Electronic Supplementary Information

Uranyl-Halide Complexation in *N*,*N*-Dimethylformamide: Halide Coordination Trend Manifests Hardness of UO₂²⁺

Koichiro Takao,^{*a,b} Shinobu Takao,^{b,c} Yasuhisa Ikeda,^a Gert Bernhard,^b Christoph Hennig^{*b}

^aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
 ^bInstitute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf, P.O.Box 51 01 19, 01314 Dresden, Germany.
 ^cInnovation Research Center for Fuel Cells, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, 182-8585 Tokyo, Japan.

*To whom correspondence should be addressed. E-mail: ktakao@nr.titech.ac.jp (K.T.), hennig@esrf.fr (C.H.).

Fig. S1. ORTEP drawing of $[UO_2(DMF)_5](CIO_4)_2$ showing 50% probability displacement ellipsoids. All hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: U(1)-O(1) 1.79(2), U(1)-O(2) 1.76(2), U(1)-O(3) 2.414(11), U(1)-O(4) 2.338(7), U(1)-O(5) 2.377(12), U(1)-O(6) 2.332(11), U(1)-O(7) 2.465(14), O(1)-U(1)-O(2) 177.8(7), O(1)-U(1)-O(3) 89.4(6), O(1)-U(1)-O(4) 90.3(8) O(1)-U(1)-O(5) 90.4(6), O(1)-U(1)-O(6) 90.6(6), O(1)-U(1)-O(7) 89.8(6), O(3)-U(1)-O(4) 69.3(6), O(4)-U(1)-O(5) 75.6(6), O(5)-U(1)-O(6) 71.0(4), O(6)-U(1)-O(7) 73.1(4), O(3)-U(1)-O(7) 70.9(5).

Fig. S2. Normalized X-ray absorption spectra of DMF solution dissolving $[UO_2(DMF)_5](CIO_4)_2$ (4.0 × 10⁻² M) and [TBA]Cl (0-2.0 × 10⁻¹ M) at 295 K. Panels b and c are magnified pictures of the regions surrounded by dashed rectangles in red and blue, respectively.

Fig. S3. Normalized X-ray absorption spectra of DMF solution dissolving $[UO_2(DMF)_5](CIO_4)_2$ (4.0 × 10⁻² M) and [TBA]Br (0-2.0 × 10⁻¹ M) at 295 K. Panels b and c are magnified pictures of the regions surrounded by dashed rectangles in red and blue, respectively. Inset in panel b is a further magnification of 17.20-17.22 keV region.

Fig. S4. k^3 -weighted U L_{III}-edge EXAFS spectra of DMF solution dissolving $[UO_2(DMF)_5](ClO_4)_2$ (4.0 × 10⁻² M) and [TBA]I (0-2.0 × 10⁻¹ M) at 295 K.

Fig. S5. U L_{III}-edge XANES spectra of DMF solution dissolving $[UO_2(DMF)_5](CIO_4)_2$ (4.0 × 10^{-2} M) and [TBA]I (0-2.0 × 10^{-1} M) at 295 K.

Fig. S6. UV-vis absorption spectra of the photo-irradiated DMF solution dissolving $[UO_2(DMF)_5](ClO_4)_2$ (6.64 × 10⁻³ M) at different total I⁻ concentrations ([I⁻]_{tot}) and 295 K.

ion	$r_{ m vdw}$ /Å ^a	$R(U-X)/Å^b$	$ heta/^{\circ}$
Cl-	2.252	2.68-2.71	112-114
Br^-	2.298	2.88-2.89	105-106

Table S1. Cone Angles (θ) of Coordinating Cl⁻ and Br⁻

^{*a*}Van der Waals radius brought from *J. Am. Chem. Soc.* 1964, **86**, 979-982. ^{*b*}Interatomic distance from U to X (= Cl^- , Br^-) determined from EXAFS (Tables 3, 4).

