Electronic Supporting Information

O1-Dy1-O7	82.04(13)	O6-Dy1-O5	73.19(11)
O1-Dy1-O4	74.72(12)	O1-Dy1-O1W	78.00(13)
O7-Dy1-O4	97.92(14)	O7-Dy1-O1W	145.06(12)
O1-Dy1-O8	145.99(11)	O4-Dy1-O1W	104.01(13)
O7-Dy1-O8	90.00(12)	O8-Dy1-O1W	90.76(11)
O4-Dy1-O8	139.28(11)	O6-Dy1-O1W	141.44(11)
O1-Dy1-O6	133.63(14)	O5-Dy1-O1W	69.35(11)
O7-Dy1-O6	71.25(12)	O1-Dy1-O9	76.47(11)
O4-Dy1-O6	72.39(13)	O7-Dy1-O9	71.54(12)
O8-Dy1-O6	72.63(12)	O4-Dy1-O9	150.45(11)
O1-Dy1-O5	125.45(12)	O8-Dy1-O9	69.65(10)
O7-Dy1-O5	144.41(11)	O6-Dy1-O9	125.99(11)
O4-Dy1-O5	72.52(12)	O5-Dy1-O9	131.64(10)
O8-Dy1-O5	77.96(10)	O1W-Dy1-O9	76.05(11)

Table S1 Selected bond angles (°) for 1

Table S2 Selected bond angles (°) for 2

O1-Gd1-O7	80.73(13)	O6-Gd1-O5	73.60(11)
O1-Gd1-O4	74.78(12)	O1-Gd1-O1W	78.59(12)
O7-Gd1-O4	100.18(12)	O7-Gd1-O1W	144.77(11)
O1-Gd1-O8	145.97(11)	O4-Gd1-O1W	101.48(12)
O7-Gd1-O8	87.07(12)	O8-Gd1-O1W	94.40(11)
O4-Gd1-O8	138.97(11)	O6-Gd1-O1W	142.84(12)
O1-Gd1-O6	130.98(13)	O1W-Gd1-O5	69.70(10)
07-Gd1-O6	70.79(12)	O1-Gd1-O9	76.57(11)
O6-Gd1-O4	72.19(12)	O7-Gd1-O9	71.17(11)
O6-Gd1-O8	72.39(11)	O4-Gd1-O9	151.08(11)
01-Gd1-O5	127.75(11)	O8-Gd1-O9	69.43(10)
07-Gd1-O5	144.15(11)	O6-Gd1-O9	126.47(11)
O4-Gd1-O5	72.33(12)	O5-Gd1-O9	130.65(10)
O8-Gd1-O5	78.37(10)	O1W-Gd1-O9	76.45(10)

	- · ·		
O4-Dy1-O1	145.96(15)	O7-Dy2-O10	144.62(15)
O4-Dy1-O13	75.54(15)	O7-Dy2-O19	82.91(15)
O1-Dy1-O13	78.75(14)	O10-Dy2-O19	106.73(14)
O4-Dy1-O17	81.37(14)	O7-Dy2-O22	111.54(14)
O1-Dy1-O17	107.84(14)	O10-Dy2-O22	80.19(14)
O13-Dy1-O17	143.36(14)	O19-Dy2-O22	145.14(13)
O4-Dy1-O14	110.17(14)	O7-Dy2-O24	72.55(14)
O1-Dy1-O14	83.42(15)	O10-Dy2-O24	141.54(14)
O13-Dy1-O14	74.29(14)	O19-Dy2-O24	82.02(14)
O17-Dy1-O14	141.35(14)	O22-Dy2-O24	73.22(14)
O4-Dy1-O16	71.75(14)	O7-Dy2-O23	140.48(15)
O1-Dy1-O16	141.19(15)	O10-Dy2-O23	73.63(14)
O13-Dy1-O16	117.31(13)	O19-Dy2-O23	72.62(14)
O17-Dy1-O16	80.67(15)	O22-Dy2-O23	77.04(13)
O14-Dy1-O16	69.31(15)	O24-Dy2-O23	73.67(13)
O4-Dy1-O18	78.02(14)	O7-Dy2-O21	75.31(15)
O1-Dy1-O18	74.83(15)	O10-Dy2-O21	78.08(14)
O13-Dy1-O18	77.27(13)	O19-Dy2-O21	144.28(14)
O17-Dy1-O18	70.31(14)	O22-Dy2-O21	70.29(14)
O14-Dy1-O18	146.98(14)	O24-Dy2-O21	116.72(13)
O16-Dy1-O18	140.69(15)	O23-Dy2-O21	139.71(15)
O4-Dy1-O15	139.34(14)	O7-Dy2-O20	77.07(14)
O1-Dy1-O15	73.46(13)	O10-Dy2-O20	74.68(14)
O13-Dy1-O15	140.48(14)	O19-Dy2-O20	70.31(13)
O17-Dy1-O15	73.26(13)	O22-Dy2-O20	142.36(14)
O14-Dy1-O15	75.09(13)	O24-Dy2-O20	140.97(14)
O16-Dy1-O15	73.16(13)	O23-Dy2-O20	120.55(13)
O18-Dy1-O15	120.29(13)	O21-Dy2-O20	77.36(13)

Table S3 Selected bond angles (°) for 3

Table S4 Selected bond angles (°) for 4

O3-Gd1-O4	69.40(13)	O3A-Gd1-O3	143.30(18)
O5-Gd1-O3	114.08(13)	O5-Gd1-O6A	76.00(15)
O3-Gd1-O6	70.95(12)	O3-Gd1-O6A	143.61(12)
O5-Gd1-O6	70.66(15)	O6A-Gd1-O6	81.04(18)
O5-Gd1-O4	83.02(15)	O3-Gd1-O4A	79.78(13)
O6-Gd1-O4	116.52(13)	O5A-Gd1-O4	139.07(15)
O5-Gd1-O5A	135.7(2)	O6A-Gd1-O4	146.30(13)
O5A-Gd1-O3	80.18(13)	O4A-Gd1-O4	65.54(17)
O5-Gd1-O6 O5-Gd1-O4 O6-Gd1-O4 O5-Gd1-O5A O5A-Gd1-O3	70.66(15) 83.02(15) 116.52(13) 135.7(2) 80.18(13)	O6A-Gd1-O6 O3-Gd1-O4A O5A-Gd1-O4 O6A-Gd1-O4 O4A-Gd1-O4	81.04(18) 79.78(13) 139.07(15) 146.30(13) 65.54(17)

Symmetry code: A: -x + 1, y, -z + 3/2

ions

Table S5 The plane...plane distances and displacement angles of the stacking anthracene groups in **1-4** (these values are measured according to the related definitions in the paper: C. Janiak, *Dalton Trans.*, 2000, 3885.)

compound	1	2		3		4
planeplane distance	3.443(1)	3.451(1)	3.367(1)	3.608(1)	3.660(1)	3.554(1)
(Å)						
centroid ··· centroid	3.757(1)	3.690(1)	3.737(1)	3.686(1)	3.689(1)	3.645(1)
distance (Å)						
displacement angle (°)	$23.5(1)^{\circ}$	$20.7(1)^{\circ}$	25.7(1)	$11.8(1)^{\circ}$	$7.1(1)^{\circ}$	12.8(1)

Table S6 The atoms were used to define the hfac planes of A, B and C around Dy(III)

Dy(III) ion	hfac plane of A	hfac plane of B	hfac plane of C
Dy1 in 1	C31, C32, C33, O8,	C26, C27, C28, O6, O7	C21, C22, C23, O4,
	09		05
Gd1 in 2	C31, C32, C33, O8,	C26, C27, C28, O6, O7	C21, C22, C23, O4,
	09		05
Dy1 in 3	C50, C51, C52,	C45, C46, C47, O15,	C40, C41, C42, O13,
	017, 018	016	O14
Dy2 in 3	C98, C99, C100,	C103, C104, C105,	C93, C94, C95, O19,
	O21, O22	023, 024	O20
Gd1 in 4	C21, C22, C23, O4,	C26, C26A, C27, O6,	C21A, C22A, C23A,
	05	06A	O4A, O5A

Table S7 Dihedral angle (^o) between hfac planes (A, B and C)

	A vs. B	A vs. C	B vs. C	
around Dy1 in 1	43.7(1)	57.6(1)	79.5(1)	
around Gd1 in 2	36.9(1)	57.5(1)	86.6(1)	
around Dy1 in 3	86.2(1)	13.6(1)	80.2(1)	
around Dy2 in 3	83.3(1)	15.1(1)	88.7(1)	
around Gd1 in 4	82.2(1)	17.8(1)	82.2(1)	

Table S8 Solid-state emission data of 1-4 at room temperature

Compound	λ_{\max} (nm)
1	487, 530, 575
2	487, 530
3	487, 529, 574
4	487, 530

Fig. S1 ¹H NMR spectrum of depma (500 MHz, CDCl₃).

Fig. S2 Experimental XRD patterns of 1 and 2, and simulated XRD pattern of 1.

Fig. S3 Experimental and simulated XRD patterns of 3.

Fig. S4 Experimental and simulated XRD patterns of 4.

Fig. S5 The XRD patterns of 3 and a sample from the reaction of 1 and depma.

Fig. S6 The XRD patterns of 4 and b sample from the reaction of 2 and depma.

Fig. S7 TG curve of compound 1.

Fig. S8 TG curve of compound 2.

Fig. S9 TG curve of compound 3.

Fig. S10 TG curve of compound 4.

Fig. S11 Molecular structure of 2. All H atoms were omitted for clarity.

Fig. S12 The packing structure of 2. All H atoms and CF_3 groups were omitted for clarity.

Fig. S13 Molecular structure of 4. All H atoms and lattice water were omitted for clarity.

Fig. S14 Supramolecular chain in **4**. All H atoms, non-oxygen atoms of hfac ligands, and C_2H_5 groups attached to phosphonate oxygen atoms were omitted for clarity.

Fig. S15 The packing structure of **3**. Blue small balls are lattice water molecules, and all H atoms and F atoms were omitted for clarity. Color code: Dy1, purple; Dy2, cyan; lattice water, blue ball.

Fig. S16 The supramolecular three dimensional structure of **4**. Blue small balls are lattice water molecules, and all H atoms and F atoms were omitted for clarity. Blue balls represent lattice water.

Fig. S17 Temperature dependence of ac susceptibilities of in-phase χ_M ' and out-of-phase χ_M '' for 1 under zero static field with a frequency of 1000 Hz in the temperature range of 1.8-10 K.

Fig. S18 Temperature dependence of ac susceptibilities of in-phase χ_M ' and out-of-phase χ_M '' for **3** under zero static field with a frequency of 1000 Hz in the temperature range of 1.8-20 K.

Fig. S19 Solid-state emission spectra for $Gd(hfac)_2(H_2O)_2$ and $Dy(hfac)_2(H_2O)_2$ under $\lambda_{ex} = 370$ nm at room temperature.

Fig. S20 Solid-state emission spectrum of depma under $\lambda_{ex} = 370$ nm at room temperature.