Supporting Information for

Fluorescent single-ion magnets: molecular hybrid

 $(HNEt_3)[Dy_xYb_{1-x}(bpyda)_2] (x = 0.135-1)$

Quan-Wen Li,^{*a,c*} Jun-Liang Liu,^{*a,c*} Jian-Hua Jia,^{*a*} Ji-Dong Leng,^{*a*} Wei-Quan Lin,^{*a,b*} Yan-Cong Chen,^{*a*} and Ming-Liang Tong^{*a,b*}

 ^a MOE Key Lab of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry & Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
^b Lehn Institute of Functional Materials Sun Yat-Sen University, Guangzhou 510275, P. R.

China

^c These authors contributed equally to this work.

Figure S1. The experimental and simulated X-ray powder diffraction (XRPD) patterns of **1-4**. The peaks marked with * were due to silicon carrier.

Figure S2. Single crystal MS show the ratio $(Yb^{III} : Dy^{III})$ of ca. 1.7 : 1 for **3** (a) and ca. 6.4 : 1 for **4** (b).

Figure S3. Temperature dependence of the $\chi_{\rm M}T$ product of **4** at 500 Oe.

Figure S4. *Left*: Plot of ac susceptibility vs frequency oscillating at 1-1500 Hz at the indicated applied fields at 5.0 K for **1**. *Right*: dc field dependence of the relaxation time. The solid line is a guide for the eye.

Figure S5. *Left*: Plot of ac susceptibility vs frequency oscillating at 1-1500 Hz at the indicated applied fields at 2.2 K for **2**. *Right*: dc field dependence of the relaxation time. The solid line is a guide for the eye.

Figure S6. Cole-Cole plots for **1** (*left*), **2** (*middle*) and **4** (*right*) in the indicated temperature ranges. The solid lines represent the best fitting of the experimental data to a generalized Debye model for **1** and **2**, and a linear combination of two modified Debye functions for **4**.

For **1** and **2**:
$$\chi_{ac} = \chi_S + \frac{(\chi_T - \chi_S)}{(1 + i\omega\tau_1)^{1-\alpha}}$$

For 4:
$$\chi_{ac} = \chi_S + \frac{\Delta \chi_1}{(1+i\omega\tau_1)^{1-\alpha_1}} + \frac{\Delta \chi_2}{(1+i\omega\tau_2)^{1-\alpha_2}}$$

Figure S7. Simulation of the emission spectrum of the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transition of the microcrystalline **1** at 40 K through a convolution of Gaussian lines corresponding to the eight Kramers doublets (green lines) and four transitions arising from hot bands (orange lines).

Figure S8. Simulation of the emission spectrum of the ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of the microcrystalline **2** at 3 K through a convolution of Gaussian lines corresponding to the four Kramers doublets (green lines) and one transitions arising from hot bands (orange lines).

Figure S9. Emission spectra of the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transition of microcrystalline 1 and 4.

Complex	Square Antiprism (D_{4d})	Triangular dodecahedron (D_{2d})	Biaugmented Trigonal Prism $(C_{2\nu})$
1	5.019	2.798	3.688
2	4.540	2.238	3.361
3	4.757	2.465	3.511
4	4.612	2.276	3.452

Table S1. CShM values of the 1-4.

Table S2.	Selected	bond	distances (Å) for 1	1-4
-----------	----------	------	-------------	---	---------	-----

1		2		-	3	4			
Dy		Yb		Dy _{0.367}	Yb _{0.633}	$Dy_{0.135}Yb_{0.865}$			
Dy-N	Dy–O	Yb–N	Yb–O	Ln–N	Ln–O	Ln–N	Ln–O		
2.509(5)	2.350(4)	2.459(2)	2.298(2)	2.478(3)	2.321(3)	2.460(3)	2.302(2)		
2.487(5)	2.311(4)	2.445(2)	2.285(3)	2.462(3)	2.300(3)	2.454(3)	2.289(3)		
2.477(5)	2.311(4)	2.440(2)	2.274(2)	2.460(3)	2.294(3)	2.446(3)	2.282(3)		
2.468(5)	2.305(5)	2.435(2)	2.259(2)	2.459(3)	2.286(3)	2.441(3)	2.263(2)		
Average bond distances									
2.485	2.319	2.445	2.279	2.465	2.300	2.450	2.284		

Table S3. Energy peak center (*Energy*, cm⁻¹) and full-width-at-half-maximum (*FWHM*, cm⁻¹) of the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ Stark components of **1** calculating from simulation of the experimental emission spectrum excited at 332 nm at 40 K using multi-Gaussian function fit (R^2 = 0.99).

1			υ			
No.	1*	2*	3*	4*	5	6
<i>Energy</i> (cm ⁻¹)	21139.1	21092.1	20964.0	20908.2	20800.7	20790.0
$FWHM (cm^{-1})$	32.7	49.2	57.4	52.4	80.0	46.0
No.	7	8	9	10	11	12
Energy (cm ⁻¹)	20728.8	20682.5	20608.7	20521.2	20478.2	20421.7
$FWHM (cm^{-1})$	59.0	91.2	75.3	76.3	4.0	103.8

* "hot" bands arising from a thermally populated higher crystal-field sublevel of the ${}^{4}F_{9/2}$ state.

Table S4. Energy peak center (*Energy*, cm⁻¹) and full-width-at-half-maximum (*FWHM*, cm⁻¹) of the ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ Stark components of **2** calculating from simulation of the experimental emission spectrum excited at 338 nm at 3 K using multi-Gaussian function fit (R^2 = 0.98).

No.	1	2	3*	4	5
<i>Energy</i> (cm ⁻¹)	9706.5	9819.7	9973.1	10119.3	10218.1
$FWHM (cm^{-1})$	25.8	48.0	885.6	27.7	19.7

* "hot" bands arising from a thermally populated higher crystal-field sublevel of the ${}^{2}F_{5/2}$ state.

Table S5. Lifetime of microcrystalline 1, 2, 4 at room temperature.

Compound	1			2		4			
Ln ion		Dy		Yb		Dy		Yb	
Wavelength (nm)	482	577	667	1011	482	577	667	1011	
Lifetime (µs)*	29.60	29.34	29.28	6.58	17.34	18.16	18.00	13.99	

* with error of $\pm 0.03 \sim 0.14$.