Electronic Supplementary Information

Synthesis of Carbon Quantum Dots/SiO₂ Porous Nanocomposites and Their Catalytic Ability for Photo-enhanced Hydrocarbon Selective Oxidation

Xiao Han, ‡ Yuzhi Han, ‡ Hui Huang, Hengchao Zhang, Xing Zhang, Ruihua Liu, Yang Liu,* and Zhenhui Kang*

Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China. E-mail: yangl@suda.edu.cn, zhkang@suda.edu.cn

Experimental Details.

1. Catalysts Preparation

All chemicals were purchased from Sigma-Aldrich.

Preparation of SiO₂ nanospheres: SiO₂ nanospheres were prepared according to Stöber synthesis.¹ 2 mL 98% tetraethyl orthosilicate (TEOS) was dissolved in 50 ml 95% ethanol with magnetic stirring at room temperature. After 5 min equilibration, 3 mL 25% NH₃·H₂O was dripped into the solution. After 20 min, the solution turned white. Aging overnight, the resulting white precipitate was centrifuged at 5000 rpm for 5 min and washed three times with 95% ethanol, the opaque white SiO₂ nanospheres of average sizes 100 nm were obtained.

Preparation of CQDs/SiO₂ nanocomposites: The CQDs were synthesized by using the electrochemical method developed by our research group.² Then CQDs/SiO₂ nanocomposites were prepared through a facile hydrolytic process. Firstly, 10 mL CQDs solution and 20 mL 95% ethanol were added to 50 mL beaker under vigorous stirring at room temperature. Then 1 mL 25% NH₃·H₂O was added to the above mixture to achieve a uniform solution. The hydrolytic process was carried out by dropwise adding 0.5 mL 98% TEOS to the solution with continuous magnetic stirring. After aging overnight, the CQDs/SiO₂ nanocomposites with diameter about 100 nm were centrifugal separated from the solution and washed three times with 95% ethanol, then dried at 80 °C for 5h.

In order to prepared 250 nm CQDs/SiO₂ nanocomposites, 5 mL CQDs solution was used in above process.

Preparation of SiQDs/SiO₂ nanocomposites: Hydrogen-terminated SiQDs were prepared by using the electrochemical method developed by our group.³SiQDs/SiO₂ nanocomposites were produced in the same manner by using SiQDs in place of CQDs.

2. Catalytic selective oxidation of cis-cyclooctene

The catalytic selective oxidation of *cis*-cyclooctene was carried out in a 50 mL round bottom flask with water condenser and continuous magnetic stirrering. 0.1 g as-fabricated catalyst and 0.12 g *tert*-butyl hydroperoxide (TBHP) were put into 10 mL *cis*-cyclooctene (95%). At last, the mixture was stirred under illumination of a 150 W Xenon lamp for 24 h at 80°C. Different samples were collected every 4 hours. After filtering off the catalyst, the oxidation products were analyzed by gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS).

The control experiments were performed in dark with the same as other reaction conditions.

3. Characterization

Scanning electron microscopy (SEM) images were taken on a FEI-quanta 200 scanning electron microscope with acceleration voltage of 20 kV. The transmission electron microscopy (TEM) images were obtained with a FEI/Philips Tecnai 12 BioTWIN transmission electron microscope operated at 200 kV with EDX analyses. While

HRTEM images were obtained with a CM200 FEG TEM. The normal TEM samples were prepared by dropping the solution onto a copper grid covered with carbon film and dried in air. Raman spectrum was collected on an HR 800 Raman spectroscope (J Y, France) equipped with a synapse CCD detector and a confocal Olympus microscope. The spectrograph uses 600 g mm⁻¹ gratings and a 633 nm He–Ne laser. The Fourier Transform Infrared (FTIR) spectrum was obtained with a Nicolet 360 spectrometer. DRS absorption spectra were obtained with a PerkinElmer Lamda 750 UV-Vis Spectrophotometer. Brunauer–Emmett–Teller (BET) specific surface areas and pore size distributions were calculated by plotting the adsorption isotherm of N₂ at liquid N₂ temperature (77 K). These measurements were made on a Micromeritics ASAP 2050 porosimeter. The GC measurements were performed in a Varian 3400 GC column with a cross-linked 5% PhMe silicone column (25 m × 0.20 mm × 0.33 μ m) and a FID detector under the following conditions: carrier gas (N₂) at 140 K; temperature program 60 °C, 1 min, 15 °C/min, 180 °C, 15 min; split ratio, 10 : 1; injector, 300 °C, detector, 300 °C.

Fig. S1 TEM image of CQDs. Inset is the corresponding HRTEM image (Scale bar: 1 nm).

Fig. S2 TEM images of CQDs/SiO₂ nanocomposites.

Fig. S3 (a) Nitrogen adsorption–desorption isotherm and (b) pore size distribution curve of 100 nm CQDs/SiO₂ nanocomposites.

Fig. S4 FTIR spectrum of CQDs/SiO₂ nanocomposites.

Fig. S5 SEM image of SiO₂ nanospheres.

Fig. S6 (a) SEM and (b) TEM images of SiQDs/SiO₂ nanocomposites. Insert in (a) is SEM image of typical single particle of SiQDs/SiO₂ nanocomposites (scale bar: 20 nm). Inserts in (b) are TEM image of typical single particle (scale bar: 20 nm) and HRTEM image of SiQDs on SiQDs/SiO₂ nanocomposites (scale bar: 1 nm).

Fig. S7 Nitrogen adsorption–desorption isotherm of (a) SiO_2 nanospheres and (c) $SiQDs/SiO_2$ nanocomposites. Pore size distribution curve of (b) SiO_2 nanospheres and (d) $SiQDs/SiO_2$ nanocomposites.

Fig. S8 SEM image of CQDs/SiO₂ nanocomposites. Inset is the corresponding SEM image of typical single particle (scale bar: 50 nm).

Fig. S9 Nitrogen adsorption-desorption isotherm of 250 nm CQDs/SiO₂ nanocomposites.

Fig. S10 The relationship between the conversion of *cis*-cyclooctene/selectivity of 2-hydroxycyclooctanone and recycling times with CQDs/SiO₂ nanocomposites as catalyst.

Product Selectivity (%) OH HO он $\Sigma_{sel} C_8^{~\$}$ Reaction time (h) Conversion (%) 0 0 0 0 0 0 4 57.44 15.89 26.67 7.54 100 8 65.03 12.92 21.97 11.02 99.92 12 70.94 99.77 10.43 18.40 15.21

13.94

8.64

4.05

19.59

25.06

31.73

99.54

99.25

99.13

9.15

7.37

5.95

76.45

83.24

89.13

16 20

24

Table S1. Effect of reaction time on selective oxidation of *cis*-cyclooctene using 100 nm CQDs/SiO₂ nanocomposites as catalyst under visible light irradiation.^a

(0.12 g), 80 °C, under visible light irradiation. §Total selectivity to C_8 partial oxidation products.						

^aReaction conditions: 100 nm CQDs/SiO₂ nanocomposites (0.1 g), cis-cyclooctene (10 mL), TBHP

Table S2. Effect of different sizes of CQDs/SiO₂ nanocomposites as catalysts on selective oxidation of *cis*-cyclooctene.^a

	Pro	duct Selectivity				
Size	O OH	O	НООН	Conversion (%)	$\Sigma_{sel} C_8^{\ \$}$	
100 nm	89.13	5.95	4.05	31.73	99.13	
250 nm	79.52	6.09	10.85	16.69	96.46	
^a Reaction conditions: CODs/SiO ₂ nanocomposites (0.1 g), <i>cis</i> -cyclooctene (10 mL), TBHP (0.12						

g), 80 °C, under visible light irradiation. §Total selectivity to C₈ partial oxidation products.

	Pro					
Nanomaterial	O OH	°	HOOH	Conversion (%)	$\Sigma_{sel} C_8^{\ \$}$	
CQDs/SiO ₂	89.13	5.95	4.05	31.73	99.13	
SiO ₂	77.06	7.14	7.86	9.98	92.06	
SiQDs/SiO ₂	80.64	7.36	5.07	14.26	93.07	
^a Reaction conditions: as-synthesized catalysts (0.1 g), <i>cis</i> -cyclooctene (10 mL), TBHP (0.12 g),						
80 °C, under visible light irradiation. $Total selectivity to C_8 partial oxidation products.$						

Table S3	Effect of	different	nanomaterials	as catalysts	on selective	oxidation	of cis-	cyclooctene. ^a

	Pro						
Reaction condition	O, OH		HOOH	Conversion (%)	$\Sigma_{sel}C_8$		
light	89.13	5.95	4.05	31.73	99.13		
dark	82.04	7.90	8.84	11.93	98.78		
^a Reaction cond	ditions: 100 nm	CQDs/SiO ₂ nan	ocomposites (0.	l g), cis-cyclooctene	(10 mL),		
TBHP (0.12 g), 80 °C. §Total selectivity to C_8 partial oxidation products.							

Table S4. Effect of different reaction conditions on selective oxidation of *cis*-cyclooctene.^a

References

- 1. W. Stöber, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62–69.
- 2. H. Ming, Z. Ma, Y. Liu, K. M. Pan, H. Yu, F. Wang and Z. H. Kang, *Dalton Trans.*, 2012, **41**, 9526–9531.
- 3. Z. H. Kang, C. H. A. Tsang, Z. D. Zhang, M. L. Zhang, N. B. Wong, J. A. Zapien, Y. Y. Shan and S. T. Lee, *J. Am. Chem. Soc.*, 2007, **129**, 5326–5327.