Supporting Information:

A modified cyclen azaxanthone ligand as a new fluorescent probe for zinc

Hela Nouri,^{a,b} Cyril Cadiou,^a Latévi Max Lawson-Daku,^c Andreas Hauser, Sylviane Chevreux, Isabelle Déchamps,^a Fabien Lachaud,^a Riadh Ternane,^b Malika Trabelsi-Ayadi,^b Françoise Chuburu,^a Gilles Lemercier^a

Table of Contents

Figure S1 : Excitation and emission spectra of the ligand L in the solid state

Figure S2: Superimposed optimized geometries of **L** and $[ZnL]^{2+}$ in the gas phase (blue) and in MeOH (red) [PBE-D3/TZP results].

Figure S3 : Quantum yields measurements for L, ZnL, and Zn₂:L.

Table S1:Characterization of the 30 lowest-lying singlet excited state of L in MeOH (SAOP/TZP results).

Table S2:Characterization of the 10 lowest-lying triplet excited state of L in MeOH
(SAOP/TZP results).

Table S3:Characterization of the 10 lowest-lying singlet excited state of $[ZnL]^{2+}$ in MeOH(SAOP/TZP results).

Figure S4 : Ground-state frontier molecular orbitals of L in MeOH (SAOP/TZP results).

Figure S5: Ground-state frontier molecular orbitals of $[ZnL]^{2+}$ in MeOH (SAOP/TZP results).

Figure S1. Excitation and emission of the ligand L in the solid state

Figure S2. Quantum yields measurements for L, ZnL, and Zn₂:L

Figure S3: Superimposed optimized geometries of L and $[ZnL]^{2+}$ in the gas phase (blue) and in MeOH (red) [PBE-D3/TZP results

State	Character	Energy (cm ⁻¹)	Oscillator strength (x 10^4)	Major MO \rightarrow MO contributions (%)
\mathbf{S}_1	n-π* CT	17612	96	HOMO \rightarrow LUMO (99%)
\mathbf{S}_2	n- π * CT	19839	30	HOMO-1 \rightarrow LUMO (97%)
S_3	n- π * CT	20018	2	HOMO-2 \rightarrow LUMO (100%)
\mathbf{S}_4	n- π * CT	23840	37	HOMO-4 \rightarrow LUMO (98%)
S_5	n- π * CT	25213	44	HOMO \rightarrow LUMO+1 (98%)
S_6	n- π * CT	25655	46	HOMO \rightarrow LUMO+2 (92%)
S_7	π-π*	26090	1121	HOMO-3 \rightarrow LUMO (75%)
\mathbf{S}_8	n- π * CT	27497	3	HOMO-1 \rightarrow LUMO+1 (99%)
S_9	n- π * CT	27714	0	HOMO-2 \rightarrow LUMO+1 (100%)
S_{10}	n- π * CT	27972	20	HOMO-1 \rightarrow LUMO+2 (98%)
S_{11}	n- π * CT	28186	1	HOMO-2 \rightarrow LUMO+2 (100%)
S ₁₂		28732	22	HOMO \rightarrow LUMO+3 (98%)
S ₁₃	π-π*	29937	73	HOMO-3 \rightarrow LUMO+1 (74%)
				HOMO-6 \rightarrow LUMO (11%)
				HOMO-3 \rightarrow LUMO+2 (10%)
S_{14}	π-π*	30472	74	HOMO-3 \rightarrow LUMO+2 (60%)
				HOMO-5 \rightarrow LUMO (26%)
S ₁₅	n-π* CT	31047	16	HOMO-1 \rightarrow LUMO+3 (93%)
S ₁₆	n- π * CT	31265	1	HOMO-2 \rightarrow LUMO+3 (100%)
S ₁₇	π- π*+ n-π* CT	31481	83	HOMO-5 \rightarrow LUMO (44%)
				HOMO-4 \rightarrow LUMO+1 (28%)
				HOMO-3 \rightarrow LUMO+2 (13%)
S ₁₈	n- π * CT	31597	47	HOMO-4 \rightarrow LUMO+1 (72%)
				HOMO-5 \rightarrow LUMO (14%)
S ₁₉	n- π * CT	32048	7	HOMO-4 \rightarrow LUMO+2 (97%)
S ₂₀	π-π*	34726	1308	HOMO-3 \rightarrow LUMO+3 (47%)
				HOMO-6 \rightarrow LUMO (24%)
S ₂₁	n- π *	35038	495	HOMO-8 \rightarrow LUMO (75%)
				HOMO-6 \rightarrow LUMO (16%)
S ₂₂	n- π * CT	35062	404	HOMO-4 \rightarrow LUMO+3 (60%)
				HOMO-6 \rightarrow LUMO (16%)
				HOMO-8 \rightarrow LUMO (15%)

Table S1: Characterization of the 30 lowest-lying singlet excited state of L in MeOH (SAOP/TZP results).^{*a*} The involved molecular orbitals are shown in Table S3.

S ₂₃	π-π*	35325	486	HOMO-4 \rightarrow LUMO+3 (29%)
				HOMO-3 \rightarrow LUMO+3 (24%)
				HOMO-6 \rightarrow LUMO (16%)
				HOMO-7 \rightarrow LUMO (10%)
S ₂₄	n- π *	36157	288	HOMO-7 \rightarrow LUMO (78%)
S ₂₅	π-π*	37699	15	HOMO-9 \rightarrow LUMO (56%)
				HOMO-5 \rightarrow LUMO+1 (32%)
S ₂₆	n- π * CT	38786	16	HOMO \rightarrow LUMO+4 (86%)
				HOMO-10 \rightarrow LUMO (14%)
S ₂₇	n- π * CT	38832	22	HOMO-10 \rightarrow LUMO (85%)
				HOMO \rightarrow LUMO+4 (13%)
S ₂₈	π-π*	39772	323	HOMO-5 \rightarrow LUMO+1 (28%)
				HOMO-11 \rightarrow LUMO (22%)
				HOMO-9 \rightarrow LUMO (14%)
				HOMO-5 \rightarrow LUMO+3 (14%)
S ₂₉	n- π * CT	40038	19	HOMO-11 \rightarrow LUMO (77%)
S ₃₀	π-π*	40222	3470	HOMO-5 \rightarrow LUMO+2 (53%)
				HOMO-6 \rightarrow LUMO+1 (11%)

^{*a*} n- π^* CT: the S₀ \rightarrow S_n transition is a n- π^* charge-transfer transition from the cyclen to the azaxanthone-hydrazone moiety. π - π^* : the S₀ \rightarrow S_n transition is a π - π^* transition centered on the azaxanthone-hydrazone moiety. n- π^* : the S₀ \rightarrow S_n (*n*=21) transition is a n- π^* transition localized on the azaxanthone-hydrazone fragment.

State	Character	Energy (cm ⁻¹)	Major MO \rightarrow MO contributions (%)
T_1	n- π * CT	17317	HOMO \rightarrow LUMO (98%)
T_2	π- π* CT	19259	HOMO-3 \rightarrow LUMO (60%)
			HOMO-1 \rightarrow LUMO (37%)
T_3	n- π * CT	19930	HOMO-1 \rightarrow LUMO (62%)
			HOMO-3 \rightarrow LUMO (36%)
T_4	n- π* CT	20014	HOMO-2 \rightarrow LUMO (98%)
T_5	n- π * CT	23833	HOMO-4 \rightarrow LUMO (100%)
T_6	n- π * CT	25067	HOMO \rightarrow LUMO+1 (99%)
T_7	n- π *	25519	HOMO \rightarrow LUMO+2 (99%)
T_8	n- π * CT	27370	HOMO-1 \rightarrow LUMO+1 (93%)
T_9	n- π * CT	27708	HOMO-2 \rightarrow LUMO+1 (100%)
T_{10}	n- π* CT	27788	HOMO-1 \rightarrow LUMO+2 (83%)
			HOMO-3 \rightarrow LUMO+2 (12%)

Table S2: Characterization of the 10 lowest-lying triplet excited state of L in MeOH (SAOP/TZP results).^{*a*} The involved molecular orbitals are shown in Table S3.

^{*a*} n- π^* CT: the S₀ \rightarrow T_{*n*} transition is a n- π^* charge-transfer transition from the cyclen to the azaxanthone-hydrazone moiety. π - π^* : the S₀ \rightarrow T_{*n*} transition is a π - π^* transition centred on the azaxanthone-hydrazone moiety.

LUMO+3 (-5.080 eV)

LUMO+4 (-3.840 eV)

State	Character	Energy (cm ⁻¹)	Oscillator strength (x 10 ⁴)	Major MO → MO contributions (%)
S_1	π-π*	22904	604	HOMO \rightarrow LUMO (83%)
				HOMO \rightarrow LUMO+1 (10%)
S_2	n- π * CT	25629	16	HOMO-1 \rightarrow LUMO (100%)
S_3	π-π*	27441	309	HOMO \rightarrow LUMO+1 (62%)
				HOMO-2 \rightarrow LUMO (17%)
				HOMO \rightarrow LUMO+2 (13%)
S_4	π-π*	27846	41	HOMO-2 \rightarrow LUMO (78%)
				HOMO \rightarrow LUMO+1 (11%)
S_5	"admix."	30999	168	HOMO-3 \rightarrow LUMO (65%)
				HOMO \rightarrow LUMO+2 (18%)
S_6	"admix."	31385	535	HOMO \rightarrow LUMO+2 (36%)
				HOMO-4 \rightarrow LUMO (31%)
				HOMO-3 \rightarrow LUMO (11%)
S_7	n- π* CT	31813	14	HOMO-1 \rightarrow LUMO+1 (99%)
S_8	"admix."	32366	103	HOMO-6 \rightarrow LUMO (49%)
				HOMO-5 \rightarrow LUMO (25%)
				HOMO-4 \rightarrow LUMO (16%)
S_9	"admix."	32894	201	HOMO-6 \rightarrow LUMO (41%)
				HOMO-4 \rightarrow LUMO (29%)
				HOMO-3 \rightarrow LUMO (11%)
\mathbf{S}_{10}	"admix."	33981	84	HOMO-2 \rightarrow LUMO+1 (44%)
				HOMO-5 \rightarrow LUMO (33%)

Table S3: Characterization of the 10 lowest-lying singlet excited state of $[ZnL]^{2+}$ in MeOH (SAOP/TZP results).a The involved molecular orbitals are shown in Table S5.

^{*a*} π - π^* : the S₀ \rightarrow S_n transition is a π - π^* transition centered on the azaxanthone-hydrazone moiety. n- π^* CT: the S₀ \rightarrow S_n transition is a n- π^* charge-transfer transition from the cyclen to the azaxanthone-hydrazone moiety. "admix.": while the virtual orbitals involved in the MO \rightarrow MO contributions are π^* centered on the azaxanthone-hydrazone moiety, the occupied orbitals extend over the whole molecule with varying contributions from the lone pairs of the nitrogen atoms of the hydrazone and cyclen fragments (see Table S5).

Figure S5: Ground-state frontier molecular orbitals of $[ZnL]^{2+}$ in MeOH (SAOP/TZP results).

HOMO-4 (-11.048 eV)

HOMO-3 (-10.946 eV)

HOMO-2 (-10.489 eV)

HOMO (-9.535 eV)

HOMO-1 (-10.306 eV)

LUMO (-7.137 eV)

