) 304.1232 ; found (m/z) 304.1232.

1-cyclohexyl-2,4-diphenylphosphole (3k)

According to the general procedure using phenylacetylene (0.42 mL, 4.0 mmol) and dichlorocyclohexylphosphine (0.15 mL, 1.0 mmol), 3k was obtained as a light yellow solid in 40.3 % yield (0.40 mmol, 128 mg).

¹H (500 MHz, CDCl₃) 1.10-1.30 (m, 6H, H15, H16), 1.60-1.68 (m, 4H, H14), 2.09-2.14 (m, 1H, H13), 6.96 (dd, $J_{P-H} = 36.5 \text{ Hz}$, $J_{H-H} = 1.0 \text{ Hz}$, 1H, H1), 7.30-7.36 (m, 2H, H8, H12), 7.40-7.46 (m, 4H, H7, H11), 7.52 (dd, $J_{P-H} = 11.5 \text{ Hz}$, $J_{H-H} = 1.0 \text{ Hz}$, 1H, H3), 7.62 (d, $J_{H-H} = 8.0 \text{ Hz}$, 2H, H10), 7.70 (d, $J_{H-H} = 7.5 \text{ Hz}$, 2H, H6).

¹³C (125 MHz, CDCl₃) 26.1 (CH₂, 2C, C15, C16), 27.5 (d, $J_{P-C} = 10.0$ Hz, CH₂, C14), 37.5 (d, $J_{P-C} = 12.6$ Hz, CH, C13), 125.1 (d, $J_{P-C} = 4.1$ Hz, CH, C1), 126.4 (CH, C11), 127.0 (d, $J_{P-C} = 9.1$ Hz, CH, C6), 127.3 (CH, C8), 127.8 (CH, C12), 128.8 (d, $J_{P-C} = 9.3$ Hz, CH, C10), 131.9 (d, $J_{P-C} = 8.8$ Hz, CH, C3), 132.9 (CH, C7), 137.4 (d, $J_{P-C} = 2.8$ Hz, C, C5), 137.9 (d, $J_{P-C} = 15.8$ Hz, C, C9), 150.4 (d, $J_{P-C} = 6.6$ Hz, C, C2), 152.3 (d, $J_{P-C} = 4.6$ Hz, C, C4).

³¹P (200 MHz, CDCl₃) 26.3.

HRMS (EI) for C₂₂H₂₃P : calc. (m/z) 318.1537 ; found (m/z) 318.1537.

3,5-dimethyl-2,4-diphenyl-phenylphosphole (31)

According to the general procedure using phenylpropyne (0.50 mL, 4.0 mmol) and dichlorophenylphosphine (0.28 mL, 2.0 mmol), **31** was obtained as a colourless oil in 25 % yield (0.50 mmol, 169 mg). In addition a non-separable mixture of **31** and **3m** (1 : 1) was obtained in 13 % yield (0.26 mmol, 89 mg).

¹H (500 MHz, CDCl₃) 1.92 (d, $J_{P-H} = 11.0$ Hz, 3H, H17), 1.98 (d, $J_{P-H} = 3.0$ Hz, 3H, H18), 7.13-7.16 (m, 1H, H12), 7.23-7.24 (m, 3H, H15, H16), 7.25-7.29 (m, 4H, H7, H11), 7.30-7.35 (m, 3H, H8, H14), 7.36 (d, $J_{H-H} = 7.5$ Hz, 2H, H10), 7.43 (dd, $J_{H-H} = 7.5$ Hz, $J_{P-H} = 1.5$ Hz, 2H, H6).

¹³C (125 MHz, CDCl₃) 14.0 (d, $J_{P-C} = 20.4$ Hz, CH₃, C17), 16.8 (d, $J_{P-C} = 1.8$ Hz, CH₃, C18), 126.1 (CH, C12), 127.1 (CH, C8), 128.3 (d, $J_{P-C} = 2.3$ Hz, CH, 2C, C6, C7), 128.7 (d, $J_{P-C} = 8.0$ Hz, CH, C15), 129.3 (d, $J_{P-C} = 8.5$ Hz, CH, C10), 129.3 (CH, C16), 129.6 (d, $J_{P-C} = 1.3$ Hz, CH, C11), 132.2 (d, $J_{P-C} = 11.9$ Hz, C, C13), 133.6 (d, $J_{P-C} = 18.6$ Hz, CH, C14), 137.8 (d, $J_{P-C} = 17.9$ Hz, C, C9), 138.1 (d, $J_{P-C} = 3.5$ Hz, C, C5), 142.2 (C, C4), 142.7 (C, C1), 143.1 (d, $J_{P-C} = 11.8$ Hz, C, C3), 149.5 (d, $J_{P-C} = 10.6$ Hz, C, C2).

³¹P (200 MHz, CDCl₃) 15.8

HRMS (EI) for $C_{24}H_{21}P$: calc. (m/z) 340.1381 ; found (m/z) 340.1381.

3,4-dimethyl-2,5-diphenyl-phenylphosphole (3m)

¹H (500 MHz, CDCl₃)

2.10 (d, $J_{P-H} = 2.5$ Hz, 6H, H17, H18), 6.91-6.97 (m, 2H, H8, H12), 7.01-7.07 (m, 2H, H14), 7.12-7.20 (m, 7H, H7, H11, H15, H16), 7.22-7.28 (m, 4H, H6, H10).

 13 C (125 MHz, CDCl₃)

15.4 (d, $J_{P-C} = 1.3$ Hz, CH_3 , 2C, C17, C18), 126.3 (CH, C8, C12), 128.3 (d, $J_{P-C} = 12.4$ Hz, CH, C7, C11), 128.4 (d, $J_{P-C} = 6.8$ Hz, CH, C6, C10), 128.9 (CH, C16), 129.4 (d, $J_{P-C} = 8.4$ Hz, CH, C15), 131.9 (d, $J_{P-C} = 12.3$ Hz, CH, C13), 133.1 (d, $J_{P-C} = 18.0$ Hz, CH, C14), 137.6 (d, $J_{P-C} = 17.6$ Hz, C, C5, C9), 143.5 (d, $J_{P-C} = 11.8$ Hz, C, C2, C3), 144.9 (d, $J_{P-C} = 1.5$ Hz, C, C1, C4).

³¹P (200 MHz, CDCl₃) 13.9

II. Crystallographic data for 1b, 3a, 5a

Crystal data for 1b

Compound	bg237
Molecular formula	$C_{26}H_{22}Zr, 1/2(C_4H_8O)$
Molecular weight	461.71
Crystal habit	Orange Block
Crystal dimensions(mm)	0.40x0.16x0.10
Crystal system	triclinic
Space group	P-1
a(Å)	13.136(1)
b(Å)	13.406(1)
c(Å)	13.761(1)
α(°)	115.669(1)
β(°)	95.441(1)
$\gamma(^{\circ})$	95.918(1)
$V(Å^3)$	2146.1(3)
Ζ	4
$d(g-cm^{-3})$	1.429
F(000)	952
$\mu(cm^{-1})$	0.526
Absorption corrections	multi-scan; 0.8170 min, 0.9492 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	30.03
HKL ranges	-18 17 ; -17 18 ; -19 19
Reflections measured	23820
Unique data	12382
Rint	0.0348
Reflections used	10938
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	532
Reflections / parameter	20
wR2	0.0789
R1	0.0375
Weights a, b	0.0000; 3.0712
GoF	1.082
difference peak / hole (e $Å^{-3}$)	0.568(0.075) / -0.613(0.075)

Crystal data for 3a

Compound	fj373
Molecular formula	'C ₂₂ H ₁₇ P'
Molecular weight	312.33
Crystal habit	Yellow Block
Crystal dimensions(mm)	0.30x0.20x0.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a(Å)	5.884(1)
b(Å)	8.898(1)
c(Å)	30.968(1)
$\alpha(^{\circ})$	90.00
β(°)	96.658(2)
γ(°)	90.00
$V(Å^3)$	1610.4(3)
Z	4
$d(g-cm^{-3})$	1.288
F(000)	656
$\mu(\text{cm}^{-1})$	0.167
Absorption corrections	multi-scan; 0.9515 min, 0.9753 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	28.70
HKL ranges	-67;-1210;-3841
Reflections measured	8866
Unique data	4031
Rint	0.0329
Reflections used	3582
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	208
Reflections / parameter	17
wR2	0.1149
R1	0.0462
Weights a, b	0.0483; 0.8203
GoF	1.055
difference peak / hole (e $Å^{-3}$)	0.362(0.047) / -0.306(0.047)

Crystal data for 5a

Compound	fj_triphenylphosphol
Molecular formula	'C ₂₂ H ₁₇ P'
Molecular weight	312.33
Crystal habit	Yellow Block
Crystal dimensions(mm)	0.22x0.18x0.10
Crystal system	monoclinic
Space group	P2 ₁
a(Å)	12.079(1)
b(Å)	5.832(1)
c(Å)	12.562(1)
$\alpha(^{\circ})$	90.000(1)
β(°)	115.528(1)
$\gamma(^{\circ})$	90.000(1)
$V(Å^3)$	798.54(16)
Ζ	2
$d(g-cm^{-3})$	1.299
F(000)	328
$\mu(cm^{-1})$	0.169
Absorption corrections	multi-scan; 0.9638 min, 0.9833 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	30.03
HKL ranges	-10 16 ; -8 7 ; -17 17
Reflections measured	5707
Unique data	3917
Rint	0.0256
Reflections used	3795
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	209
Reflections / parameter	18
wR2	0.0788
R1	0.0359
Flack's parameter	0.17(8)
Weights a, b	0.0000; 0.3882
GoF	1.064
difference peak / hole ($e \text{ Å}^{-3}$)	0.219(0.041) / -0.188(0.041)

III. Details on DFT calculations of compounds 1a, 1b, 1d and 1e

	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	¥ Y	Z Z
1	40	0	0.839773	-1.156427	0.035012
2	6	0	-1.385991	-1.262938	0.180932
3	6	0	-1.917983	-0.002141	0.062898
4	6	0	-1.013893	1.164438	-0.064460
5	6	0	0.349917	1.058601	-0.129762
6	6	0	1.217637	2.254032	-0.124287
7	6	0	0.857818	3.438519	0.563535
8	6	0	1.693068	4.557935	0.567742
9	6	0	2.919313	4.530701	-0.109268
10	6	0	3.302142	3.366268	-0.785238
11	6	0	2.467542	2.244989	-0.785036
12	6	0	2.064135	-2.850044	-1.526514
13	6	0	2.419655	-1.539145	-1.968705
14	6	0	1.247844	-0.924542	-2.510722
15	6	0	0.170938	-1.852456	-2.387263
16	6	0	0.676577	-3.040978	-1.780169
17	6	0	0.598090	-1.626769	2.563201
18	6	0	1.226220	-0.348035	2.473533
19	6	0	2.533423	-0.532510	1.929269
20	6	0	2.710874	-1.920745	1.672514
21	6	0	1.511067	-2.599980	2.053742
22	1	0	-1.492497	2.147629	-0.070798
23	1	0	-0.077701	3.466343	1.113246
24	1	0	1.391546	5.450950	1.107554
25	1	0	3.569259	5.399995	-0.102133
26	1	0	4.251468	3.331274	-1.311918
27	1	0	2.773258	1.349652	-1.317366
28	1	0	2.736186	-3.576348	-1.092971
29	1	0	3.411100	-1.109266	-1.940895
30	1	0	1.189247	0.057003	-2.954762
31	1	0	-0.846762	-1.687322	-2.704137
32	1	0	0.105107	-3.931543	-1.559776
33	1	0	-0.386914	-1.822612	2.956670
34	1	0	0.797462	0.594002	2.777036
35	1	0	3.255083	0.250173	1.744480
36	1	0	3.602884	-2.384036	1.276345
37	1	0	1.343788	-3.667022	2.008259
38	1	0	-2.068615	-2.114772	0.216679
39	6	0	-3.390216	0.250352	0.024716
40	6	0	-3.939809	1.256193	-0.796889
41	6	0	-4.275088	-0.523655	0.802972
42	6	0	-5.320761	1.472299	-0.844454
43	1	0	-3.284052	1.856319	-1.419495
44	6	0	-5.654307	-0.307472	0.757343
45	1	0	-3.868757	-1.285819	1.460393
46	6	0	-6.184800	0.692737	-0.067354
17	1	0	-5.721395	2.246685	-1.491828
4/	1	0	-6.314808	-0.911756	1.372095
48	_	0	-7 256261	0 863659	_0 100823

Geometry, th	ree lowest	frequencies and	thermochemist	rv of 1 a
--------------	------------	-----------------	---------------	------------------

ed 1 2 3 А А А 27.4444 31.4898 34.8488 Frequencies --Red. masses --3.9262 3.5015 4.7318 Frc consts --0.0017 0.0020 0.0034

Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=

0.0898

IR Inten

-1049.969302 -1049.945737

0.1548

0.0210

Sum	of	electronic	and	thermal	Enthalpies=	-1049.944792
Sum	of	electronic	and	thermal	Free Energies=	-1050.024931

HF=-1050.3666336

Geometry, three lowest frequencies and thermochemistry of 1b (monomer)

Center Number	Atomic Number	Atomic Type	Coorc X	dinates (Ang Y	stroms) Z
1	40	0	-0.000288	-0.662840	0.000235
2	6	0	3.742734	0.026978	-0.649235
3	6	0	5.139925	0.058320	-0.655201
4	6	0	5.822999	1.142589	-0.092455
5	6	0	5.090176	2.191272	0.479440
6	6	0	3.694532	2.160536	0.481514
7	6	0	2.980203	1.081796	-0.095881
8	6	0	1.507661	1.025313	-0.101155
9	6	0	0.730755	2.156436	-0.044565
10	6	0	-0.731114	2.156521	0.041945
11	6	0	-1.508005	1.025478	0.100020
12	6	0	-2.980552	1.081813	0.094876
13	6	0	-3.695005	2.159834	-0.483699
14	6	0	-5.090653	2.190430	-0.481613
15	6	0	-5.823335	1.142302	0.091478
16	6	0	-5.140128	0.058736	0.655422
17	6	0	-3.742936	0.027533	0.649445
18	6	0	0.558659	-2.630461	1.601020
19	6	0	-0.750454	-2.166726	1.943762
20	6	0	-0.620708	-0.859153	2.505009
21	6	0	0.763093	-0.511856	2.485647
22	6	0	1.490854	-1.609253	1.934867
23	6	0	0.620127	-0.861544	-2.504499
24	6	0	-0.764232	-0.516798	-2.485204
25	6	0	-1.489867	-1.614829	-1.932725
26	6	0	-0.555643	-2.633959	-1.597942
27	6	0	0.752457	-2.168264	-1.941736
28	1	0	3.223431	-0.818182	-1.089794
29	1	0	5.695597	-0.763479	-1.097527
30	1	0	6.908120	1.166623	-0.090073
31	1	0	5.609411	3.030617	0.932935
32	1	0	3.144525	2.968944	0.952421
33	1	0	1.193849	3.147976	-0.061748
34	1	0	-1.194188	3.148093	0.058021
35	1	0	-3.145060	2.967745	-0.955534
36	1	0	-5.609998	3.029211	-0.936024
37	1	0	-6.908459	1.166193	0.089082
38	1	0	-5.695709	-0.762619	1.098690
39	1	0	-3.223509	-0.817065	1.090935
40	1	0	0.797713	-3.596997	1.181461
41	1	0	-1.667038	-2.731118	1.844916
42	1	0	-1.422564	-0.246891	2.887217
43	1	0	1.189963	0.415262	2.835117
44	1	0	2.560500	-1.645521	1.787501
45	- 1	0	1.420829	-0.248429	-2.887774
46	-	0	-1.193041	0.408995	-2.835829
47	-	0	-2.559473	-1.653066	-1.785581
4.8	1	0	-0.792843	-3.600362	-1.177015
49	- 1	0	1.670212	-2.730595	-1.842005
	-	÷			2.012000

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates:

	1	2	3
	A	А	A
Frequencies	 21.5373	31.5347	38.4799
Red. masses	 3.8242	4.7774	4.2532
Frc consts	 0.0010	0.0028	0.0037
IR Inten	 0.2220	0.1606	0.0238

Sum	of	electronic	and	zero-po:	int Energies=	-1049.973364
Sum	of	electronic	and	thermal	Energies=	-1049.949773
Sum	of	electronic	and	thermal	Enthalpies=	-1049.948829
Sum	of	electronic	and	thermal	Free Energies=	-1050.028604

HF=-1050.3710451

Geometry, three lowest frequencies and thermochemistry of 1d

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Z
	40	0	-0 922081	1 137827	0 066493
2	6	0	1.329895	-1.139703	0.180404
3	6	0	1.806921	0.131934	-0.010312
4	6	0	0.863936	1.284408	-0.199041
5	6	0	-0.492057	1.061044	-0.209544
6	6	0	-1.517095	2.129692	-0.233010
7	6	0	-1.554642	3.133878	0.765703
8	6	0	-2.560548	4.104098	0.788114
9	6	0	-3.565235	4.105775	-0.187458
10	6	0	-3.549158	3.123699	-1.184877
11	6	0	-2.546589	2.148954	-1.202781
12	6	0	-2.514048	-2.189400	1.848255
13	6	0	-2.669912	-0.775399	1.948850
14	6	0	-1.440911	-0.230003	2.429943
15	6	0	-0.524786	-1.308532	2.621229
16	6	0	-1.187932	-2.519585	2.256540
17	6	0	-0.205347	-2.096184	-2.249213
18	6	0	-1.166453	-1.073746	-2.511237
19	6	0	-2.428586	-1.519783	-2.010333
20	6	0	-2.245037	-2.817255	-1.447672
21	6	0	-0.872165	-3.171973	-1.590023
22	1	0	-0.781084	3.142270	1.527734
23	1	0	-2.559848	4.860228	1.568046
24	1	0	-4.346340	4.859207	-0.170504
25	1	0	-4.317795	3.117446	-1.952569
26	1	0	-2.543707	1.400600	-1.987952
27	1	0	-3.274908	-2.890225	1.537461
28	1	0	-3.565757	-0.214539	1.721825
29	1	0	-1.250953	0.812087	2.630378
30	1	0	0.484489	-1.224950	2.992675
31	1	0	-0.767109	-3.514325	2.304615
32	1	0	0.838328	-2.067408	-2.519849
33	1	0	-0.973629	-0.142971	-3.020918
34	1	0	-3.364330	-0.981626	-2.067749
35	1	0	-3.01/320	-3.432535	-1.009950
36	1	0	-0.420420	-4.101/05	-1.2/3/59
37	6	0	3.28/05/	0.424130	-0.029583
38	6	0	3.9/6463	0.744648	1.155044
39	6	0	4.018981	1 000545	-1.230922
40	0	0	2.331294	1.006545	2 001512
41	1 C	0	5.42/005	0.785390	2.091512
42	0	0	2.393/69	0.031382	-1.249084
43	1 6	0	6 064617	0.121310	-2.100902
44	1	0	5 864084	1 251082	2 065559
45	1	0	5 939700	0 58/195	-2 186711
40	1	0	7 130950	1 155/53	_0 076019
4.8	6	0	1 486040	2 660688	-0.381912
49	1	0	2 041129	2 979342	0.510577
50	1	Õ	2.211952	2.653041	-1.204286
51	1	Õ	0.728115	3,415075	-0.599822
52	6	0	2.221173	-2.342096	0.396183
5.3	1	õ	2.037463	-3.114985	-0.364977
54	1	õ	3.290770	-2.100508	0.371854
55	- 1	0	2.010895	-2.817225	1.366223
	-				

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates:

	1	2	3
	A	А	A
Frequencies	20.9000	24.2791	34.1129
Red. masses	3.7776	3.6593	4.6868
Frc consts	0.0010	0.0013	0.0032
IR Inten	0.0163	0.0037	0.0487

HF=-1128.9703575

Geometry, three lowest frequencies and thermochemistry of 1e

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	40	0	0.002098	-0.844994	0.075088
2	6	0	3.754788	-0.004102	-0.961290
3	6	0	5.135315	-0.067928	-0.745157
4	6	0	5.726702	0.666633	0.289124
5	6	0	4.919760	1.473649	1.100547
6	6	0	3.540993	1.543233	0.879648
7	6	0	2.920463	0.807001	-0.159158
8	6	0	1.447910	0.845287	-0.332055
9	6	0	0.743260	1.979890	-0.650172
10	6	0	-0.759991	1.976113	-0.642633
11	6	0	-1.456649	0.840214	-0.311735
12	6	0	-2.929191	0.798016	-0.135787
13	6	0	-3.544510	1.509200	0.923279
14	6	0	-4.923334	1.440512	1.144429
15	6	0	-5.735245	0.659182	0.313222
16	6	0	-5.148985	-0.049701	-0.741654
17	6	0	-3.768511	0.013822	-0.958805
18	6	0	0.702480	-2.209648	2.147670
19	6	0	-0.728838	-2.136173	2.175216
20	6	0	-1.093468	-0.784149	2.440126
21	6	0	0.105767	-0.021384	2.556670
22	6	0	1.214158	-0.903575	2.391531
23	6	0	0.701946	-1.473338	-2.355103
24	6	0	-0.724603	-1.455073	-2.352731
25	6	0	-1.1/8346	-2.530859	-1.530599
26	6	0	-0.032351	-3.21518/	-1.03131/
27	6	0	1.130051	-2.559889	-1.53334/
28	1	0	3.310/88 5.7501/5	-0.5/6853	-1.//0888
29	1	0	5./50105	-0.691670	-1.38//91
30	1	0	6./9/229 E 26/222	0.012287	1 005710
31	1	0	2.204323	2.031023	1 51/227
32	1	0	2.923200	2.1/1/00	1 571906
31	1	0	-2.922792	1 999625	1 96/881
35	1	0	-6 805801	0 605464	0 483592
36	1	0	-5 767841	-0 652325	-1 400411
37	1	0	-3 335214	-0 536902	-1 786024
38	1	0	1.289366	-3.105126	2.002055
39	1	0	-1,410184	-2.966717	2.058397
40	1	0	-2.099534	-0.400327	2.519708
41	1	0	0.164509	1.040892	2.739339
42	1	0	2.256230	-0.621985	2.424947
43	1	0	1.336323	-0.795793	-2.903866
44	1	0	-1.343029	-0.760907	-2.898861
45	1	0	-2.208772	-2.788521	-1.330839
46	1	0	-0.042764	-4.087578	-0.394251
47	1	0	2.153932	-2.846062	-1.338554
48	6	0	-1.455105	3.278438	-1.017351
49	1	0	-2.540235	3.165345	-1.003935
50	1	0	-1.192905	4.096536	-0.333212
51	1	0	-1.164358	3.606942	-2.023911
52	6	0	1.427883	3.288904	-1.020616
53	1	0	1.174929	4.097940	-0.322147
54	1	0	2.513407	3.179225	-1.027004

55	1	0	1.118929	3.628759	-2.017817
Harmonic fre activities incident li	quencies (A**4/AM ght, red	(cm**-1), IF U), depolariz uced masses (t intensities (KM, ation ratios for AMU), force cons	/Mole), Ram plane and cants (mDyr	nan scattering unpolarized ne/A),
and normal	coordina	tes:		· -	
		1	2		3
		A	A		A
Frequencies	2	0.1136	24.4941		35.2801
Red. masses		3.8339	3.5997		4.7998
Frc consts		0.0009	0.0013		0.0035
IR Inten		0.0361	0.0309		0.0024

HF=-1128.9741671

NBO analysis of 1a

Summary of Natural Population Analysis:

	Natural		Natural	Population	
Atom No	Charge	Core	Valence	Rydberg	Total
Zr 1	1.65141	35.97814	2.27740	0.09305	38.34859
C 2	-0.63201	1.99868	4.61760	0.01572	6.63201
С З	-0.06900	1.99883	4.05613	0.01405	6.06900
C 4	-0.24217	1.99884	4.23251	0.01083	6.24217
C 5	-0.40529	1.99868	4.38545	0.02116	6.40529
C 6	-0.06047	1.99889	4.04746	0.01411	6.06047
C 7	-0.23130	1.99896	4.22189	0.01046	6.23130
C 8	-0.23748	1.99899	4.22699	0.01150	6.23748
C 9	-0.24956	1.99899	4.23914	0.01143	6.24956
C 10	-0.24048	1.99899	4.22996	0.01153	6.24048
C 11	-0.22950	1.99896	4.21985	0.01069	6.22950
C 12	-0.34454	1.99882	4.32860	0.01712	6.34454
C 13	-0.37345	1.99880	4.35806	0.01659	6.37345
C 14	-0.34287	1.99875	4.32790	0.01622	6.34287
C 15	-0.31852	1.99876	4.30331	0.01645	6.31852
C 16	-0.34932	1.99878	4.33440	0.01613	6.34932
C 17	-0.33398	1.99875	4.31909	0.01614	6.33398
C 18	-0.32554	1.99876	4.31013	0.01665	6.32554
C 19	-0.34516	1.99877	4.33017	0.01621	6.34516
C 20	-0.34717	1.99883	4.33139	0.01695	6.34717
C 21	-0.37385	1.99880	4.35831	0.01673	6.37385
Н 22	0.22748	0.00000	0.77013	0.00239	0.77252
Н 23	0.24208	0.00000	0.75652	0.00140	0.75792
Н 24	0.24203	0.00000	0.75684	0.00113	0.75797
Н 25	0.24108	0.00000	0.75789	0.00103	0.75892
Н 26	0.24066	0.00000	0.75826	0.00108	0.75934
Н 27	0.23208	0.00000	0.76642	0.00150	0.76792
H 28	0.27012	0.00000	0.72895	0.00092	0.72988
Н 29	0.27128	0.00000	0.72784	0.00087	0.72872
H 30	0.28235	0.00000	0.71665	0.00100	0.71765
H 31	0.28315	0.00000	0.71587	0.00098	0.71685
H 32	0.27264	0.00000	0.72650	0.00086	0.72736
H 33	0.28078	0.00000	0.71826	0.00096	0.71922
H 34	0.28279	0.00000	0.71616	0.00105	0.71721
H 35	0.2/849	0.00000	0.72050	0.00101	0.72151
H 36	0.26991	0.00000	0.72918	0.00091	0.73009
H 3/	0.2/186	0.00000	0.72720	0.00094	0.72814
H 38	0.22/32	0.00000	0.77146	0.00121	0.77268
C 39	-0.04663	1.99890	4.03491	0.01282	6.04063
C 40	-0.23229	1.99095	4.22319	0.01014	6.23229
C 41	-0.22520	1.99895	4.21590	0.01034	6.22520
U 42	-0.23//2	1.22022	4.22/18	0.01125	0.23/12
п 43 С ЛЛ	0.24400	1 00000	1 22057	0.00126	6 23002
U 44 U / L	0.23902	1.22022	4.22001	0.01143	0.23902
п 4J С 46	-0 24573	1 99899	J 23511	0.00141	6 24573
U 40	0.24373	1.22022	7.20044	0.01100	0.243/3
н ло	0.24200	0.00000	0.75092	0.00100	0.75855
H 49	0.24113	0.00000	0.75783	0.00104	0.75887
	· · · · · · · · · · · · · · · · · · ·			0.00T01	

=:							
*	Total	*	0.00000	87.94857	129.56899	0.48244	218.00000

NBO analysis of 1b

Summary	of	Natural	Population	Analysis:
---------	----	---------	------------	-----------

Summary Or	Naculal IOF	Julacion Anal	Natural Po	pulation	
Atom No	Natural Charge	Core	Valence	Rydberg	Total
Zr 1	1.62533	35.97745	2.29605	0.10116	38.37467
C 2	-0.22729	1.99897	4.21780	0.01052	6.22729
С З	-0.24104	1.99899	4.23049	0.01157	6.24104
C 4	-0.24886	1.99899	4.23842	0.01145	6.24886
C 5	-0.23852	1.99899	4.22805	0.01148	6.23852
C 6	-0.22642	1.99896	4.21710	0.01036	6.22642
C 7	-0.06325	1.99889	4.05037	0.01399	6.06325
C 8	-0.40753	1.99864	4.38821	0.02068	6.40753
C 9	-0.25030	1.99885	4.23948	0.01197	6.25030
C 10	-0.25029	1.99885	4.23947	0.01197	6.25029
C 11	-0.40756	1.99864	4.38824	0.02068	6.40756
C 12	-0.06320	1.99889	4.05032	0.01399	6.06320
C 13	-0.22641	1.99896	4.21709	0.01036	6.22641
C 14	-0.23854	1.99899	4.22806	0.01148	6.23854
C 15	-0.24888	1.99899	4.23843	0.01145	6.24888
C 16	-0.24105	1.99899	4.23050	0.01157	6.24105
C 17	-0.22726	1.99897	4.21///	0.01052	6.22/26
C 18 C 10	-0.34699	1.99880	4.33113	0.01/05	6.34699
C 19	-0.3/512	1.99879	4.33960	0.01673	6.3/312
C 20	-0.33739	1 00074	4.32233	0.01612	6 30033
C 21	0 33070	1 00076	4.30000	0.01672	6 33070
C 23	-0.337/1	1 99870	4.32377	0.01628	6 337/1
C 24	-0.32245	1 99874	4 30700	0.01671	6 32245
C 25	-0 33896	1 99876	4 32393	0.01627	6 33896
C 26	-0.34692	1,99880	4.33107	0.01705	6.34692
C 27	-0.37495	1.99879	4.35944	0.01672	6.37495
Н 28	0.23210	0.00000	0.76639	0.00151	0.76790
Н 29	0.24102	0.00000	0.75791	0.00108	0.75898
Н 30	0.24146	0.00000	0.75751	0.00103	0.75854
Н 31	0.24212	0.00000	0.75675	0.00113	0.75788
Н 32	0.24001	0.00000	0.75857	0.00141	0.75999
Н ЗЗ	0.22819	0.00000	0.76944	0.00237	0.77181
Н 34	0.22820	0.00000	0.76943	0.00237	0.77180
Н 35	0.24000	0.00000	0.75858	0.00141	0.76000
Н 36	0.24212	0.00000	0.75675	0.00113	0.75788
Н 37	0.24146	0.00000	0.75751	0.00103	0.75854
Н 38	0.24101	0.00000	0.75791	0.00108	0.75899
Н 39	0.23209	0.00000	0.76639	0.00151	0.76791
H 40	0.27062	0.00000	0.72846	0.00093	0.72938
H 41	0.2/110	0.00000	0.72795	0.00095	0.72890
H 42	0.28292	0.00000	0.71606	0.00102	0.71708
п 43 Н ЛЛ	0.20202	0.00000	0.71044	0.00104	0.72087
II 44 II 45	0.20203	0.00000	0.71605	0.00103	0.72084
н 46	0.20293	0 00000	0 71644	0 00104	0 71747
H 47	0.27913	0.00000	0.71978	0.00108	0.72087
н 48	0.27061	0.00000	0.72847	0.00093	0.72939
Н 49	0.27107	0.00000	0.72798	0.00095	0.72893
* Total *	0.00000	87.94766	129.55426	0.49808	218.00000

NBO analysis of 1d

				Natural P	opulation	
Atom	No	Natural Charge	Core	Valence	Rydberg	Total
Zr	1	1.68663	35.97695	2.23732	0.09910	38.31337
С	2	-0.37831	1.99862	4.36050	0.01919	6.37831
С	3	-0.07962	1.99871	4.06516	0.01574	6.07962
С	4	-0.00424	1.99874	3.99285	0.01265	6.00424

C 5	-0.43883	1.99860	4.42097	0.01926	6.43883
C 6	-0.05210	1.99888	4.03891	0.01430	6.05210
C 7	-0.24530	1.99894	4.23536	0.01100	6.24530
C 8	-0.23727	1.99898	4.22673	0.01156	6.23727
C 9	-0.25623	1.99899	4.24573	0.01151	6.25623
C 10	-0.23891	1.99899	4.22848	0.01145	6.23891
C 11	-0.23472	1.99894	4.22466	0.01113	6.23472
C 12	-0.34410	1.99883	4.32854	0.01674	6.34410
C 13	-0.36014	1.99877	4.34475	0.01661	6.36014
C 14	-0.33208	1.99874	4.31673	0.01660	6.33208
C 15	-0.33248	1.99874	4.31737	0.01636	6.33248
C 16	-0.36392	1.99878	4.34877	0.01636	6.36392
C 17	-0.32541	1.99875	4.31021	0.01646	6.32541
C 18	-0.34371	1.99874	4.32887	0.01610	6.34371
C 19	-0.36574	1.99878	4.35083	0.01613	6.36574
C 20	-0.34185	1.99882	4.32619	0.01683	6.34185
C 21	-0.36052	1.99878	4.34548	0.01626	6.36052
Н 22	0.24201	0.00000	0.75682	0.00117	0.75799
Н 23	0.24144	0.00000	0.75742	0.00113	0.75856
Н 24	0.24050	0.00000	0.75847	0.00104	0.75950
Н 25	0.24014	0.00000	0.75876	0.00110	0.75986
Н 26	0.23304	0.00000	0.76554	0.00142	0.76696
Н 27	0.26921	0.00000	0.72993	0.00086	0.73079
Н 28	0.27703	0.00000	0.72201	0.00096	0.72297
Н 29	0.28055	0.00000	0.71827	0.00117	0.71945
н 30	0.27899	0.00000	0.72009	0.00092	0.72101
Н 31	0.27126	0.00000	0.72786	0.00088	0.72874
Н 32	0.27913	0.00000	0.71993	0.00093	0.72087
н 33	0.28029	0.00000	0.71874	0.00097	0.71971
Н 34	0.27263	0.00000	0.72643	0.00094	0.72737
Н 35	0.26933	0.00000	0.72982	0.00085	0.73067
Н 36	0.27099	0.00000	0.72816	0.00085	0.72901
C 37	-0.04934	1.99890	4.03476	0.01568	6.04934
C 38	-0.23065	1.99890	4.22120	0.01055	6.23065
C 39	-0.23173	1.99890	4.22229	0.01055	6.23173
C 40	-0.23851	1.99899	4.22795	0.01157	6.23851
H 41	0.24333	0.00000	0.75542	0.00126	0.75667
C 42	-0.23847	1.99899	4.22790	0.01158	6.23847
Н 43	0.24352	0.00000	0.75523	0.00125	0.75648
C 44	-0.24874	1.99899	4.23847	0.01128	6.24874
Н 45	0.24189	0.0000	0.75700	0.00111	0.75811
H 46	0.24203	0.0000	0.75686	0.00111	0.75797
Н 47	0.24156	0.00000	0.75739	0.00105	0.75844
C 48	-0.72185	1.99923	4.71804	0.00459	6.72185
Н 49	0.24656	0.00000	0.75198	0.00147	0.75344
Н 50	0.25072	0.00000	0.74787	0.00141	0.74928
H 51	0.25168	0.00000	0.74718	0.00114	0.74832
C 52	-0.72156	1.99923	4.71704	0.00530	6.72156
Н 53	0.23634	0.00000	0.76210	0.00156	0.76366
Н 54	0.24800	0.00000	0.75008	0.00192	0.75200
Н 55	0.23752	0.00000	0.76083	0.00165	0.76248
* Total :	* 0 00000	91 94522	141 54223	0 51255	234 00000
TOCAT	0.00000	JI . JIJ22	T IT . J I C C J	0.01200	234.00000

NBO analysis of 1e

	Natural		Natural P	opulation	
Atom No	c Charge	Core	Valence	Rydberg	Total
Zr 1	1.68547	35.97707	2.23933	0.09813	38.31453
C 2	-0.23528	1.99893	4.22548	0.01086	6.23528
С 3	-0.23800	1.99899	4.22755	0.01146	6.23800
C 4	-0.25648	1.99899	4.24598	0.01151	6.25648
C 5	-0.23824	1.99898	4.22769	0.01157	6.23824
C 6	-0.24725	1.99893	4.23717	0.01115	6.24725
C 7	-0.05543	1.99889	4.04204	0.01450	6.05543
C 8	-0.42279	1.99859	4.40484	0.01937	6.42279
C 9	-0.01911	1.99875	4.00777	0.01260	6.01911
C 10	-0.01904	1.99875	4.00768	0.01262	6.01904

C 11 -0.4	2331 1.9	9859 4.	.40539	0.01933	6.42331
C 12 -0.0	5487 1.9	9889 4.	.04145	0.01453	6.05487
C 13 -0.2	4885 1.9	9893 4.	23873	0.01119	6.24885
C 14 -0 2	3755 1 9	9898 4	22700	0 01157	6 23755
C 14 -0.2	5755 I.J	0000 4.	24602	0.01151	6 25642
0.2	3043 I.9	9099 4. 0000 4	.24393	0.01151	0.23043
C 16 -0.2	3//2 1.9	9899 4.	.22/26	0.0114/	6.23/72
C 17 -0.2	3604 1.9	9893 4.	.22626	0.01085	6.23604
C 18 -0.3	6686 1.9	9881 4.	.35104	0.01701	6.36686
C 19 -0.3	7245 1.9	9880 4.	.35654	0.01710	6.37245
C 20 -0.3	3191 1.9	9875 4.	.31708	0.01608	6.33191
C 21 -0.3	2468 1.9	9875 4.	.30933	0.01660	6.32468
C 22 -0.3	3201 1.9	9875 4.	.31726	0.01600	6.33201
C 23 -0.3	3446 1.9	9875 4.	.31960	0.01611	6.33446
C 24 -0.3	3341 1.9	9875 4.	31856	0.01609	6.33341
C 25 _0 3	6016 1 9	9878 A	34561	0 01607	6 36046
C 25 -0.5	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0001 4	22740	0.01725	6 24254
C 20 -0.3	4334 1.9	9001 4. 0070 4	. 32 / 40	0.01/25	6.34334
0.3	6192 1.9	98/8 4.	.34700	0.01614	6.36192
H 28 0.2	3361 0.0	0000 0.	. 76499	0.00140	0.76639
H 29 0.2	4098 0.0	0000 0.	.75793	0.00109	0.75902
H 30 0.2	4114 0.0	0000 0.	.75782	0.00103	0.75886
н 31 0.2	4213 0.0	0000 0.	.75674	0.00113	0.75787
Н 32 0.2	4386 0.0	0000 0.	.75492	0.00122	0.75614
Н 33 0.2	4418 0.0	0000 0.	.75459	0.00123	0.75582
Н 34 0.2	4207 0.0	0000 0.	.75680	0.00113	0.75793
Н 35 0.2	4111 0.0	0000 0.	.75786	0.00103	0.75889
Н 36 0.2	4099 0.0	0000 0.	.75792	0.00109	0.75901
н 37 0.2	3362 0.0	0000 0.	76498	0.00141	0.76638
H 38 0.2	7154 0.0	0000 0.	72745	0.00101	0.72846
H 39 0.2	7222 0.0	0000 0.	72675	0.00103	0.72778
H 40 0 2	8149 0.0	0000 0	71731	0 00120	0 71851
H 41 0 2	7698 0.0	0000 0.	72200	0 00102	0 72302
II 41 0.2	0172 0.0	0000 0.	71715	0.00112	0.7202
п 42 0.2	7705 0.0	0000 0.	70100	0.00112	0.71027
п 45 0.2	7770 0.0	0000 0.	.72120	0.00095	0.72215
H 44 0.2	7778 0.0	0000 0.	. /212/	0.00095	0.72222
H 45 0.2	7394 0.0	0000 0.	. 72501	0.00104	0.72606
H 46 0.2	7056 0.0	0000 0.	. 72850	0.00093	0.72944
H 4'/ 0.2	/362 0.0	0000 0.	72535	0.00102	0.72638
C 48 -0.7	1937 1.9	9924 4.	.71518	0.00495	6.71937
Н 49 0.2	5493 0.0	0000 0.	.74397	0.00110	0.74507
Н 50 0.2	4169 0.0	0000 0.	.75699	0.00132	0.75831
Н 51 0.2	4342 0.0	0000 0.	.75529	0.00129	0.75658
C 52 -0.7	1956 1.9	9924 4.	.71537	0.00495	6.71956
н 53 0.2	4147 0.0	0000 0.	.75720	0.00133	0.75853
н 54 0.2	5494 0.0	0000 0.	.74396	0.00110	0.74506
H 55 0.2	4367 0.0	0000 0.	75505	0.00129	0.75633
	=============				===========
* Total * 0.0	0000 91.9	4537 141.	.54658	0.50805 2	34.00000

Geometry, three lowest frequencies and thermochemistry of 1b (tetramer)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	5.550742	-3.130631	-2.379764
2	6	0	5.238097	-3.222696	-0.985279
3	6	0	3.819602	-3.090684	-0.836226
4	6	0	3.248562	-2.927652	-2.145973
5	6	0	4.321308	-2.949619	-3.097755
6	40	0	4.609378	-0.782765	-1.729913
7	6	0	6.829384	0.552775	-1.575483
8	6	0	6.830700	-0.102397	-2.849684
9	6	0	5.770522	0.460125	-3.640751
10	6	0	5.120760	1.471051	-2.856331
11	6	0	5.772852	1.522522	-1.578305
12	6	0	4.163154	-0.146631	0.394913
13	6	0	2.883190	0.382266	0.332809
14	6	0	2.099535	0.460745	-0.897211
15	6	0	2.550993	0.040574	-2.136703
16	6	0	1.765723	0.186345	-3.367958
17	6	0	0.535078	0.907795	-3.441897
18	6	0	-0.154708	1.049226	-4.655536
19	6	0	0.350966	0.464484	-5.835563

20	6	0	1 558200	-0 260204	-5 787500
21	C C	0	2.350200	0.200201	4 574622
21	0	0	2.254400	-0.300397	-4.574033
22	6	0	4.959450	-0.1/45/5	1.62/048
23	6	0	6.159388	-0.938221	1.660992
24	6	0	6.947813	-1.022684	2.820042
25	6	0	6 564541	-0 329414	3 984676
20	6	0	E 200006	0.020111	2 060522
20	0	0	5.390906	0.454399	3.968533
27	6	0	4.601243	0.535341	2.812130
28	6	0	3.118623	3.763508	-0.631981
29	6	0	3.406252	5.154207	-0.424398
30	6	0	2 020200	5 906162	1 500701
21	0	0	2.027200	1.000102	-1.303731
31	6	0	2.18/385	4.966380	-2.389108
32	6	0	2.360224	3.651266	-1.847242
33	40	0	0.862944	4.879035	-0.137753
34	6	0	-1 225192	6 401223	-0 017445
25	6	0	0.004650	7 227046	0 202522
55	0	0	-0.084050	7.227040	-0.202555
36	6	0	0./59094	7.208038	0.88/461
37	б	0	0.138499	6.365788	1.864687
38	6	0	-1.075789	5.854994	1.299068
39	6	0	-0 679761	3 536961	-1 077678
10	0	0	0.070701	0.470610	1.077070
40	6	0	-0./383/4	2.4/8613	-0.185202
41	6	0	0.035162	2.372959	1.052129
42	6	0	0.933213	3.326898	1.498058
43	6	0	1.666153	3.206484	2.761738
11	6	0	1 326595	2 263770	3 777528
44	0	0	1.520595	2.203770	3.111320
45	6	0	2.06/885	2.182/24	4.965484
46	6	0	3.166263	3.041002	5.185070
47	6	0	3.514010	3.985692	4.199460
48	6	0	2 769484	4 069075	3 011577
40	0	0	1 504067	9.000070	0.074050
49	6	0	-1.52486/	3.620860	-2.2/4253
50	6	0	-1.354608	4.711859	-3.171338
51	6	0	-2.146258	4.846755	-4.323938
52	6	0	-3.148464	3.897940	-4.609287
52	6	0	3 346503	2 011017	3 730120
55	0	0	-3.540505	2.011014	-5.750125
54	6	0	-2.545056	2.6/2169	-2.58/201
55	б	0	-3.819599	3.090691	0.836235
56	6	0	-5.238083	3.222731	0.985390
57	6	0	-5 550633	3 130652	2 379896
E 0	6	0	A 2011EE	2 040600	2.007700
50	0	0	-4.521155	2.949600	3.09/190
59	6	0	-3.248475	2.927620	2.145942
60	40	0	-4.609362	0.782777	1.729922
61	6	0	-6.829374	-0.552752	1.575379
62	6	0	-6 830752	0 102/31	2 8/957/
02	0	0	-0.030732	0.102431	2.049574
63	6	0	-5.770617	-0.460092	3.640701
64	6	0	-5.120823	-1.471031	2.856323
65	6	0	-5.772848	-1.522505	1.578264
66	6	0	_1 163127	0 1/6675	_0 30/013
C7	C C	0	2 002170	0.140075	0.00000
67	0	0	-2.8831/6	-0.382252	-0.332808
68	6	0	-2.099533	-0.460772	0.897215
69	6	0	-2.550996	-0.040616	2.136710
70	6	0	-1.765735	-0.186414	3.367969
71	6	0	0 535059	0 007010	3 1/1000
71	0	0	0.154704	1 040060	J.441000
12	6	0	0.154/24	-1.049263	4.655525
73	6	0	-0.350988	-0.464600	5.835575
74	6	0	-1.558258	0.260032	5.787534
75	6	0	-2.254452	0.388249	4.574666
76	6	0	4 050410	0.174627	1 627050
/0	0	0	-4.959410	0.1/403/	-1.62/050
11	6	0	-6.159321	0.938336	-1.661012
78	6	0	-6.947746	1.022802	-2.820061
79	6	0	-6.564508	0.329484	-3.984678
00	6	0	5 300003	0 454376	3 069510
00	0	0	-3.390903	-0.434370	-3.900519
81	6	0	-4.601241	-0.535321	-2.812116
82	6	0	-3.118626	-3.763481	0.631990
83	6	0	-3.406280	-5.154171	0.424384
84	6	0	-2.829327	-5.896154	1.509768
0 5	c	0	2.02027	1 066207	2 200100
00	Ö	U	-2.10/419	-4.90039/	2.309102
86	6	0	-2.360232	-3.651271	1.847257
87	40	0	-0.862959	-4.879034	0.137764
88	6	0	1.225194	-6.401193	0.017440
89	6	n N	0 084672	-7 227827	0 282582
00	0	0	0.004072	7 2000000	0.202302
90	6	U	-0./59103	-/.208066	-0.88/390
91	6	0	-0.138549	-6.365834	-1.864656
92	6	0	1.075745	-5.855003	-1.299084
93	6	0	0.679757	-3.536957	1.077667
91	é.	Õ	0 720277	-2 178676	0 1 2 5 1 7 1
ノユ	0	v	0.100011	2.7/0020	0.1001/1

95	6	0	-0.035156	-2.372985	-1.052163
96	6	0	-0.933219	-3.326922	-1.498075
97	6	0	-1.666167	-3.206517	-2.761751
98	6	0	-1.326644	-2.263784	-3.777536
99	6	0	-2.067947	-2.182745	-4.965484
100	6	0	-3.166305	-3.041049	-5.185069
101	6	0	-3.514018	-3.985758	-4.199466
102	6	0	-2.769478	-4.069135	-3.011591
103	6	0	1.524869	-3.620839	2.274239
104	6	0	1.354589	-4.711802	3.171362
105	6	0	2.146247	-4.846679	4.323960
106	6	0	3.148483	-3.897883	4.609266
107	6	0	3.346544	-2.811794	3.730068
108	6	0	2.545087	-2.6/216/	2.58/144
109	1	0	-6.456513	1.4/2303	-0./58381
111	1	0	- 1.85/682	1.025280	-2.816431
112	1	0	-7.174000	-1 011744	-4.000793
113	1	0	-3 709578	-1 159725	-2 828364
114	1	0	-2 384661	-0 780008	-1 225559
115	1	0	-1 099704	-0.888136	0 778905
116	1	0	-0.122006	-1.375884	2.550470
117	1	0	1.084255	-1.617061	4.674806
118	1	0	0.184707	-0.579964	6.778791
119	1	0	-1.957950	0.717260	6.694259
120	1	0	-3.196007	0.935584	4.540351
121	1	0	-7.512866	0.885243	3.163736
122	1	0	-5.513657	-0.181305	4.657454
123	1	0	-4.287099	-2.087178	3.167920
124	1	0	-5.507887	-2.177098	0.758123
125	1	0	-7.485903	-0.336917	0.738698
126	1	0	-5.946524	3.374311	0.178578
127	1	0	-3.271201	3.131445	-0.094985
128	1	0	-2.195458	2.806311	2.366625
129	1	0	-4.221422	2.864739	4.174835
130	1	0	-6.540428	3.199553	2.818624
131	1	0	0.587095	-5.452506	2.942581
132	1	0	1.98/3/9	-5.691976	4.995805
133	1	0	3.//042/	-4.005366	2 0 2 0 2 0 1
125	1	0	4.120073 2 710232	-2.071029	1 032634
136	1	0	1 /070/2	-1.632381	0 36/932
137	1	0	0 145133	-1 453346	-1 622088
138	1	0	-0.475605	-1.599640	-3.641879
139	1	0	-1.780649	-1.449081	-5.718670
140	1	0	-3.735840	-2.980012	-6.113458
141	1	0	-4.361012	-4.655006	-4.358660
142	1	0	-3.031466	-4.802622	-2.249471
143	1	0	-0.103695	-7.787627	1.193112
144	1	0	-1.694914	-7.744761	-1.005289
145	1	0	-0.540662	-6.111769	-2.839196
146	1	0	1.754842	-5.155143	-1.771857
147	1	0	2.035020	-6.187989	0.705398
148	1	0	-3.410198	-2.939521	-0.006692
149	1	0	-3.973798	-5.574970	-0.399235
150	1	0	-2.873797	-6.973063	1.637673
151	1	0	-1.650579	-5.206311	3.300275
152	1	0	-1.988312	-2./33053	2.2/9298
153	1	0	-0.58/136	5.452576	-2.942522
154	1	0	-1.98/40/	5.692080	-4.995/52
156	1	0	-3.770402	2 071035	-3.490002
157	1	0	-2 718183	1 820659	-1 932725
158	1	0	-1 407029	1 632364	-0 364983
159	1	0	-0.145119	1.453310	1.622041
160	1	0	0.475540	1.599648	3.641868
161	1	0	1.780562	1.449074	5.718675
162	1	0	3.735787	2.979961	6.113466
163	1	0	4.361021	4.654918	4.358655
164	1	0	3.031498	4.802545	2.249450
165	1	0	0.103750	7.787669	-1.193042
166	1	0	1.694910	7.744714	1.005399
167	1	0	0.540581	6.111693	2.839232
168	1	0	-1.754913	5.155135	1.771802
169	1	0	-2.035002	6.188049	-0.705432

	170	1	0	3.410215	2.939562	0.006710
	171	1	0	3.973764	5.575030	0.399212
	172	1	0	2.873731	6.973070	-1.637713
	173	1	0	1.650533	5.206270	-3.300280
	174	1	0	1.988316	2.733035	-2.279265
	175	1	0	6.456609	-1.472148	0.758346
	176	1	0	7.857775	-1.625122	2.816398
	177	1	0	7.174839	-0.388950	4.886792
	178	1	0	5.088508	1.011732	4.855030
	179	1	0	3.709557	1.159711	2.828392
	180	1	0	2.384671	0.780018	1.225559
	181	1	0	1.099695	0.888085	-0.778900
	182	1	0	0.122055	1.375929	-2.550498
	183	1	0	-1.084208	1.617072	-4.674837
	184	1	0	-0.184732	0.579832	-6.778780
	185	1	0	1.957861	-0.717494	-6.694207
	186	1	0	3.195932	-0.935771	-4.540304
	187	1	0	7.512802	-0.885203	-3.163888
	188	1	0	5.513506	0.181342	-4.657491
	189	1	0	4.287013	2.087193	-3.167878
	190	1	0	5.507929	2.177109	-0.758147
	191	1	0	7.485960	0.336940	-0.738839
	192	1	0	5.946484	-3.374240	-0.178412
	193	1	0	3.271137	-3.131434	0.094954
	194	1	0	2.195557	-2.806365	-2.366727
	195	1	0	4.221652	-2.864783	-4.174801
	196	1	0	6.540569	-3.199517	-2.818422
_						

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates:

	1	2	3
	A	A	A
Frequencies	 2.8891	13.2848	16.1131
Red. masses	 5.6773	4.9788	4.7489
Frc consts	 0.0000	0.0005	0.0007
IR Inten	 0.0439	0.0000	0.0000

Sum of electronic and zero-point Energies=-4197.510818Sum of electronic and thermal Energies=-4197.409820Sum of electronic and thermal Enthalpies=-4197.408876Sum of electronic and thermal Free Energies=-4197.658097

HF=-4199.0707572

_

IV. References for Gaussian

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J.C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian 03, Revision C.02*, 2004.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision B.01*, 2010.

V. ¹H, ¹³C and ³¹P NMR spectra for compounds **1b**, **3a-m**

S40

S41

