L	X	Compound	Reference
	CN ⁻	1a	[9]
	NCS	2a	[9]
tpy	(µ-NC)Fe [™] (CN)₅	3a	[9]
	(µ-NC)Fe ["] (CN)₅	3a ^r	[9]
	(μ-NC)Cr ^Ⅲ (CN)₅	4a	[9]
	(μ-NC)Ru ^{ll} (CN)₅	5a ^r	this work
	(µ-NC)Os [™] (CN)₅	6a	this work
	(μ-NC)Os ^{II} (CN)₅	6a ^r	this work
	(µ-NC)Ru(py) ₄ (CN)	7a ^r	this work
L tpy tpm	CN	1b	[9]
	NCS	2b	[9]
	(µ-NC)Fe [™] (CN)₅	3b	[9]
	$\begin{array}{ c c c c }\hline CN^{-} & 1a & \\ \hline NCS^{-} & 2a & \\ \hline (\mu-NC)Fe^{II}(CN)_{5} & 3a & \\ \hline (\mu-NC)Fe^{II}(CN)_{5} & 3a^{r} & \\ \hline (\mu-NC)Cr^{III}(CN)_{5} & 3a^{r} & \\ \hline (\mu-NC)Cr^{III}(CN)_{5} & 5a^{r} & thi & \\ \hline (\mu-NC)Os^{III}(CN)_{5} & 6a & thi & \\ \hline (\mu-NC)Os^{III}(CN)_{5} & 6a^{r} & thi & \\ \hline (\mu-NC)Os^{III}(CN)_{5} & 6a^{r} & thi & \\ \hline (\mu-NC)Ru(py)_{4}(CN) & 7a^{r} & thi & \\ \hline NCS^{-} & 2b & \\ \hline (\mu-NC)Fe^{III}(CN)_{5} & 3b & \\ \hline (\mu-NC)Fe^{III}(CN)_{5} & 3b^{r} & \\ \hline (\mu-NC)Fe^{III}(CN)_{5} & 3b^{r} & \\ \hline (\mu-NC)Fe^{III}(CN)_{5} & 5b^{r} & thi & \\ \hline (\mu-NC)Ru^{II}(CN)_{5} & 6b & thi & \\ \hline (\mu-NC)Os^{III}(CN)_{5} & 6b & thi & \\ \hline (\mu-NC)Os^{III}(CN)_{5} & 6b^{r} & thi & \\ \hline (\mu-NC)Os^{III}(CN)_{5} & 6b^{r} & thi & \\ \hline (\mu-NC)Ru(py)_{4}(CN) & 7b^{r} & thi & \\ \hline \end{array}$	[9]	
tpm	(μ-NC)Cr ^Ⅲ (CN)₅	4b	[9]
	(μ-NC)Ru ^{ll} (CN)₅	5b ^r	this work
	(µ-NC)Os [™] (CN)₅	6b	this work
	(μ-NC)Os ^{II} (CN)₅	6b ^r	this work
	(μ-NC)Ru(py) ₄ (CN)	7b ^r	this work

Table S1. Complexes of the formula [Ru(L)(bpy)(X)] studied in this work.

Compound	6a	7a ^r	6b
Empirical Formula	C55H39N11O4.5PRuOs	$C_{47}H_{38}N_{11}O_3P_2F_{12}Ru_2$	C ₅₀ H ₃₈ N ₁₄ O ₅ PRuOs
fw / g mol ⁻¹	1248,21	1296,96	1237,18
T / K	298 (2)	298 (2)	298 (2)
λ / Å	0,71069	0,71069	0,71069
Cell	triclinic	monoclinic	triclinic
Space Group	P-1	P121/n1	P-1
a / Å	12,9482(5)	13,8415(11)	11,1651(3)
b / Å	13,3888(5)	17,7504(11)	13,4550(3)
c / Å	17,3370(6)	22,213(2)	19,2621(5)
α / °	101,641(3)	90,0	88,288(2)
β / °	96,360(3)	101,602(9)	76,516(2)
γ / °	114,494(4)	90,0	81,877(2)
$V / Å^3$	2614,29(17)	5346,1(6)	2785,67(12)
Z	2	4	2
dens.calc	1,586	1,611	1,475
μ (abs. coef.) / mm $^{-1}$	2,805	0,718	2,634
final index (R1)	0,0375	0,0998	0,0491
I>2σ(I) (wR2)	0,0993	0,2135	0,1006
all data (R1)	0,0535	0,2242	0,1126
all data (wR2)	0,1113	0,2951	0,1105

Table S2.	Crystallographic	data for	compounds	6a-b and 7a ^r .	

Figure S1. Thermogravimetric analysis for complex 5a^r. Initial mass = 12.38 mg. Final mass = 10.62 mg. Loss = 14%.

Figure S2. Thermogravimetric analysis for complex 5b^r. Initial mass = 7.58 mg. Final mass = 6.74 mg. Loss = 11%.

Figure S3. Tpy - tpy π stacking interactions in the crystal structure of **6a**. Hydrogen atoms, counter ions, and solvent molecules were omitted for clarity.

Figure S4. Bpy - bpy π stacking interactions in the crystal structure of **6b**. Hydrogen atoms, counter ions, and solvent molecules were omitted for clarity.

Figure S5. Tpm - tpm π stacking interactions in the crystal structure of **6b**. Hydrogen atoms, counter ions, and solvent molecules were omitted for clarity.

Figure S6. Tpy - py π stacking interactions in the crystal structure of $7a^{r}$. Hydrogen atoms, counter ions, and solvent molecules were omitted for clarity.

Figure S7. Electrochemistry of **6a-b** in water, methanol, ethanol and acetonitrile (from top to bottom). The wave labeled with a (*) is preliminarly assigned to a Os^{IV}/Os^{III} process.

Figure S8. UV-vis absorption of the complexes 5a^r (green), and 6a^r (black) in water and 7a^r in acetonitrile (red). For comparison purposes the spectrum of [Ru(tpy)(bpy)(NCS)]⁺ in acetonitrile (blue) is also included.

Figure S9. Vis-NIR absorption of the complexes **6b** in water (black dotted line), methanol (red dash-dotted), ethanol (green dashed line) and acetonitrile (blue solid line).

Figure S10. Correlation between the energy of the MM'CT band and the difference in the redox potentials of iron and ruthenium centers for compounds **3a-b**,⁹ and **6a-b** in water, MeOH, EtOH and ACN.

Figure S11. Excited state electron transfer energetics for complexes $5a^{r}-b^{r}$, $6a^{r}-b^{r}$ and $7a^{r}-b^{r}$. Ru(NH₃)₅ compounds are shown for comparison purposes.

Figure S12. IR spectra in KBr pellets of 5a'-b', 6a-b, 6a'-b' and 7a'-b', from top to bottom.