Electronic Supplementary Information

An anion-controlled crystal growth route to Zn_2GeO_4 nanorod for efficient photocatalytic conversion of CO_2 into CH_4^{**}

Shicheng Yan*, Jiajia Wang and Zhigang Zou

Corresponding author E-mail: yscfei@nju.edu.cn (S.C.Yan)

SI-1 Characterization of Na₂GeO₃

Figure S1. XRD pattern of Na₂GeO₃ powders obtained by heating the stoichiometric mixture of Na₂CO₃ and GeO₂ at 900 $^{\circ}$ C for 12 h. The XRD pattern is in good agreement with JCPDS 70-0754.

Figure S2 The Tyndall effect observation for Na_2GeO_3 colloidal solution by 532 nm laser illuminating

Figure S3 SEM image (a) and HRTEM of the crystal lattice for Na₂GeO₃ colloidal particles.

SI-2 Characterization of Zn₂GaO₄ nanorods

Figure S4. XRD patterns for Zn_2GeO_4 nanorods obtained by hydrothermal reaction at 200°C for 5h using the ZnCl₂ (denoted as Zn_2GeO_4 -Cl), Zn(NO₃)₂ (denoted as Zn₂GeO₄-NO₃) and ZnSO₄ (denoted as Zn₂GeO₄-SO₄)as precursor. The XRD patterns for the as-prepared Zn₂GeO₄ nanorods after hydrothermal treatment at 200°C for 2h in NaOH solution (pH=14) or H₂SO₄ solution (pH=0) were also given here.

Figure S5. Low-magnification SEM images of Zn_2GeO_4 nanorods prepared by using different zinc salts. (a) $ZnCl_2$, (b) $Zn(NO_3)_2$ and (c) $ZnSO_4$.

Figure S6. SEM image for Zn_2GeO_4 nanorods, which was prepared by using $ZnCl_2$ as precursor, after hydrothermal treatment at 200 °C for 5h in NaOH solution (pH=14).

Figure S7 UV-Vis absorption spectra for as-prepared various Zn_2GeO_4 nanorods.

Figure S8. Conventional cell model for bulk Zn_2GeO_4 . The red, grey and purple spheres represent O, Zn and Ge atoms, respectively. Atoms locate in the dark circle is 'tube'. Oxygen atom in 'tube' is designated as O_t, while oxygen atom connecting three 'tubes' is O_c.

In the willemite structure of Zn_2GeO_4 (space group 148, R3H), each of Zn and Ge ion is in a tetrahedral environment of four oxygen atoms. Zn_2GeO_4 consists of one GeO₄ tetrahedron and two ZnO₄ tetrahedra. Every oxygen atom coordinated with one Ge ion and two Zn ions. Meanwhile, Looking from [001] direction, Zn_2GeO_4 can also be considered as the connection of tubes and oxygen atoms (see Figure S8). In the (001) plane, three tubes shared with one oxygen. Upon this consideration, oxygen in tubes is designated as the tube oxygen (O_t), while oxygen atoms connect three tubes were treated as center oxygen (O_c) because this oxygen locates in the center of three neighbored tubes. Then, oxygen vacancies in Zn_2GeO_4 can be classified into oxygen vacancy in tube oxygen (V_{ot}) and in center oxygen (V_{oc}).

Density functional theory (DFT) calculations were used to clarify which kind of oxygen vacancy is relatively easily formed in Zn_2GeO_4 . Formation energies of V_{ot} and V_{oc} were calculated based on the following equation:

$$E_{f} = E_{Zn_{2}GeO_{4}+V_{o}} + E_{O} - E_{Zn_{2}GeO_{4}}$$

where $E_{Zn_2GeO_4+V_o}$ and $E_{Zn_2GeO_4}$ are the total energies of Zn_2GeO_4 with and without oxygen

vacancy, respectively. E_o is the total energy per atom of pure oxygen gas. To check the

dependence of oxygen vacancy formation energy on cell size, we adopt both primitive cell and conventional cell of Zn_2GeO_4 , which correspond to 43 and 126 atoms, respectively. As a result, concentration of single oxygen vacancy correspond to x=0.02 and x=0.008 in Zn_2GeO_{4-x} , and Brillouin zones were sampled using $3 \times 3 \times 3$ and $2 \times 2 \times 3$ meshes for primitive and conventional cell, respectively. All the DFT calculations were performed using the VASP^[1,2] computational package with projected augmented wave (PAW^[3]) method. Generalized gradient approximation (GGA^[4]) in the scheme of Perdew-Bueke-Ernzerhof (PBE^[5]) was used for the exchange correlation functional. The valence configurations of the pseudo-potentials were $2s^22p^4$, $3d^{10}4s^2$ and $3d^{10}4s^24p^2$ for O, Zn and Ge, respectively. The cutoff energy was 500 eV. Geometry relaxation was performed until the residual forces on each ion converged to be smaller than 0.02 eV/Å.

Formation energies of V_{ot} and V_{oc} are listed in Table S1. It is clearly seen that, V_{oc} has smaller

formation energy than V_{ot} . This result is very helpful to understand the discrepancy in activity between Zn_2GeO_4 (110) and (001) surfaces. As can be seen in the atomic structures of Zn_2GeO_4 (110) and (001) surfaces, cutting Zn_2GeO_4 through (110) plane will break all M-O_c bonds (M=Zn, Ge), whereas cutting Zn_2GeO_4 through (001) plane will break all M-O_t bonds (M=Zn, Ge). Since O_c is easily removed to form oxygen vacancy, Zn_2GeO_4 (110) surface will consist large amount of V_{oc} , leading to the high activity of the Zn_2GeO_4 (110) surface.

Table S1 Formation energies (E_f in eV) of V_{oc} and V_{ot} in Zn_2GeO_4 calculated using both primitive and conventional cell of Zn_2GeO_4 .

Oxygen vacancy	E _f (eV)	
	Primitive cell	Conventional cell
V_{oc}	3.59	3.62
V _{ot}	3.63	3.72

Figure S9. The FT-IR spectra for the as-prepared Zn_2GeO_4 nanorods, the Zn_2GeO_4 nanorods after hydrothermal treatment at 200°C for 5h in NaOH solution (pH=14) and the Zn_2GeO_4 nanorods after photoreduction of CO₂.

Figure S10. The stability test for the as-prepared Zn_2GeO_4 -Cl nanorods. The experiment was repeated three times with an interval of two hours.

Reference

- [1] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.
- [2] G. Kresse, J. hafner, Phys. Rev. B 1993, 47, 558.
- [3] P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
- [4] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B

1992, **46**, 6671.

[5] J. P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.