Supporting Information for "Thallophilic interactions and Tl-aryl π -interactions are competitive with cation-cation repulsion: $[LTl_2L]^{2+}$ dications as salts of weakly co-ordinating anions"

By J Cullinane, A Jolleys and F S Mair

School of Chemistry, The University of Manchester

Experimental Details for Synthesis and Characterization of 1 and 2.

Experimental Section

The following compounds were prepared by literature methods:

2-isopropyl-*N*-[(*3E*)-3-(2-isopropylphenyl)imino-2-[*N*-(2-isopropylphenyl)-*C*-methyl-carbonimidoyl]-1-methyl-but-1enyl]aniline, 2-isopropyl-*N*-[(*E*,3*E*)-3-(2-isopropylphenyl)imino-2-[*N*-(2-isopropylphenyl)-*C*-methyl-carbonimidoyl]-1,4,4trimethyl-pent-1-enyl]aniline, 2-isopropyl-*N*-[(*E*,3*E*)-2-[*N*-(2-isopropylphenyl)-*C*-methyl-carbonimidoyl]-3-(2methoxyphenyl)imino-1,4,4-trimethyl-pent-1-enyl]aniline, 2,4,6-trimethyl-*N*-[(3*E*)-1-methyl-2-[*C*-methyl-*N*-(2,4,6trimethylphenyl)carbonimidoyl]-3-(2,4,6-trimethylphenyl)imino-but-1-enyl]aniline¹ and sodium *tetrakis*(*bis*trifluoromethylphenyl)borate.² Other reagents were purchased from commercial vendors and used as received. Dichloromethane and hexane were used freshly distilled from calcium hydride and sodium-potassium alloy, respectively. Preparation of thallium *tetrakis*(*bis*-trifluoromethylphenyl)borate was done in air. Complex synthesis was conducted via Schlenk techniques under a nitrogen blanket. Once crystallized, complexes were briefly handleable in air. Elemental analyses were obtained from The University of Manchester Microanalytical Laboratory. CAUTION: all thallium reagents, products and wastes must be treated as highly poisonous, and collected for professional disposal.

Preparation of thallium tetrakis(bis-trifluoromethylphenyl)borate

This preparation was done in air. Na[BArF] (4.20 g, 4.46 mmol) was dissolved in acetone (20 mL). To this stirred solution was added a solution of TlNO₃ (1.12 g, 4.46 mmol) in acetone (5 mL) and water (15 mL). Some white solid precipitated. The mixture was slowly concentrated to 40% of its original volume by passage of nitrogen over its surface. The white solid product was Buchner filtered, washed with water and dried in air to yield 2.98 g (61.3%) of white powder Tl[BArF], mp.123-125 °C. Powder X-ray diffraction matched the pattern computed from published single crystal data, as did ¹H NMR {d 7.75 (s) , 7.60 (s)}.²

Complexes **1** and **2** were prepared by identical procedures: Details for **1**: 2-isopropyl-*N*-[(*3E*)-3-(2-isopropylphenyl)imino-2-[*N*-(2-isopropylphenyl)-*C*-methyl-carbonimidoyl]-1-methyl-but-1-enyl]aniline (0.227 g, 0.46 mmol) was placed in a Schlenk tube and dissolved in dichloromethane (20 mL). Solid Tl[BArF] (0.491 g, 0.46 mmol) was added to yield a yellow solution, which was stirred for 3 h prior to being filtered under nitrogen. The volume was then reduced by half *in vacuo*. Layering of the residue with hexane (20 mL) and standing at rt for 3 d gave crystals, isolated by filtration, of [HC{MeC=N(2iPrC₆H₄)}₃Tl]₂[BArF]₂.C₆H₁₄, **1** (0.531 g, 72%). m.p. 162-163 °C. Elemental anal., calcd. for C₆₉H₆₂N₃TlF₂₄B (%): C, 51.65; H, 3.90; N, 2.62. Found: C, 51.17; H, 3.75; N, 2.56. MS (MALDI) *m*/*z*: 696-699 [(L)Tl]⁺, isotope abundances were consistent with gas-phase monomer ions. ¹H NMR (400 MHz, 295 K, CDCl₃): δ 1.39 (18H, br, apparent s (CH(CH₃)₂), 2.21 (9H, s, CH₃C=N), 2.82 (3H, br, apparent s, CH(CH₃)₂), 5.32 (1H, br s, α -CH), 6.6-7.4 (12H, br, complex m, aryl CH), 7.45 (4H, s, BArF *o*-CH), 7.62 (8H, s, BArF *p*-CH).

Compound **2** was prepared and characterized analogously. **2**: from 2-isopropyl-*N*-[(*E*,*3E*)-3-(2-isopropylphenyl)imino-2-[*N*-(2-isopropylphenyl)-*C*-methyl-carbonimidoyl]-1,4,4-trimethyl-pent-1-enyl]aniline (0.220 g, 0.41 mmol), yielded 0.38 g (57.7%) of [HC{MeC=N(2-*i*PrC₆H₄)}₂*t*BuC=N(2-*i*PrC₆H₄)Tl]₂[BArF]₂, **2**. m.p. = 168-170 °C. Elemental analysis, calcd. for C₆₉H₆₁N₃TlF₂₄B (%): C, 51.59; H, 3.83; N, 2.61. Found: C, 50.48; H, 3.65; N, 2.48; Tl, 11.93. ¹H NMR (400 MHz, 295 K, CDCl₃): δ 1.12-1.18 (9H, 3 overlapping d, CH(*CH*₃)₂), 1.20 (3H, d, CH(*CH*₃)₂), 1.23 (9H, s, C(*CH*₃)₃), 1.25-1.31 (6H, 2 overlapping d, CH(*CH*₃)₂), 2.33 (3H, s, *CH*₃C=N), 2.41 (3H, s, *CH*₃C=N), 2.48 (1H, septet, *CH*(CH₃)₂), 2.54 (1H, septet, *CH*(CH₃)₂), 5.74 (1H, s, α-*CH*), 6.53 (1H, d, *o*-*CH*), 6.56 (1H, *o*-*CH*), 6.60 (1H, d, *o*-*CH*), 7.23-7.54 (9H, non-first-order m, other aromatic *CH*), 7.54 (4H, s, BArF₄*p*-*CH*), 7.71 (8H, s, BArF₄*o*-*CH*). ¹⁹F NMR (376 MHz, CDCl₃): δ -62.20 (s, BAr^F₄*CF*₃).

Crystals were mounted in perfluoropolyether oil onto the goniometer of an Oxford Diffraction X-Calibur 2 diffractometer fitted with an Oxford Diffraction Cryostream 700. Reflections were collected using graphite-monochromated Mo- K_{α} radiation. Data were collected and processed by the programs CrysAlis PRO and CrysAlis RED,³ and solved and refined using SHELXS and SHELXL.⁴

X-Ray Data Collection Summary Tabulated overleaf.

Compound	1	2
Formula	$C_{34}H_{43}N_{3}Tl$	$C_{37}H_{49}N_3TlC$
	$C_{32}H_{12}BF_{24}$	$C_{32}H_{12}BF_{24}$
	$(C_6 H_{14})_{0.5}$	
M_w	1604.41	1603.40
Crystal system	Triclinic	Triclinic
a/Å	12.8319(4)	14.8168(4)
b/Å	16.0697(5)	16.3174(7)
c/Å	17.3854(6)	16.4832(6)
$\alpha/^{\circ}$	98.692(3)	73.129(4)
β^{\prime}	105.005(3)	79.390(3)
$\gamma / ^{\circ}$	90.030(2)	63.442(3)
Space group	P-1	P-1
Z	2	2
Temp. (K)	120(2)	120(2)
μ/mm^{-1}	2.470	2.481
Reflns. measd.	24638	38437
Reflns. Obsd ^[a] (R _{int})	10498 (0.037)	15407 (0.036)
R ₁ (observed)	0.0346	0.0345
wR ₂ (all data) ^[b]	0.0611	0.0642
^[a] I = $I > 2\sigma$ (<i>I</i>). ^[1]	p^{0} w $R_{2} = \{\sigma[w$	$w(F_0^2 - F_c^2)^2]/\sigma[w(F_0^2)^2]\}^{1/2}$

Table 1. X-ray data collection and refinement details

Discussion of Energetics of dimerization

A full CI treatment of all the electrons in such large systems will be required to accurately model the dispersive interactions responsible. We hope to have these results ready for a full-paper on this subject, via collaboration with our colleague Dr Joe MacDouall, but in lieu of this at present, and at the request of referees, it is possible to comment using simple electrostatics, literature values from analogous systems, and relatively inexpensive single-point calculations (9 hours on a PC) using the crystallographic geometry.

Using the graphical user interface Gaussview,⁵ co-ordinates obtained from crystallographic cif files were input, minus anions and solvents of crystallization, to single-point energy calculations using Gaussian 09.⁶ Both monomer cation and dimer dication crystallographic geometries were subjected to this total energy computation, at both Hartree-Fock-Self-Consistent Field (HF-SCF) and Density Functional (DF) levels, in both cases using a LANL2-DZ basis. It should be noted that Hartree-Fock contains no treatment of configuration interaction (CI), and DF contains only an indirect treatment of it. Accurate energies will have to wait for full all-electron treatments with CI. However, as a means to estimate the approximate charge on Tl+, in order to scale our estimates of coulombic repulsion, these methods should be adequate. To this end, we employed a Natural Population Analysis of charges,⁷ which is known to give more realistic results than the crude Mulliken charge analysis, though both sets of data are presented for the reader. The results of these calculations are presented here as Table 2, and in the main text as table 1.

Table 2. Summary of computational results.

	$Tl_{q(M)}$	$Tl_{q(NPA)}$	Energy	ΔE_D
			/Hartrees	/kcal mol
HF-SCF				+ 47.4
Monomer	0.82	0.94	-1524.6289	
Dimer	0.84	0.87	-3049.18217	
DF-B3LYP				+39.9
Monomer	0.70	0.90	-1536.06077	
Dimer	0.65	0.82	-3072.05798	

Basis set: LANL2-DZ. $Tl_{q(M)}$ = Mulliken charge on Tl; $Tl_{q(NPA)}$ = Natural Population Analysis charge on Tl; ΔE_D = energy of dimerization, i.e. 2 x monomer energy – dimer energy.

The NPA charges are higher than the Mulliken charges, clustering around +0.9 across the methods and monomer/dimer range. They are systematically lower for dimer than for monomer, indicating the effect of π -aryl co-ordination, in all cases except the Mulliken DF-B3LYP case. This underlines the superiority of NPA charge analysis.⁷ Taking the most conservative NPA estimate of true "Tl⁺" charge, +0.82, the electrostatic repulsion between two such charges at the experimental Tl-Tl distance of 3.64 Å is calculated to be + 61.76 kcal mol⁻¹. The

computed dimerization energies of the cation from **1** are +40 (B3-LYP) and +47 (SCF) kcal mol⁻¹. These smaller values (22 {B3-LYP} and 25{SCF} kcal mol⁻¹ decreases) reflect the favourable effect of Tl-aryl interaction, which is modelled by these two methods. If one fully ascribes the decrease in repulsion to the effect of Tl-aryl attraction, this places a value of -11 to -12.5 kcal mol⁻¹ per aryl, since there are two such interactions per dimer. This value lies within the lower part of the range found by others for such interactions.⁸ However, these widely-used methods still fail to predict the formation of these dimers by some considerable margin. This failure is partially because of the single-point nature of the calculations, and partly because of the inability of SCF to model configuration interaction effects, only partially recovered by DF-B3LYP. Current understanding ascribes less than 10 kcal mol⁻¹ to Tl-Tl attraction,⁹ which leaves over 30 kcal mol⁻¹ unaccounted for. The issue is ripe for investigation at the highest levels of theory not available to our computational resources. Either the assessment of the strength of Tl-Tl interactions is too low, the summation of multiple other small dispersive interactions in the crystal is unusually high in aggregate, or our dismissal of cation-diffuse anion interactions at distances approaching 6 Å is in error.

- 1 D. Barnes, G. L. Brown, M. Brownhill, I. German, C. J. Herbert, A. Jolleys, A. R. Kennedy, B. Liu, K. McBride, F. S. Mair, R. G. Pritchard, A. Sanders, J. E. Warren, *Eur. J. Inorg. Chem.* 2009, 1219.
- 2 H. Nishida, N. Takada, M. Yoshimura, Bull. Chem. Soc. Jpn. 1984, 57, 2600.
- 3 CrysAlis PRO and CrysAlis RED, Oxford Diffraction Ltd, Abingdon, UK, 2007.
- 4 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.
- 5 GaussView, Version 5, R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, 2009.
- *Gaussian 09, Revision B.01*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
 H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
 Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.
 Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
 Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
 J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
 Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.
 Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- 7 A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
- 8 T. Auel, E. L. Amma, J. Am. Chem. Soc., 1968, 90, 5941; H. Schmidbaur, W. Bublak, J. Riede, G. Müller, Angew. Chem., Int. Ed. Engl. 1985, 24, 414; Angew. Chem. 1985, 97, 402. Y. Sarazin, D. L. Hughes, N. Kaltsoyannis, J. A. Wright, M. Bochmann, J. Am. Chem. Soc. 2007, 129, 881; Y. Sarazin, N. Kaltsoyannis, J. A. Wright, M. Bochmann, Organometallics 2007, 26, 1881;
- 9 P. Pyykkö, M. Straka, T. Tamm, *Phys. Chem. Chem. Phys.* 1999, **1**, 3441; H. Schumann, C. Janiak, M. A. Khan and J. J. Zuckermann, *J. Organomet. Chem.* 1988, **354**, 7.

Appendix 1. Gaussian output for cation monomer, LANL2-DZ, HF-SCF. Entering Link 1 = C:(G09W)(11.exe PID) = 5392.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved.

This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1986, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc.

This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license.

The following legend is applicable only to US Government contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19.

Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above.

Cite this work as:

Gaussian 09, Revision B.01,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,

G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,

A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,

M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,

J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,

K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

15-Jan-2013

%chk=\\vdm09-g1.ds.man.ac.uk\HOME\Desktop\cationOnly_1_1.chk

rhf/lanl2dz pop=npa geom=connectivity

1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=6,6=3,11=1,16=1,25=1,30=1,116=1/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1,40=-1/1,7; 99/5=1,9=1/99;

single-Point XRD Monomer

Symbolic Z-matrix:

Charge =	1 Multiplicit	y = 1
С	-0.6205	11.0173 13.3488
Н	-1.1772	10.346 12.9002
С	-0.7386	10.7853 14.8523
С	-2.0146	10.1478 15.2951
Н	-2.0164	10.0668 16.2521
Н	-2.0905	9.2752 14.9004
Н	-2.7571	10.6899 15.0181
С	0.1477	11.0887 17.0133
С	0.985	10.2079 17.6933
С	0.9712	10.2682 19.0865
С	0.1757	11.1851 19.7698
С	-0.6272	12.0471 19.0766
С	-0.643	11.9981 17.6933
С	1.8192	9.1837 16.9669
С	1.2049	7.8117 17.0863
Н	1.2187	7.5343 18.0051
Н	1.706	7.1888 16.5556
Н	0.2964	7.8403 16.7745
С	3.2525	9.155 17.4114
Н	3.6438	10.0232 17.287
Н	3.7359	8.5075 16.8939
Н	3.2939	8.9159 18.3418
С	-1.123	12.3888 12.9283
С	-1.6827	12.4638 11.5534
Н	-1.9518	13.3661 11.366
Н	-2.4428	11.8816 11.4854
Н	-1.0127	12.193 10.9198
С	-1.289	14.7012 13.3745
С	-2.2986	15.3891 14.0528
С	-2.4429	16.7341 13.6979
С	-1.6719	17.3532 12.804
С	-0.6563	16.6662 12.1604

С	-0.4748	15.3276 12.454			
С	-3.1018	14.7409 15.1408			
С	-4.5972	15.0605 15.0712			
Н	-4.7206	16.0118 15.0513			
н	-5.0382	14 6958 15 8407			
и П	1 0686	14.6725 14.2751			
	-4.9080	14.0723 14.2731			
C	-2.5564	15.16/3 16.5058			
Н	-1.6294	14.924 16.5705			
Н	-3.0515	14.7244 17.2008			
Н	-2.6467	16.1173 16.6053			
С	0.8149	10.8036 12.8925			
C	1 185 9	3929 12 5668			
е н	2 0832	0.368 12.2268			
II II	0.5921	0.0479 11.005			
H	0.5821	9.0478 11.905			
Н	1.1288 8	8.8555 13.3612			
С	2.9692	11.7205 12.532			
С	3.4312	12.2928 11.3444			
С	4.8043	12.3003 11.1454			
С	5.6765	11.7802 12.0742			
C	5 2031	11 2058 13 2236			
C C	2 9 4 5 2 1	11 1762 12 4607			
C	3.8455	11.1703 13.4007			
C	2.4476	12.825 10.3294			
С	1.935 1	1.6972 9.4454			
Н	2.6628	11.3347 8.9346			
Н	1.2641	12.0378 8.8483			
Н	1.5553	11.0076 9.9944			
C	3 0076	13 9575 9 4603			
е н	3 / 1 / 9	14 6201 10 0242			
II II	2 2020	14.2500 8.0505			
п	2.2939	14.5599 0.9595			
H	3.6632	13.6032 8.8566			
Н	1.5376	9.6958 19.6056			
Н	0.2777	11.1745 20.6986			
Н	-1.0785	12.5752 19.405			
Н	-1.1085	12.6356 17.1991			
Н	1.9153	9.4051 16.0879			
н	-3 0335	17 0782 14 2137			
и П	1 6683	18 2508 12 5386			
	-1.0085	17.0116 11.5020			
H	-0.1278	17.0110 11.5932			
Н	0.1761	14.8424 12.0377			
Н	-3.0473	13.7776 15.0745			
Н	5.2053	12.7076 10.3908			
Н	6.5357	11.8968 11.8254			
Н	5.8118	10.8056 13.8323			
Н	3.5609	10.7602 14.2303			
H	1 6499	13 1539 10 8187			
N	0.0124	11 175 15 594			
1N NT	0.2130	12.2524 12.2507			
IN	-0.9939	13.3524 13.7507			
N	1.5756	11.8102 12.8487			
Tl	1.3934 1	13.5394 14.8375			
Stoichiomet	v C34H43	3N3T1(1+)			
Framework	$r_{\rm OIII} = C_{\rm III} r_{\rm S}$	(C34H43N3T1)			
Deg of from	$\int \frac{1}{27}$				
Deg. Of free	JUIII 237				
Full point gr	oup				
Largest Abe	lian subgrou	p CI NOp l			
Largest concise Abelian subgroup C1 NOp 1					
	Standard	orientation:			

Center	Atomic	Atomic	Coordinate	es (Angstroms)
Number	Number	Туре	X Y	Z
1	6 0	0.018610	-0.083509	2.255965

2	1	0	0.004563	-0.122705	3.235795
3	6	0	1.475694	0.037251	1.819378
4	6	0	2.383293	0.678773	2.817058
5	1	0	3.268910	0.740388	2.450589
6	1	0	2.404998	0.148404	3.617819
7	1	0	2.060674	1.558898	3.024916
8	6	0	3.100261	-0.209698	0.131984
9	6	0	3.901979	-1.327516	-0.084833
10	6	0	5.120320	-1.118172	-0.730319
11	6	0	5.509287	0.147439	-1.163167
12	6	0	4.696747	1.225405	-0.948720
13	6	0	3.488421	1.047147	-0.297304
14	6	0	3.511043	-2.694884	0.415175
15	6	0	4.301631	-3.060222	1.646233
16	1	0	5.230767	-3.137415	1.418018
17	1	0	3.985941	-3.897280	1.993251
18	1	0	4.191528	-2.375482	2.311377
19	6	0	3.635796	-3.770424	-0.624249
20	1	0	3.091520	-3.546877	-1.383296
21	1	0	3.345446	-4.607581	-0.256005
22	1	0	4.554096	-3.843778	-0.899697
23	6	0	-0.819518	1.110863	1.830107
24	6	0	-1.963955	1.431667	2.722624
25	1	0	-2.448030	2.180175	2.366134
26	1	0	-1.635595	1.649364	3.597907
27	1	Õ	-2.549087	0.671305	2.778766
28	6	Õ	-1.338571	2.731076	0.193238
29	6	Õ	-0.817831	4.019156	0.044002
30	6	Õ	-1.657345	4.927439	-0.608713
31	6	Ő	-2.859380	4.613055	-1.091473
32	6	Ő	-3.350780	3.324906	-0.961731
33	6	Õ	-2.575807	2.384734	-0.308671
34	6	Õ	0.575307	4.362779	0.480037
35	6	Ő	0.677188	5.710898	1.197953
36	1	Ő	0.293384	6.396553	0.647347
37	1	Ő	1 598956	5 913988	1 367410
38	1	Ő	0.200933	5 664574	2.030595
39	6	Ő	1 507967	4 364168	-0 733490
40	1	Ő	1 482544	3 502822	-1 157927
41	1	Ő	2 406176	4 551802	-0.446567
42	1	Ő	1 224468	5.037208	-1 355743
43	6	Ő	-0 583107	-1 380062	1 735256
44	6	0	-0.367113	-2 582691	2 595582
45	1	0	-0.836795	-3 332532	2.373302
46	1	0	-0 695737	-2 407635	3 479846
47	1	Ő	0.571789	-2.782032	2.637478
48	6	Ő	-1 705379	-2 517673	-0.013464
49	6	0	-3 088728	-2 656069	-0 149691
50	6	0	-3 539864	-3 736897	-0.893565
51	6	0	-2 671563	-4 628305	-1 481231
52	6	0	-1 319113	-1 186811	_1 310017
53	6	0	-0.828045	-3 /27120	-0 587380
54	6	0	-0.020045	-1 680893	0.53/1937
55	6	0	-4 239789	-2 088872	1 984061
56	1	0	-4 689360	-2 936869	2 012404
57	1	0	-4.002300	-1 426662	2.012404
58	1	0	-3 303020	-2 161062	2.727024
50	6	0	-5 365800	_1 500305	_0 173705
60	1	0	-5.303000	-1 346681	_1 108503
61	1	0	-5.210050	-1.3+0001	0 208//1
62	1	0	-5.850015	-0.704442	-0.066//6
62	1	0	5 705650	-2.307101	-0.000440
05	1	U	5.105059	-1.032707	-0.710024

64 1 0 6.320426 0.169319 -1.626590 65 4.861412 1.941492 -1.173468 1 0 66 0 2.878627 1.747231 -0.224064 1 67 1 0 2.618643 -2.733005 0.597007 68 1 0 -1.222838 5.658391 -0.709589 69 1 0 -3.468463 5.144209 -1.580622 70 0 -4.101781 3.065483 -1.260104 1 71 1 0 -2.875714 1.530752 -0.193932 72 1 0 0.900886 3.712996 1.118076 73 1 0 -4.457959 -3.880782 -1.07388274 1 0 -3.110430 -5.249296 -1.966502 75 1 0 -0.733023 -5.136672 -1.687849 0.084013 -3.377206 -0.477995 76 1 0 0 -3.558752 -0.802221 0.580520 77 1 78 7 0 1.779334 -0.372228 0.664361 79 7 -0.508284 1.706202 0.748331 0 7 80 0 -1.185303 -1.346835 0.626165 81 81 0 -0.088425 0.101083 -1.291919 Rotational constants (GHZ): 0.0954184 0.0934007 0.0606679 Standard basis: LANL2DZ (5D, 7F) There are 437 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 437 basis functions, 1127 primitive gaussians, 439 cartesian basis functions 140 alpha electrons 140 beta electrons nuclear repulsion energy 4616.8692399665 Hartrees. NAtoms= 81 NActive= 81 NUniq= 81 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=T Big=T One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 38503 NPrTT= 272384 LenC2= 34176 LenP2D= 128614. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 437 RedAO=T NBF= 437 NBsUse= 437 1.00D-06 NBFU= 437 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 4.44D-02 ExpMax= 5.91D+03 ExpMxC= 2.05D+02 IAcc=2 IRadAn= 0 AccDes = 0.00 D + 00HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 0 IDoV = 1ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 81. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001 0 DoJE=T BraDBF=F KetDBF=T FulRan=T NFxFlg= Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl = 0NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0 Petite list used in FoFCou. Initial guess orbital symmetries: (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)The electronic state is 1-A. Alpha occ. eigenvalues -- -15.69545 -15.69285 -15.69101 -11.44334 -11.44223 Alpha occ. eigenvalues -- -11.43735 -11.37944 -11.37357 -11.37327 -11.37219 Alpha occ. eigenvalues -- -11.33977 -11.33753 -11.33514 -11.32479 -11.32064 Alpha occ. eigenvalues -- -11.31928 -11.31902 -11.31387 -11.31285 -11.31262 Alpha occ. eigenvalues -- -11.31260 -11.31103 -11.31100 -11.31068 -11.31060 Alpha occ. eigenvalues -- -11.30857 -11.30792 -11.30619 -11.30582 -11.30572 Alpha occ. eigenvalues -- -11.29419 -11.26193 -11.25949 -11.25591 -11.25401 Alpha occ. eigenvalues -- -11.25323 -11.25024 -1.41927 -1.39225 -1.38938 Alpha occ. eigenvalues -- -1.28124 -1.27090 -1.26666 -1.21741 -1.21054 Alpha occ. eigenvalues -- -1.20509 -1.20309 -1.17484 -1.17114 -1.14115 Alpha occ. eigenvalues -- -1.13713 -1.13025 -1.12749 -1.11977 -1.11663 Alpha occ. eigenvalues -- -1.10627 -1.07323 -1.06999 -1.06985 -0.99357 Alpha occ. eigenvalues -- -0.99083 -0.98373 -0.98132 -0.97720 -0.96418 Alpha occ. eigenvalues -- -0.93971 -0.93813 -0.93556 -0.93541 -0.93330 Alpha occ. eigenvalues -- -0.91881 -0.91737 -0.91528 -0.90574 -0.89648 Alpha occ. eigenvalues -- -0.87661 -0.83521 -0.82815 -0.81142 -0.80511 Alpha occ. eigenvalues -- -0.79922 -0.79492 -0.77967 -0.77832 -0.76928 Alpha occ. eigenvalues -- -0.76663 -0.76349 -0.75988 -0.75099 -0.74892 Alpha occ. eigenvalues -- -0.74232 -0.73834 -0.73399 -0.72880 -0.72734 Alpha occ. eigenvalues -- -0.72427 -0.72202 -0.72082 -0.71584 -0.71145 Alpha occ. eigenvalues -- -0.70201 -0.68661 -0.68591 -0.68470 -0.68152 Alpha occ. eigenvalues -- -0.67660 -0.67445 -0.66973 -0.666730 -0.66665 Alpha occ. eigenvalues -- -0.65740 -0.65367 -0.64690 -0.63686 -0.63224 Alpha occ. eigenvalues -- -0.62087 -0.61281 -0.60909 -0.59962 -0.59119 Alpha occ. eigenvalues -- -0.58794 -0.58367 -0.57466 -0.57360 -0.57085 Alpha occ. eigenvalues -- -0.56855 -0.56291 -0.56121 -0.55100 -0.55014 Alpha occ. eigenvalues -- -0.53526 -0.53186 -0.53081 -0.45946 -0.43689 Alpha occ. eigenvalues -- -0.43298 -0.42519 -0.41720 -0.41446 -0.41255 Alpha virt. eigenvalues -- -0.02736 -0.02372 -0.00452 0.01295 0.01504 Alpha virt. eigenvalues --0.03098 0.03794 0.03870 0.03966 0.05549 Alpha virt. eigenvalues --0.05978 0.06600 0.11562 0.11930 0.12774 Alpha virt. eigenvalues --0.13722 0.14395 0.14422 0.16184 0.16612 Alpha virt. eigenvalues --0.16863 0.17218 0.17642 0.18091 0.18348 Alpha virt. eigenvalues --0.18696 0.18880 0.19058 0.19499 0.19565 Alpha virt. eigenvalues --0.19928 0.20146 0.20311 0.20908 0.21213 Alpha virt. eigenvalues --0.21740 0.22049 0.22250 0.22456 0.22849 Alpha virt. eigenvalues -- 0.23141 0.23363 0.23832 0.23875 0.24281 Alpha virt. eigenvalues -- 0.24565 0.24890 0.25247 0.25392 0.25560 Alpha virt. eigenvalues -- 0.26377 0.27100 0.27309 0.27702 0.28159 Alpha virt. eigenvalues -- 0.28739 0.28842 0.29696 0.29806 0.30299 Alpha virt. eigenvalues -- 0.30742 0.31244 0.31522 0.31778 0.31966 0.32312 0.33151 0.33385 0.34016 0.34154 Alpha virt. eigenvalues --0.34673 0.34779 0.35086 0.35281 0.35514 Alpha virt. eigenvalues --Alpha virt. eigenvalues --0.36047 0.36135 0.36621 0.37009 0.37104 Alpha virt. eigenvalues --0.38370 0.38382 0.38949 0.39181 0.39305 Alpha virt. eigenvalues --0.39500 0.39885 0.40070 0.40177 0.40630 Alpha virt. eigenvalues -- 0.40916 0.41405 0.41631 0.41905 0.42286 Alpha virt. eigenvalues -- 0.42513 0.42735 0.43150 0.43948 0.44300

Alpha virt. eigenvalues	0.44547	0.45218	0.45458	0.45982	0.46454
Alpha virt. eigenvalues	0.46649	0.46757	0.47255	0.47571	0.48182
Alpha virt. eigenvalues	0.48561	0.48734	0.48913	0.49184	0.50141
Alpha virt. eigenvalues	0.50355	0.50661	0.51151	0.51420	0.51739
Alpha virt. eigenvalues	0.52270	0.52466	0.52729	0.53259	0.53498
Alpha virt. eigenvalues	0.53976	0.54228	0.54569	0.55183	0.55344
Alpha virt. eigenvalues	0.55793	0.55947	0.56197	0.56838	0.57395
Alpha virt. eigenvalues	0.58106	0.58454	0.58770	0.59335	0.59673
Alpha virt. eigenvalues	0.60028	0.60252	0.60920	0.61373	0.61910
Alpha virt. eigenvalues	0.62093	0.62406	0.63021	0.63317	0.63686
Alpha virt. eigenvalues	0.63894	0.64574	0.65034	0.65305	0.65509
Alpha virt. eigenvalues	0.66736	0.67001	0.67135	0.67858	0.68215
Alpha virt. eigenvalues	0.69072	0.69173	0.69894	0.70818	0.71558
Alpha virt. eigenvalues	0.71933	0.72435	0.72933	0.73266	0.74107
Alpha virt. eigenvalues	0.74307	0.74901	0.75413	0.75824	0.76353
Alpha virt. eigenvalues	0.77226	0.77709	0.77920	0.78343	0.78798
Alpha virt. eigenvalues	0.79022	0.80260	0.81273	0.81736	0.82644
Alpha virt. eigenvalues	0.83736	0.84433	0.85352	0.86764	0.86915
Alpha virt. eigenvalues	0.88273	0.89170	0.90176	0.90595	0.91465
Alpha virt. eigenvalues	0.93717	0.94819	0.95354	0.95968	0.96578
Alpha virt. eigenvalues	0.97356	0.98828	1.00323	1.00829	1.01930
Alpha virt. eigenvalues	1.04415	1.04479	1.05394	1.05939	1.13032
Alpha virt. eigenvalues	1.13831	1.14686	1.17587	1.18373	1.23972
Alpha virt. eigenvalues	1.24588	1.25440	1.26996	1.27585	1.27857
Alpha virt. eigenvalues	1.28825	1.31907	1.33103	1.34478	1.36889
Alpha virt. eigenvalues	1.37397	1.38345	1.39133	1.40599	1.42132
Alpha virt. eigenvalues	1.42695	1.43771	1.44109	1.44984	1.45663
Alpha virt. eigenvalues	1.45963	1.46506	1.47093	1.47675	1.48510
Alpha virt. eigenvalues	1.48962	1.49275	1.49960	1.50386	1.51142
Alpha virt. eigenvalues	1.51934	1.52118	1.52891	1.53755	1.54182
Alpha virt. eigenvalues	1.54510	1.54622	1.55066	1.56019	1.56282
Alpha virt. eigenvalues	1.56775	1.57257	1.58125	1.59143	1.59282
Alpha virt. eigenvalues	1.61028	1.61423	1.62270	1.62566	1.63915
Alpha virt. eigenvalues	1.64459	1.65200	1.65467	1.66487	1.67284
Alpha virt. eigenvalues	1.68403	1.68864	1.69926	1.71444	1.73576
Alpha virt. eigenvalues	1.74680	1.76389	1.76662	1.77593	1.78656
Alpha virt. eigenvalues	1.80414	1.81018	1.82436	1.84041	1.85190
Alpha virt. eigenvalues	1.87574	1.88229	1.90183	1.92322	1.93228
Alpha virt. eigenvalues	1.94952	1.97738	2.05464	2.08247	2.09727
Alpha virt. eigenvalues	2.19730	10.97937			

Alpha virt. eigenvalues -- 2.19730 10.9 Condensed to atoms (all electrons):

Mulliken atomic charges:

		1
1	С	-0.266456
2	Η	0.247055
3	С	0.225093
4	С	-0.671943
5	Η	0.269294
6	Η	0.239787
7	Η	0.236633
8	С	0.126187
9	С	0.243147
10	С	-0.364006
11	С	-0.280345
12	С	-0.389328
13	С	-0.362305
14	С	-0.207258
15	С	-0.599509
16	Η	0.209296
17	Η	0.201303
18	Η	0.190710
19	С	-0.615455

20	н	0.200198
20	11	0.200170
21	Н	0.203899
22	Η	0.199163
23	С	0 248978
24	C	0.691640
24	C	-0.081040
25	Н	0.269910
26	Η	0.245898
27	Н	0 239839
20	C	0.120140
20	C	0.129140
29	C	0.180959
30	С	-0.327214
31	С	-0.258605
20	c	0.236603
32	C	-0.310022
33	С	-0.413412
34	С	-0.214630
35	Ċ	-0.610529
20		-0.010327
36	н	0.19/190
37	Η	0.208723
38	Н	0.207377
30	С	-0.601501
10		-0.001501
40	н	0.190155
41	Η	0.202924
42	Н	0.212686
13	C	0.230420
43	C	0.239420
44	C	-0.6/4115
45	Η	0.267285
46	Н	0.240904
17	ц	0.241408
4/	п	0.241408
48	C	0.162305
49	С	0.207318
50	С	-0 350868
51	\tilde{c}	0.284701
51	C	-0.264701
52	C	-0.241217
53	С	-0.390864
54	С	-0.181342
55	Ĉ	0.605355
55		-0.003333
56	Н	0.217240
57	Η	0.207211
58	Н	0.185245
50	C	0.628158
59		-0.028138
60	Н	0.209962
61	Η	0.210354
62	Н	0.200921
63	н	0.261147
05	11	0.201147
64	н	0.268813
65	Н	0.431286
66	Η	0.280742
67	н	0 217869
6	11 11	0.217607
08	н	0.313502
69	Н	0.263980
70	Η	0.340896
71	н	0 303098
71	11 11	0.303020
12	п	0.198037
73	Н	0.267410
74	Η	0.291434
75	Н	0.265628
76	ц	0.205020
70	п	0.303113
17	Н	0.180429
78	Ν	-0.442773
79	Ν	-0.465629
80	N	-0 478730
00	11	-0.+/0/39
81	TT	0.820015

Sum of Mulliken atomic charges = 1.00000Mulliken charges with hydrogens summed into heavy atoms: 1

1 C -0.019401
3 C 0.225093
4 C 0.073771
8 C 0.126187
9 C 0.243147
10 C -0.102859
11 C -0.011533
12 C 0.041958
13 C -0.081563
14 C 0.010610
15 C 0.001801
19 C -0.012195
23 C 0.248978
24 C 0.074007
28 C 0.129140
29 C 0.180959
30 C -0.013712
31 C 0.005376
32 C 0.024274
33 C -0.110314
34 C -0.016593
35 C 0.002761
39 C 0.004264
43 C 0.239420
44 C 0.0/5482
48 C 0.162305
49 C 0.20/318
50 C -0.083458
51 C 0.006/33
52 C = 0.024411
55 C -0.085749
54 C -0.000915
50 C 0.004540
78 N = 0.000921
70 N 0.465620
80 N -0.478739
81 TL 0 820015
Sum of Mulliken charges with hydrogens summed into heavy atoms $= 1,00000$
Electronic snatial extent (au): $\langle R^{**2} \rangle = 18936.9244$
Charge= 1.0000 electrons
Dipole moment (field-independent basis, Debve):
X = -0.5128 $Y = -0.4836$ $Z = 4.8570$ Tot = 4.9079
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -195.1178 YY= -196.9825 ZZ= -216.2439
XY= 1.2165 XZ= 0.7221 YZ= -0.6321
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 7.6636 YY= 5.7989 ZZ= -13.4625
XY= 1.2165 XZ= 0.7221 YZ= -0.6321
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= -7.0397 YYY= 39.2490 ZZZ= -83.2349 XYY= -13.2635
XXY= -33.6174 XXZ= -93.8708 XZZ= -7.0497 YZZ= -0.2137
YYZ= -92.1043 XYZ= -0.7789
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -10506.0357 YYYY= -10422.7625 ZZZZ= -2657.5802 XXXY= 3.2769
XXXZ= -146.3972 YYYX= 53.9765 YYYZ= 15.4714 ZZZX= 25.3350
ZZZY= -14.9586 XXYY= -3455.9526 XXZZ= -2328.5186 YYZZ= -2262.0642
XXYZ= -30.5064 YYXZ= 168.1106 ZZXY= 11.5951
N-N= 4.616869239966D+03 E-N=-1.277307290042D+04 KE= 1.521968359954D+03

Analyzing the SCF density

_

Job title: single-Point XRD Monomer

Storage needed: 593108 in NPA (33535799 available)

NATURAL POPULATIONS: Natural atomic orbital occupancies

NA	0 A	tom No	o lang Typ	e(AO) O	Occupancy	Energy
1	С	1 S	Cor(1S)	1.99896	-11.21738	
2	С	1 S	Val(2S)	0.96255	-0.31219	
3	С	1 S	Ryd(3S)	0.00100	1.63271	
4	С	1 px	Val(2p)	1.07737	-0.20803	
5	С	1 px	Ryd(3p)	0.00807	0.57089	
6	С	1 py	Val(2p)	1.07383	-0.20718	
7	С	1 py	Ryd(3p)	0.00748	0.55266	
8	С	1 pz	Val(2p)	1.18308	-0.16343	
9	С	1 pz	Ryd(3p)	0.02144	0.65750	
10	Н	2 S	Val(1S)	0.79434	0.13612	
11	Η	2 S	Ryd(2S)	0.00191	1.15690	
12	С	3 S	Cor(1S)	1.99916	-11.29624	
13	С	3 S	Val(2S)	0.85968	-0.24218	
14	С	3 S	Ryd(3S)	0.00596	1.15904	
15	С	3 px	Val(2p)	0.96022	-0.14022	
16	С	3 px	Ryd(3p)	0.00816	0.70730	
17	С	3 py	Val(2p)	0.79030	-0.13731	
18	С	3 py	Ryd(3p)	0.00914	0.58202	
19	С	3 pz	Val(2p)	0.87105	-0.07736	
20	С	3 pz	Ryd(3p)	0.00732	0.62595	
21	С	4 S	Cor(1S)	1.99921	-11.13375	
22	С	4 S	Val(2S)	1.02185	-0.24205	
23	С	4 S	Ryd(3S)	0.00051	1.32559	
24	С	4 px	Val(2p)	1.18848	-0.14567	
25	С	4 px	Ryd(3p)	0.00396	0.35355	
26	С	4 py	Val(2p)	1.19978	-0.13893	
27	С	4 py	Ryd(3p)	0.00212	0.35801	
28	С	4 pz	Val(2p)	1.16897	-0.14591	
29	С	4 pz	Ryd(3p)	0.00314	0.31548	
30	Н	5 S	Val(1S)	0.78586	0.17085	
31	Η	5 S	Ryd(2S)	0.00153	1.06392	
32	Н	6 S	Val(1S)	0.79377	0.14916	
33	Н	6 S	Ryd(2S)	0.00120	1.00152	
34	н	7 S	Val(1S)	0.79380	0.14750	
35	Н	7 S	Ryd(2S)	0.00122	1.00289	
36	С	8 S	Cor(1S)	1.99890	-11.22543	
37	С	8 S	Val(2S)	0.84327	-0.16910	
38	С	8 S	Ryd(3S)	0.00199	1.31378	

 39 40 41 42 43 44 	C C C C C C C	8 px 8 px 8 py 8 py 8 pz 8 pz 8 pz	Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	0.88265 0.00908 1.08277 0.00547 1.02612 0.01292	-0.06270 0.72071 -0.12648 0.63369 -0.15413 0.69144
45 46 47 48 49 50 51 52 53	C C C C C C C C C C	 9 S 9 S 9 S 9 px 9 py 9 py 9 pz 9 pz 9 pz 	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99908\\ 0.89508\\ 0.00180\\ 1.04707\\ 0.00697\\ 1.05966\\ 0.01012\\ 0.99358\\ 0.00780\\ \end{array}$	-11.18601 -0.18953 1.35160 -0.10842 0.67599 -0.10895 0.82766 -0.12068 0.63466
54 55 56 57 58 59 60 61 62	C	10 S 10 S 10 S 10 px 10 px 10 py 10 py 10 pz 10 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99920\\ 0.93906\\ 0.00094\\ 1.08212\\ 0.00684\\ 1.11698\\ 0.00537\\ 1.00490\\ 0.00405 \end{array}$	-11.15647 -0.18289 1.22377 -0.07507 0.48508 -0.06049 0.61584 -0.12198 0.49701
63 64 65 66 67 68 69 70 71	C C C C C C C C C C	 S S S S D D	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99931\\ 0.94223\\ 0.00072\\ 1.11283\\ 0.00673\\ 1.04021\\ 0.00437\\ 1.02244\\ 0.00486\end{array}$	-11.15560 -0.16763 1.12297 -0.02777 0.47259 -0.07277 0.52064 -0.09622 0.47475
72 73 74 75 76 77 78 79 80	C C C C C C C C C C	12 S 12 S 12 S 12 px 12 px 12 px 12 py 12 py 12 pz 12 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99872\\ 0.87779\\ 0.00040\\ 1.04444\\ 0.00447\\ 1.11242\\ 0.00652\\ 1.00473\\ 0.00491 \end{array}$	-11.11016 -0.00910 1.12823 -0.08636 0.51413 0.09671 0.41551 -0.10405 0.46092
81 82 83 84 85 86 87 88 89	C C C C C C C C C C	13 S 13 S 13 S 13 px 13 px 13 px 13 py 13 py 13 pz 13 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99919\\ 0.93244\\ 0.00092\\ 1.09047\\ 0.00466\\ 1.10737\\ 0.00884\\ 1.03829\\ 0.00495 \end{array}$	-11.15959 -0.17220 1.28742 -0.07805 0.58451 -0.06218 0.54655 -0.14522 0.54949
90 91 92 93 94	C C C C C	14 S 14 S 14 S 14 px 14 px	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p)	1.99909 0.92314 0.00053 1.13334 0.00984	-11.13930 -0.16236 1.64593 -0.02294 0.55464

95	С	14 py	Val(2p)	1.01270	-0.09143
96	C	14 pv	Rvd(3p)	0.00543	0.56238
97	Ċ	14 pz	Val(2p)	1.02795	-0.09423
98	Ĉ	14 pz	Rvd(3p)	0.00431	0.56337
20	č	1. 12	11)0(<i>v</i> p)	0100101	0100007
99	С	15 S	Cor(1S)	1.99932	-11.08290
100	С	15 S	Val(2S)	1.00987	-0.16901
101	Ċ	15 S	Rvd(3S)	0.00064	1 28743
102	č	15 D	Val(2n)	1 18042	-0.07724
102	C	15 px 15 ny	$\operatorname{Rvd}(3n)$	0.00201	0.33307
103	C	15 px	Val(2p)	1 20271	0.07056
104	C	15 py	Val(2p) Pud(2p)	0.00220	-0.07030
105	C	15 py	Kyu(3p)	1.11401	0.38084
100	C	15 pz	var(2p)	1.11491	-0.08230
107	C	15 pz	Kyd(Sp)	0.00395	0.37799
108	н	16 S	Val(1S)	0.81826	0 19352
100	н	16 S	Rvd(2S)	0.01020	1 00540
107	11	10 5	Kyu(25)	0.00157	1.00540
110	Н	17 S	Val(1S)	0.81945	0.19349
111	Н	17 S	Rvd(2S)	0.00140	0.99496
		17 5	1()((25)	0.00110	0.77170
112	Н	18 S	Val(1S)	0.82757	0.18175
113	Н	18 S	Rvd(2S)	0.00152	1.03787
-					
114	С	19 S	Cor(1S)	1.99933	-11.07868
115	С	19 S	Val(2S)	1.00709	-0.16404
116	С	19 S	Rvd(3S)	0.00060	1.28919
117	С	19 px	Val(2p)	1.21549	-0.07256
118	C	19 px	Rvd(3n)	0.00265	0.37443
119	Ċ	19 pv	Val(2n)	1 14049	-0.07671
120	č	19 py	Rvd(3n)	0.00356	0 39561
120	C	19 pj	Val(2p)	1 14467	-0.07588
121	C	10 pz	$\operatorname{Pred}(2p)$	0.00320	0 37342
122	C	19 pz	Kyu(Sp)	0.00329	0.37342
123	н	20 S	Val(1S)	0 82240	0 19136
123	н	20 5	$\operatorname{Rvd}(2S)$	0.02240	1 00870
124	11	20 3	Kyu(25)	0.00141	1.00870
125	Н	21 S	Val(1S)	0.81900	0.19499
126	н	21 S	Rvd(2S)	0.00139	1 01332
120	11	21 0	Rya(25)	0.00157	1.01352
127	Н	22 S	Val(1S)	0.82504	0.18688
128	Н	22 S	Rvd(2S)	0.00170	1.04184
)=(-~)		
129	С	23 S	Cor(1S)	1.99917	-11.30124
130	С	23 S	Val(2S)	0.86141	-0.24823
131	С	23 S	Rvd(3S)	0.00579	1.17773
132	С	23 px	Val(2p)	0.90076	-0.14139
133	Ċ	23 px	Rvd(3n)	0.00763	0.64982
134	č	23 pr	Val(2n)	0.85856	-0 13087
135	C	23 py 23 py	Rvd(3n)	0.00050	0.62436
136	C	23 py	$V_{2}(2p)$	0.00757	0.02430
130	C	23 pz	Val(2p) Pvd(3p)	0.04800	-0.09100
157	C	23 pz	Kyu(Sp)	0.00709	0.00891
138	С	24 S	Cor(1S)	1.99921	-11 13489
130	c	24 \$	$V_{al}(2S)$	1 01006	-0 24265
1/0	c	24 S 24 S	Rvd(2S)	0.00056	1 3/708
1/1	C	2+ 3 24 mm	$V_{\rm ol}(20)$	1 1/1/50	0 1/021
141		24 px	v ar(2p) $D_{v}A(2m)$	0.00251	0.14931
142 142		24 px	$V_{o1}(2m)$	1 22250	0.33332
143		24 py	var(2p)	1.23339	-0.144/3
144		24 py	Kya(3p)	0.00292	0.32992
145	C	24 pz	var(2p)	1.18362	-0.14852
146	С	24 pz	Kyd(3p)	0.00309	0.33525

147 148	H H	25 S 25 S	Val(1S) Ryd(2S)	0.78532 0.00162	0.16801 1.06702
149 150	H H	26 S 26 S	Val(1S) Ryd(2S)	0.79101 0.00124	0.15093 1.00490
151 152	H H	27 S 27 S	Val(1S) Ryd(2S)	0.79352 0.00146	0.14151 1.06042
153 154 155 156	C C C C C	28 S 28 S 28 S 28 S 28 px	Cor(1S) Val(2S) Ryd(3S) Val(2p)	1.99891 0.84416 0.00200 0.99244	-11.22584 -0.17373 1.27984 -0.10541
157 158 159 160	C C C C	 28 px 28 py 28 py 28 pz 	Ryd(3p) Val(2p) Ryd(3p) Val(2p)	0.00697 0.97864 0.00780 1.02469	0.64057 -0.09709 0.72497 -0.15625
161 162	C C	28 pz	Ryd(3p)	0.01224	0.67129
162 163 164 165 166 167 168 169 170		 29 S 29 S 29 S 29 S 29 px 29 px 29 py 29 py 29 pz 29 pz 	Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99909\\ 0.89566\\ 0.00170\\ 1.04943\\ 0.00986\\ 1.03862\\ 0.00690\\ 0.98259\\ 0.00890\\ \end{array}$	-0.19361 -0.19361 1.36059 -0.11475 0.77012 -0.09899 0.68174 -0.12184 0.63416
171 172 173 174 175 176 177 178 179	C C C C C C C C C C	 30 S 30 S 30 S 30 px 30 px 30 py 30 py 30 pz 30 pz 	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99902 \\ 0.89570 \\ 0.00083 \\ 1.08337 \\ 0.00361 \\ 1.13066 \\ 0.00848 \\ 1.00757 \\ 0.00354 \end{array}$	-11.12759 -0.08675 1.21858 -0.06113 0.62701 -0.01125 0.43369 -0.12270 0.51639
180 181 182 183 184 185 186 187 188	C C C C C C C C C C	31 S 31 S 31 S 31 px 31 px 31 px 31 py 31 py 31 pz 31 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99930\\ 0.93345\\ 0.00087\\ 1.08411\\ 0.00498\\ 1.08568\\ 0.00581\\ 1.02827\\ 0.00474\end{array}$	-11.15402 -0.15889 1.13726 -0.04446 0.49828 -0.06868 0.49120 -0.09464 0.47272
189 190 191 192 193 194 195 196 197	C C C C C C C C C C	32 S 32 S 32 S 32 px 32 px 32 px 32 py 32 py 32 pz 32 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99915\\ 0.91349\\ 0.00059\\ 1.10140\\ 0.00716\\ 1.04637\\ 0.00432\\ 1.00461\\ 0.00528\end{array}$	-11.14048 -0.10672 1.11086 0.01266 0.41961 -0.07214 0.51368 -0.10673 0.45706
198 199	C C	33 S 33 S	Cor(1S) Val(2S)	1.99917 0.92510	-11.15596 -0.16432

200	С	33	S	Ryd(3S)	0.00090	1.24559
201	С	33	рх	Val(2p)	1.06491	-0.11287
202	С	33	px	Ryd(3p)	0.00676	0.53553
203	С	33	py	Val(2p)	1.14621	-0.03820
204	С	33	DV	Rvd(3p)	0.00694	0.52887
205	Ċ	33	DZ	Val(2p)	1.04926	-0.15138
206	Ĉ	33	r – DZ	Rvd(3p)	0.00493	0.56800
200	č		P-2	11) @(0p)	0100120	0.00000
207	С	34	S	Cor(1S)	1.99922	-11.16063
208	Ċ	34	ŝ	Val(2S)	0.94853	-0.21792
209	C	34	ŝ	Rvd(3S)	0.00059	1 63561
210	C	34	nx	Val(2n)	1 02029	-0.09048
211	c	34	pri ny	Rvd(3n)	0.00451	0.48023
211	C	3/ 1	PA nv	Val(2p)	1 08588	-0.08707
212	C	3/ 1	Py nv	Rvd(3n)	0.00200	0.65200
213	C	34	ру pz	$V_{2}(2p)$	1.06734	0.03200
214	C	34	pz pz	Val(2p) Rvd(3p)	0.00563	0.53747
215	C	54]	ΡZ	Kyu(5p)	0.00505	0.55747
216	C	35	S	Cor(1S)	1 00031	11 08317
210	C	35	s s	$V_{al}(2S)$	1.01070	0 16003
217	C	25	5 6	Val(2S)	0.00050	1 28960
210	C	25	3 77	$V_{\rm el}(2n)$	1 21 220	1.20009
219	C	25	px	Val(2p)	0.00200	-0.07177
220	C	25	px	Kyu(3p)	1.00477	0.38020
221	C	25	ру	var(2p)	1.094//	-0.07950
222	C	33]	ру	Kyd(Sp)	0.00297	0.35525
223	C	35]	pz	val(2p)	1.18154	-0.07516
224	C	33 J	pz	Ryd(3p)	0.00377	0.35743
225	тт	20	c	$V_{2}(10)$	0.02656	0 10242
225	н	30	3	var(15)	0.82000	0.18542
226	н	36	3	Ryd(25)	0.00159	1.02838
227	ц	27	c	$V_{0}(1S)$	0.91610	0 10802
227	п	27	ວ ເ	Val(15)	0.01019	1.00210
220	п	57	3	Kyu(25)	0.00155	1.00210
220	ц	20	c	$V_{0}(1S)$	0.01066	0 10695
229	п	20	ວ ເ	Val(15)	0.01000	0.19085
230	п	20	3	Kyu(25)	0.00143	0.99191
221	C	20	c	Cor(18)	1 00022	11 02050
231	C	20	с С	$\operatorname{Col}(1S)$	1.99932	-11.06939
232	C	20	s c	val(2S)	0.00074	-0.1/330
200	C	20	3	Kyd(3S)	0.00074	1.20090
234	C	39	рх	var(2p)	1.13933	-0.08406
235	C	39]	px	Ryd(3p)	0.00391	0.44208
236	C	39	ру	Val(2p)	1.20979	-0.0/383
237	C	39]	ру	Ryd(3p)	0.00348	0.41832
238	C	39	pz	Val(2p)	1.12338	-0.08518
239	С	39]	pz	Ryd(3p)	0.00276	0.38792
240		10	a	XX 1/ 10)	0.0000	0 17 450
240	Н	40	S	Val(IS)	0.83226	0.17453
241		40	S	Rvd(2S)	0.00176	1 11 200
	п	40	2	Kyu(25)	0.00140	1.00380
2.42	п	40	0	Kyu(25)	0.00140	1.00380
242	Н	40	S	Val(1S)	0.81858	0.19029
242 243	н Н Н	40 41 41	S S	Val(2S) Val(1S) Ryd(2S)	0.81858 0.00142	0.19029 0.99340
242 243	н Н Н	40 41 41	S S	Val(1S) Ryd(2S)	0.81858 0.00142	0.19029 0.99340
242 243 244	H H H	40 41 41 42	S S S	Val(1S) Ryd(2S) Val(1S)	0.81858 0.00142 0.81867	0.19029 0.99340 0.19501
242 243 244 245	H H H H	40 41 41 42 42	S S S S	Val(25) Val(15) Ryd(25) Val(15) Ryd(25)	0.81858 0.00142 0.81867 0.00152	0.19029 0.99340 0.19501 1.05152
 242 243 244 245 246 	H H H H H	40 41 41 42 42 42	S S S S	Val(1S) Ryd(2S) Val(1S) Ryd(2S)	0.81858 0.00142 0.81867 0.00152	0.19029 0.99340 0.19501 1.05152
 242 243 244 245 246 247 	H H H H C C	40 41 41 42 42 43 43	S S S S S	Val(1S) Ryd(2S) Val(1S) Ryd(2S) Cor(1S)	0.81858 0.00142 0.81867 0.00152 1.99915 0.85070	0.19029 0.99340 0.19501 1.05152 -11.30115
 242 243 244 245 246 247 248 	H H H H C C C	40 41 41 42 42 42 43 43 43 43	S S S S S S	Val(1S) Ryd(2S) Val(1S) Ryd(2S) Cor(1S) Val(2S) Bud(2S)	0.81858 0.00142 0.81867 0.00152 1.99915 0.85970	0.19029 0.99340 0.19501 1.05152 -11.30115 -0.24551
 242 243 244 245 246 247 248 240 	H H H H C C C C	40 41 41 42 42 43 43 43 43 43	S S S S S S	Val(1S) Ryd(2S) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S)	0.81858 0.00142 0.81867 0.00152 1.99915 0.85970 0.00607	0.19029 0.99340 0.19501 1.05152 -11.30115 -0.24551 1.15859
 242 243 244 245 246 247 248 249 250 	H H H H C C C C C C	40 41 41 42 42 43 43 43 43 43	S S S S S S px	Val(1S) Ryd(2S) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S) Val(2p)	0.81858 0.00142 0.81867 0.00152 1.99915 0.85970 0.00607 0.77719	0.19029 0.99340 0.19501 1.05152 -11.30115 -0.24551 1.15859 -0.12828
 242 243 244 245 246 247 248 249 250 250 	H H H H C C C C C C C C	40 41 41 42 42 43 43 43 43 43 43 43 43 43	S S S S S S S px px	Val(1S) Ryd(2S) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p)	0.81858 0.00142 0.81867 0.00152 1.99915 0.85970 0.00607 0.77719 0.00979	0.19029 0.99340 0.19501 1.05152 -11.30115 -0.24551 1.15859 -0.12828 0.62257

252	С	43 py	Ryd(3p)	0.00739	0.71485
253	С	43 pz	Val(2p)	0.85124	-0.08553
254	С	43 pz	Ryd(3p)	0.00769	0.61376
		1	1/		
255	С	44 S	Cor(1S)	1.99921	-11.13755
256	С	44 S	Val(2S)	1.02141	-0.24564
257	Ċ	44 S	Rvd(3S)	0.00055	1.33011
258	C	44 nx	Val(2n)	1 23264	-0 14309
259	c	44 nx	Rvd(3n)	0.00194	0 36741
260	c	44 pv	Val(2p)	1 14047	-0.15210
260	C	$\frac{1}{4}$ py	$\operatorname{Rvd}(3n)$	0.00420	0.3/9/0
262	C	44 py	Val(2p)	1 18623	-0 1/790
262	C	44 pz	$\operatorname{Pvd}(2p)$	0.00300	0.33126
205	C	тт ра	Kyu(5p)	0.00500	0.33120
264	н	45 S	Val(1S)	0 78607	0 16603
265	н	45 S	Rvd(2S)	0.00159	1 05579
205	11	-55	Kyu(25)	0.00157	1.05577
266	н	46 S	Val(1S)	0 79384	0 14865
267	н	40 S	$\operatorname{Rvd}(2S)$	0.00116	1 00506
207	11	1 0 5	Kyu(25)	0.00110	1.00500
268	н	17 S	Val(1S)	0 79052	0 14676
260	н	47 5	$\operatorname{Rvd}(2S)$	0.79032	1 03/72
207	11	7/5	Kyu(25)	0.00120	1.05472
270	С	48 S	Cor(1S)	1 99891	-11 23310
271	C	48 S	Val(2S)	0.84185	-0 17606
271	c	18 S	Pvd(3S)	0.04105	1 30130
272	C	40 S	$V_{0}(33)$	1.06480	0.12584
273	C	40 pr	Val(2p) Pvd(3p)	0.00643	-0.12304
274	C	40 px	$V_{\rm el}(3p)$	0.00043	0.09110
213	C	40 py	var(2p)	0.91240	-0.06417
270	C	48 py	Kyu(3p)	0.00739	0.07408
270	C	48 pz	var(2p)	1.01439	-0.13200
278	C	48 pz	Kyd(Sp)	0.01290	0.69470
270	C	40 S	Cor(18)	1 00007	11 19029
219	C	49 3	$V_{01}(1S)$	1.99907	-11.10930
200	C	49 5	Val(2S)	0.09205	-0.19182
281	C	49 5	Kyd(3S)	0.00100	1.33157
202	C	49 px	var(2p)	1.03934	-0.11035
283	C	49 px	Kyd(Sp)	0.00815	0.77007
284	C	49 py	Val(2p)	1.04001	-0.11929
285	C	49 py	Ryd(3p)	0.00805	0.66664
286	C	49 pz	Val(2p)	1.00617	-0.12551
287	С	49 pz	Ryd(3p)	0.00821	0.65024
200	C	50 G	C (10)	1 000 1 0	11 150 41
288	C	50 5	Cor(1S)	1.99918	-11.15241
289	C	50 S	Val(2S)	0.93112	-0.17034
290	C	50 S	Ryd(3S)	0.00090	1.22132
291	С	50 px	Val(2p)	1.15897	-0.03815
292	С	50 px	Ryd(3p)	0.00777	0.51081
293	С	50 py	Val(2p)	1.03615	-0.10177
294	С	50 py	Ryd(3p)	0.00428	0.55701
295	С	50 pz	Val(2p)	1.01152	-0.11806
296	С	50 pz	Ryd(3p)	0.00411	0.49569
• • •	~	~	~		
297	C	51 S	Cor(1S)	1.99924	-11.14420
298	C	51 S	Val(2S)	0.92705	-0.14237
299	C	51 S	Ryd(3S)	0.00068	1.11403
300	С	51 px	Val(2p)	1.07049	-0.05103
301	С	51 px	Ryd(3p)	0.00446	0.51849
302	С	51 py	Val(2p)	1.08036	-0.05972
303	С	51 py	Ryd(3p)	0.00662	0.45000
304	С	51 pz	Val(2p)	1.03187	-0.08686
	0	51	$\mathbf{D}\mathbf{vd}(2\mathbf{n})$	0.00506	0 45003

306	С	52 S	Cor(1S)	1.99931	-11.16278
307	С	52 S	Val(2S)	0.93967	-0.17717
308	С	52 S	Ryd(3S)	0.00071	1.11741
309	С	52 px	Val(2p)	1.09494	-0.05993
310	Ċ	52 px	Rvd(3p)	0.00567	0.49621
311	Ċ	52 nv	Val(2n)	1 07377	-0.06464
312	C	52 py	Rvd(3n)	0.00570	0 48062
313	c	52 pj	Val(2p)	1.01882	-0.11068
31/	C	52 pz	$\operatorname{Rvd}(3n)$	0.00495	0.11000
514	C	52 pz	Ryd(5p)	0.00475	0.40500
315	С	53 S	Cor(1S)	1.99916	-11.16117
316	С	53 S	Val(2S)	0.92470	-0.16940
317	C	53 S	Rvd(3S)	0.00098	1.24410
318	Ċ	53 nx	Val(2n)	1 15625	-0.02874
319	Č	53 px	Rvd(3n)	0.00870	0.51233
320	C	53 px	Val(2p)	1.05298	-0 13147
321	C	53 py	$\operatorname{Rvd}(3n)$	0.00510	0.53736
321	C	53 py	Val(2p)	1 04722	0.14736
322	C	53 pz	Val(2p) Pvd(3p)	0.00460	-0.14730
525	C	55 pz	Kyu(5p)	0.00409	0.34920
324	С	54 S	Cor(1S)	1.99926	-11.16784
325	С	54 S	Val(2S)	0.95266	-0.23196
326	С	54 S	Rvd(3S)	0.00054	1.66840
327	C	54 px	Val(2p)	1.04360	-0.09846
328	Ċ	54 px	Rvd(3n)	0.00774	0.67171
329	C	54 pv	Val(2n)	1 11131	-0.07389
330	C	54 py	Rvd(3n)	0.00757	0.48830
331	C	54 pz	Val(2p)	1 01030	-0 10208
337	C	54 pz	$\operatorname{Rvd}(3p)$	0.00386	0.55663
552	C	54 pz	Kyu(5p)	0.00580	0.55005
333	С	55 S	Cor(1S)	1.99931	-11.09072
334	С	55 S	Val(2S)	1.00934	-0.17665
335	С	55 S	Rvd(3S)	0.00071	1.29404
336	С	55 px	Val(2p)	1.20209	-0.07479
337	C	55 px	Rvd(3n)	0.00341	0.37059
338	Ċ	55 pv	Val(2p)	1.21269	-0.08232
339	Ċ	55 pv	Rvd(3n)	0.00245	0.39029
340	C	55 pz	Val(2n)	1 08037	-0.09575
341	C	55 pz	Rvd(3n)	0.00395	0.38288
511	C	55 pz	Ryd(5p)	0.00575	0.50200
342	Н	56 S	Val(1S)	0.81526	0.19529
343	Н	56 S	Ryd(2S)	0.00167	1.01212
344	Η	57 S	Val(1S)	0.81805	0.18757
345	Η	57 S	Ryd(2S)	0.00142	0.98933
316	ц	58 S	$V_{0}l(1S)$	0 83804	0 16315
340	и П	58 5	$\mathbf{P}_{\mathbf{V}}d(\mathbf{2S})$	0.03004	1 1 4 2 2 8
547	11	30.3	Kyu(25)	0.00201	1.14220
348	С	59 S	Cor(1S)	1.99931	-11.08574
349	С	59 S	Val(2S)	1.01089	-0.17410
350	Č	59 S	Ryd(3S)	0.00061	1.29168
351	Ċ	59 nx	Val(2n)	1.10107	-0.08331
352	Č	59 nx	Rvd(3n)	0.00353	0.36976
353	č	59 pv	Val(2n)	1.21815	-0.07460
354	č	59 pv	Rvd(3n)	0.00286	0 38650
355	č	59 pz	Val(2n)	1 18633	-0 07688
356	č	59 pz	Rvd(3n)	0.00364	0 37847
550	C	57 PL	regul (5P)	0.0050-	0.070-7
357	Н	60 S	Val(1S)	0.81664	0.19483
358	Η	60 S	Ryd(2S)	0.00141	1.00246

359	H	61 S	Val(1S)	0.81385	0.19941
360	H	61 S	Ryd(2S)	0.00126	1.03169
361	H	62 S	Val(1S)	0.82113	0.18738
362	H	62 S	Ryd(2S)	0.00177	0.99167
363	H	63 S	Val(1S)	0.82230	0.23234
364	H	63 S	Ryd(2S)	0.00158	1.09232
365	H	64 S	Val(1S)	0.82834	0.26571
366	H	64 S	Ryd(2S)	0.00165	1.02888
367	H	65 S	Val(1S)	0.92010	0.37833
368	H	65 S	Ryd(2S)	0.00198	0.90874
369	H	66 S	Val(1S)	0.83533	0.23002
370	H	66 S	Ryd(2S)	0.00196	1.15377
371	H	67 S	Val(1S)	0.85201	0.25514
372	H	67 S	Ryd(2S)	0.00351	1.08711
373	H	68 S	Val(1S)	0.86157	0.31858
374	H	68 S	Ryd(2S)	0.00243	1.05958
375	H	69 S	Val(1S)	0.81815	0.25512
376	H	69 S	Ryd(2S)	0.00190	1.04313
377	H	70 S	Val(1S)	0.87321	0.32408
378	H	70 S	Ryd(2S)	0.00171	0.96935
379	H	71 S	Val(1S)	0.84284	0.24278
380	H	71 S	Ryd(2S)	0.00168	1.14368
381	H	72 S	Val(1S)	0.83095	0.20881
382	H	72 S	Ryd(2S)	0.00302	1.08942
383	H	73 S	Val(1S)	0.82389	0.24030
384	H	73 S	Ryd(2S)	0.00176	1.08862
385	H	74 S	Val(1S)	0.83921	0.29151
386	H	74 S	Ryd(2S)	0.00196	1.02026
387	H	75 S	Val(1S)	0.82091	0.24397
388	H	75 S	Ryd(2S)	0.00143	1.04097
389	H	76 S	Val(1S)	0.83338	0.24184
390	H	76 S	Ryd(2S)	0.00165	1.11496
391	H	77 S	Val(1S)	0.83161	0.17140
392	H	77 S	Ryd(2S)	0.00298	1.14521
393 394 395 396 397 398 399	N N N N N N	 78 S 78 S 78 S 78 px 78 px 78 py 78 py 78 py 	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	1.99944 1.36476 0.00228 1.47578 0.01145 1.35835 0.00602	-15.49063 -0.77226 1.90474 -0.39863 1.09332 -0.36365 0.90509
400	N	78 pz	Val(2p)	1.44877	-0.42415
401	N	78 pz	Ryd(3p)	0.00745	0.85918

402	Ν	79	S	Cor(1S)	1.99945	-15.49327
403	Ν	79	S	Val(2S)	1.36950	-0.78097
404	Ν	79	S	Ryd(3S)	0.00230	1.90149
405	Ν	79	рх	Val(2p)	1.56589	-0.43384
406	Ν	79	рх	Ryd(3p)	0.00820	0.93586
407	Ν	79	ру	Val(2p)	1.31816	-0.35689
408	Ν	79	ру	Ryd(3p)	0.00901	1.06327
409	Ν	79	pz	Val(2p)	1.42152	-0.41515
410	Ν	79	pz	Ryd(3p)	0.00704	0.86335
/11	N	80	S	Cor(1S)	1 999/3	-15/19/66
412	N	80	S	Val(2S)	1.55545	-0.77745
413	N	80	S	Rvd(3S)	0.00245	1 90334
414	N	80	nx	Val(2n)	1 30119	-0 35544
415	N	80	pr nx	Rvd(3n)	0.00673	0.96497
416	N	80	pr nv	Val(2p)	1 60392	-0 44739
417	N	80	py nv	Rvd(3p)	0.01172	1.04050
418	N	80	PJ DZ	Val(2p)	1.41069	-0.41883
419	Ν	80	pz	Ryd(3p)	0.00708	0.87824
420	T 1	01	c	$\mathbf{V}_{\mathbf{r}}\mathbf{I}(\mathbf{C}\mathbf{S})$	1 04922	0 10076
420	11 T1	δ1 01	5	val(0S)	1.94833	-0.488/0
421	11 T1	01	3	Kyd(7S)	0.00024	10.74517
422	11 T1	01 01	px	val(op) Pud(7p)	0.01905	0.01/04
423	11 T1	01 01	px	Kyu(7p)	0.00104	0.41018
424	11 T1	01 01	ру	val(0p) Pud(7p)	0.01942	0.02857
425	11 T1	01 Q1	ру pz	Kyu(7p) Val(6p)	0.00125	0.44119
420	11 T1	01 Q1	pz pz	Val(0p) Pvd(7p)	0.08100	0.03170
427	11 T1	01 Q1	pz dyw	Cor(5d)	1.00782	0.02400
420	11 T1	01 Q1	dvy	Pvd(6d)	0.00003	1 72020
429	11 T1	81	dy7	Cor(5d)	1 00718	0.02073
430	T1	81	dvz	Rvd(6d)	0.00006	1 808/19
431	т1 Т1	81	dvz	Cor(5d)	1 00661	0.02012
432	T1	81	dyz	Rvd(6d)	0.00007	1 8/361
13/	T1	81	dy2	$\sqrt{2}$ Cor(5d)	1 99762	-0.93380
435	T1	81	dx^{2y}	2 Col(Ju) 2 Rvd(6d)	0.00002	1 73303
436	TI	81	dz^2	Cor(5d)	1 99688	-0 92941
437	TI	81	dz^2	Rvd(6d)	0.00004	1.77140
		<u> </u>			2.00001	1

[68 electrons found in the effective core potential]

WARNING: 1 low occupancy (<1.9990e) core orbital found on C 1 1 low occupancy (<1.9990e) core orbital found on C 8 1 low occupancy (<1.9990e) core orbital found on C 12 1 low occupancy (<1.9990e) core orbital found on C 28 1 low occupancy (<1.9990e) core orbital found on C 48 5 low occupancy (<1.9990e) core orbitals found on Tl 81

Summary of Natural Population Analysis:

Η 5

Η 6

Η 7 0.21261

0.20502

0.20498

Natural Population									
Ator	n	Nat No	ural Charge	Core	Valence	Rydberg	Total		
С	1	-0.	33377	1.99896	4.29682	0.03799	6.33377		
Н	2	0.	20374	0.00000	0.79434	0.00191	0.79626		
С	3	0.	48900	1.99916	3.48126	0.03058	5.51100		
С	4	-0.	58802	1.99921	4.57909	0.00973	6.58802		

0.78586

0.79377

0.79380

0.00153

0.00120

0.00122

0.78739

0.79498

0.79502

0.00000

0.00000

0.00000

С	8	0.13684	1.99890	3.83481	0.02945	5.86316
С	9	-0.02117	1.99908	3.99539	0.02670	6.02117
С	10	-0.15946	1.99920	4.14306	0.01720	6.15946
С	11	-0.13372	1.99931	4.11772	0.01669	6.13372
С	12	-0.05440	1.99872	4.03939	0.01630	6.05440
С	13	-0.18714	1.99919	4.16857	0.01938	6.18714
С	14	-0.11632	1.99909	4.09712	0.02011	6.11632
С	15	-0.51714	1.99932	4.50791	0.00990	6.51714
Н	16	0.18014	0.00000	0.81826	0.00159	0.81986
Н	17	0.17915	0.00000	0.81945	0.00140	0.82085
Η	18	0.17090	0.00000	0.82757	0.00152	0.82910
С	19	-0.51718	1.99933	4.50775	0.01010	6.51718
Η	20	0.17619	0.00000	0.82240	0.00141	0.82381
Η	21	0.17960	0.00000	0.81900	0.00139	0.82040
Η	22	0.17326	0.00000	0.82504	0.00170	0.82674
С	23	0.50134	1.99917	3.46879	0.03071	5.49866
С	24	-0.59095	1.99921	4.58166	0.01008	6.59095
Η	25	0.21306	0.00000	0.78532	0.00162	0.78694
Η	26	0.20775	0.00000	0.79101	0.00124	0.79225
Η	27	0.20503	0.00000	0.79352	0.00146	0.79497
С	28	0.13215	1.99891	3.83993	0.02901	5.86785
С	29	0.00725	1.99909	3.96630	0.02736	5.99275
С	30	-0.13278	1.99902	4.11730	0.01645	6.13278
С	31	-0.14722	1.99930	4.13151	0.01640	6.14722
С	32	-0.08237	1.99915	4.06586	0.01735	6.08237
С	33	-0.20418	1.99917	4.18549	0.01952	6.20418
С	34	-0.14098	1.99922	4.12204	0.01973	6.14098
С	35	-0.51495	1.99931	4.50531	0.01033	6.51495
Η	36	0.17185	0.00000	0.82656	0.00159	0.82815
Η	37	0.18245	0.00000	0.81619	0.00135	0.81755
Η	38	0.17989	0.00000	0.81866	0.00145	0.82011
С	39	-0.51355	1.99932	4.50335	0.01088	6.51355
Η	40	0.16629	0.00000	0.83226	0.00146	0.83371
Η	41	0.18000	0.00000	0.81858	0.00142	0.82000
Η	42	0.17981	0.00000	0.81867	0.00152	0.82019
С	43	0.50307	1.99915	3.46685	0.03093	5.49693
С	44	-0.58965	1.99921	4.58076	0.00968	6.58965
Η	45	0.21234	0.00000	0.78607	0.00159	0.78766
Η	46	0.20500	0.00000	0.79384	0.00116	0.79500
Η	47	0.20822	0.00000	0.79052	0.00126	0.79178
С	48	0.13862	1.99891	3.83350	0.02897	5.86138
С	49	-0.02350	1.99907	3.99835	0.02608	6.02350
С	50	-0.15399	1.99918	4.13776	0.01705	6.15399
C	51	-0.12581	1.99924	4.10975	0.01681	6.12581
C	52	-0.14352	1.99931	4.12719	0.01703	6.14352
C	53	-0.19979	1.99916	4.18115	0.01947	6.19979
C	54	-0.13683	1.99926	4.11/86	0.019/0	6.13683
C	55	-0.51431	1.99931	4.50448	0.01052	6.51431
H	56	0.1830/	0.00000	0.81526	0.00167	0.81693
H	5/	0.18053	0.00000	0.81805	0.00142	0.81947
H	58	0.15994	0.00000	0.83804	0.00201	0.84006
C	39	-0.52641	1.99931	4.51645	0.01141	0.32641
H TT	0U 61	0.10193	0.00000	0.01205	0.00141	0.01511
H	01	0.18489	0.00000	0.81385	0.00126	0.81311
H	02 62	0.17/10	0.00000	0.82113	0.00159	0.82290
H TT	05 64	0.17001	0.00000	0.82230	0.00158	0.82588
п	04 65	0.17001	0.00000	0.02010	0.00100	0.82999
н ц	03 66	0.07793	0.00000	0.92010	0.00198	0.92207
п u	00 67	0.102/1	0.00000	0.03333	0.00190	0.03/29
п บ	0/ 60	0.14448	0.00000	0.03201	0.00351	0.83332
п	00	0.13399	0.00000	0.0013/	0.00243	0.80401
п	09	0.1/993	0.00000	0.01013	0.00190	0.82005

Η	70	0.12508	0.00000	0.87321	0.00171	0.87492	
Н	71	0.15548	0.00000	0.84284	0.00168	0.84452	
Η	72	0.16603	0.00000	0.83095	0.00302	0.83397	
Η	73	0.17435	0.00000	0.82389	0.00176	0.82565	
Η	74	0.15883	0.00000	0.83921	0.00196	0.84117	
Η	75	0.17766	0.00000	0.82091	0.00143	0.82234	
Η	76	0.16497	0.00000	0.83338	0.00165	0.83503	
Η	77	0.16540	0.00000	0.83161	0.00298	0.83460	
Ν	78	-0.67429	1.99944	5.64765	0.02720	7.67429	
Ν	79	-0.70109	1.99945	5.67508	0.02655	7.70109	
Ν	80	-0.70347	1.99943	5.67606	0.02798	7.70347	
Tl	81	0.93991	77.98612	2.06898	0.00499	80.06009	
	===						

* Total * 1.00000 151.95588 195.22580 0.81832 348.00000

Natural Population

Effective Core	68.00000
Core	83.95588 (99.9475% of 84)
Valence	195.22580 (99.6050% of 196)
Natural Minimal	Basis 347.18168 (99.7649% of 348)
Natural Rydberg	Basis 0.81832 (0.2351% of 348)

Atom No Natural Electron Configuration

С	1	[core]2S(0.96)2p(3.33)3p(0.04)
Н	2	1S(0.79)
С	3	[core]2S(0.86)2p(2.62)3S(0.01)3p(0.02)
С	4	[core]2S(1.02)2p(3.56)3p(0.01)
Н	5	1S(0.79)
Η	6	1S(0.79)
Н	7	1S(0.79)
С	8	[core]2S(0.84)2p(2.99)3p(0.03)
С	9	[core]2S(0.90)2p(3.10)3p(0.02)
С	10	[core]2S(0.94)2p(3.20)3p(0.02)
С	11	[core]2S(0.94)2p(3.18)3p(0.02)
С	12	[core]2S(0.88)2p(3.16)3p(0.02)
С	13	[core]2S(0.93)2p(3.24)3p(0.02)
С	14	[core]2S(0.92)2p(3.17)3p(0.02)
С	15	[core]2S(1.01)2p(3.50)3p(0.01)
Н	16	1S(0.82)
Н	17	1S(0.82)
Н	18	1S(0.83)
С	19	[core]2S(1.01)2p(3.50)3p(0.01)
Н	20	1S(0.82)
Н	21	1S(0.82)
Н	22	1S(0.83)
С	23	[core]2S(0.86)2p(2.61)3S(0.01)3p(0.02)
C	24	[core]2S(1.02)2p(3.56)3p(0.01)
Н	25	1S(0.79)
Н	26	1S(0.79)
H	27	1S(0.79)
C	28	[core]2S(0.84)2p(3.00)3p(0.03)
C	29	[core]2S(0.90)2p(3.07)3p(0.03)
C	30	[core]2S(0.90)2p(3.22)3p(0.02)
C	31	[core]2S(0.93)2p(3.20)3p(0.02)
C	32	[core]2S(0.91)2p(3.15)3p(0.02)
C	33	[core]2S(0.93)2p(3.26)3p(0.02)
C	34 25	[core]2S(0.95)2p(3.17)3p(0.02)
C	35	$[core]_{2S(1.01)}_{2p(3.49)}_{3p(0.01)}$
Н	36	18(0.83)

Η	37	1S(0.82)
Η	38	1S(0.82)
С	39	[core]2S(1.01)2p(3.49)3p(0.01)
Η	40	1S(0.83)
Η	41	1S(0.82)
Η	42	1S(0.82)
С	43	[core]2S(0.86)2p(2.61)3S(0.01)3p(0.02)
С	44	[core]2S(1.02)2p(3.56)3p(0.01)
Η	45	1S(0.79)
Η	46	1S(0.79)
Η	47	1S(0.79)
С	48	[core]2S(0.84)2p(2.99)3p(0.03)
С	49	[core]2S(0.89)2p(3.11)3p(0.02)
С	50	[core]2S(0.93)2p(3.21)3p(0.02)
С	51	[core]2S(0.93)2p(3.18)3p(0.02)
С	52	[core]2S(0.94)2p(3.19)3p(0.02)
С	53	[core]2S(0.92)2p(3.26)3p(0.02)
С	54	[core]2S(0.95)2p(3.17)3p(0.02)
C	55	[core]2S(1.01)2p(3.50)3p(0.01)
Н	56	1S(0.82)
H	57	1S(0.82)
Н	58	1S(0.84)
C	59	[core]2S(1.01)2p(3.51)3p(0.01)
Н	60	IS(0.82)
Н	61	IS(0.81)
Н	62	1S(0.82)
Н	63	1S(0.82)
H	64	IS(0.83)
Н	65	IS(0.92)
H	66	IS(0.84)
H	6/	15(0.85)
H	68	15(0.80)
н	09 70	15(0.82)
п	70	1S(0.87)
п	71	15(0.84) 15(0.82)
п u	72	1S(0.83) 1S(0.82)
и П	73	15(0.82) 15(0.84)
н	74	1S(0.84) 1S(0.82)
н	76	15(0.82) 15(0.83)
н	70	15(0.83)
N	78	13(0.03) [core]2S(136)2n(428)3n(0.02)
N	70 70	[core] 2S(1.30) 2p(4.20) 3p(0.02)
N	80	[core] 2S(1.37) 2p(4.37) 3p(0.02)
TI	81	[core]6S(1.95)6p(0.12)
11	01	[eore]00(1.))0p(0.12)

NBO analysis skipped by request.

$$\begin{split} 1|1|UNPC-E-C07CYG43063|SP|RHF|LANL2DZ|C34H43N3T11(1+)|MCDSTFM|15-Jan-2\\ 013|0||\# rhf/lanl2dz pop=npa geom=connectivity||single-Point XRD Monom er||1,1|C,0,-0.6205,11.0173,13.3488|H,0,-1.1772,10.346,12.9002|C,0,-0.\\ 7386,10.7853,14.8523|C,0,-2.0146,10.1478,15.2951|H,0,-2.0164,10.0668,1\\ 6.2521|H,0,-2.0905,9.2752,14.9004|H,0,-2.7571,10.6899,15.0181|C,0,0.14\\ 77,11.0887,17.0133|C,0,0.985,10.2079,17.6933|C,0,0.9712,10.2682,19.086\\ 5|C,0,0.1757,11.1851,19.7698|C,0,-0.6272,12.0471,19.0766|C,0,-0.643,11\\.9981,17.6933|C,0,1.8192,9.1837,16.9669|C,0,1.2049,7.8117,17.0863|H,0,\\ 1.2187,7.5343,18.0051|H,0,1.706,7.1888,16.5556|H,0,0.2964,7.8403,16.77\\ 45|C,0,3.2525,9.155,17.4114|H,0,3.6438,10.0232,17.287|H,0,3.7359,8.507\\ 5,16.8939|H,0,3.2939,8.9159,18.3418|C,0,-1.123,12.3888,12.9283|C,0,-1.\\ 6827,12.4638,11.5534|H,0,-1.9518,13.3661,11.366|H,0,-2.4428,11.8816,11\\.4854|H,0,-1.0127,12.193,10.9198|C,0,-1.289,14.7012,13.3745|C,0,-2.298\\ 6,15.3891,14.0528|C,0,-2.4429,16.7341,13.6979|C,0,-1.6719,17.3532,12.8\\ \end{split}$$

04|C,0,-0.6563,16.6662,12.1604|C,0,-0.4748,15.3276,12.454|C,0,-3.1018, 14.7409,15.1408|C,0,-4.5972,15.0605,15.0712|H,0,-4.7206,16.0118,15.051 3|H,0,-5.0382,14.6958,15.8407|H,0,-4.9686,14.6725,14.2751|C,0,-2.5564, 15.1673,16.5058|H,0,-1.6294,14.924,16.5705|H,0,-3.0515,14.7244,17.2008 |H,0,-2.6467,16.1173,16.6053|C,0,0.8149,10.8036,12.8925|C,0,1.185,9.39 29,12.5668|H,0,2.0832,9.368,12.2268|H,0,0.5821,9.0478,11.905|H,0,1.128 8,8.8555,13.3612|C,0,2.9692,11.7205,12.532|C,0,3.4312,12.2928,11.3444| C,0,4.8043,12.3003,11.1454|C,0,5.6765,11.7802,12.0742|C,0,5.2031,11.20 58,13.2236|C,0,3.8453,11.1763,13.4607|C,0,2.4476,12.825,10.3294|C,0,1. 935,11.6972,9.4454|H,0,2.6628,11.3347,8.9346|H,0,1.2641,12.0378,8.8483 |H,0,1.5553,11.0076,9.9944|C,0,3.0076,13.9575,9.4603|H,0,3.4149,14.620 1,10.0242|H,0,2.2939,14.3599,8.9595|H,0,3.6632,13.6032,8.8566|H,0,1.53 76,9.6958,19.6056|H,0,0.2777,11.1745,20.6986|H,0,-1.0785,12.5752,19.40 5|H,0,-1.1085,12.6356,17.1991|H,0,1.9153,9.4051,16.0879|H,0,-3.0335,17 .0782,14.2137|H.0,-1.6683,18.2598,12.5386|H.0,-0.1278,17.0116,11.5932| H,0,0.1761,14.8424,12.0377|H,0,-3.0473,13.7776,15.0745|H,0,5.2053,12.7 076,10.3908|H,0,6.5357,11.8968,11.8254|H,0,5.8118,10.8056,13.8323|H,0, 3.5609,10.7602,14.2303|H,0,1.6499,13.1539,10.8187|N,0,0.2136,11.175,15 .584|N,0,-0.9939,13.3524,13.7507|N,0,1.5756,11.8102,12.8487|T1,0,1.393 4,13.5394,14.8375||Version=IA32W-G09RevB.01|State=1-A|HF=-1524.6288676 |RMSD=3.810e-009|Dipole=-0.9632388,-1.3085232,-1.0432729|Quadrupole=-0 .8575993,-1.5876609,2.4452602,-5.316211,-5.0523255,-4.305488|PG=C01 [X (C34H43N3T11)]||@

GARLIC THEN HAVE POWER TO SAVE FROM DEATH BEAR WITH IT THOUGH IT MAKETH UNSAVORY BREATH, AND SCORN NOT GARLIC LIKE SOME THAT THINK IT ONLY MAKETH MEN WINK AND DRINK AND STINK. -- SIR JOHN HARRINGTON, "THE ENGLISHMAN'S DOCTOR", 1609 Job cpu time: 0 days 1 hours 2 minutes 47.0 seconds. File lengths (MBytes): RWF= 105 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Tue Jan 15 12:19:55 2013.

Appendix 2. Gaussian output for cation monomer, LANL2-DZ, DF-B3-LYP.

******* Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 03-Apr-2013 %chk=\\vdm09-g1.ds.man.ac.uk\HOME\Desktop\cationOnly_1_1.chk _____ # rb3lyp/lanl2dz pop=npa geom=connectivity _____ 1/38=1,57=2/1;2/12=2,17=6,18=5,40=1/2; 3/5=6,6=3,11=2,16=1,25=1,30=1,74=-5,116=1/1,2,3; 4//1:5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1,40=-1/1,7; 99/5=1,9=1/99; single-Point XRD Monomer

Symbolic Z Charge = 1	Z-matrix: Multiplicity = 1
C	0.01861 -0.08351 2.25597
с u	0.00456 0.12271 3.2358
C II	1,47560,0.03725,1.81038
C	1.47309 0.03723 1.81938
C	2.38329 0.67877 2.81706
H	3.26891 0.74039 2.45059
Н	2.405 0.1484 3.61782
Н	2.06067 1.5589 3.02492
С	3.10026 -0.2097 0.13198
С	3.90198 -1.32752 -0.08483
С	5.12032 -1.11817 -0.73032
С	5.50929 0.14744 -1.16317
C	4 69675 1 22541 -0 94872
Č	3 48842 1 04715 -0 2973
C	3 5110/ 2 60/88 0 /1518
C	4 20163 2 06022 1 64623
	4.30105 -3.00022 1.04023
H	5.23077 -5.13741 1.41802
H	3.98594 -3.89728 1.99325
Н	4.19153 -2.37548 2.31138
С	3.6358 -3.77042 -0.62425
Н	3.09152 -3.54688 -1.3833
Н	3.34545 -4.60758 -0.25601
Н	4.5541 -3.84378 -0.8997
С	-0.81952 1.11086 1.83011
С	-1.96396 1.43167 2.72262
Н	-2.44803 2.18018 2.36613
н	-1.6356 1.64936 3.59791
н	-2 54909 0 67131 2 77877
C	-1 33857 2 73108 0 19324
C	0.81783 4.01016 0.044
C	-0.81783 $+.01710$ 0.044
C	-1.03/33 $4.92/44$ $-0.008/1$
C	-2.85958 4.01500 -1.09147
C	-3.350/8 3.32491 -0.961/3
C	-2.57581 2.38473 -0.30867
С	0.57531 4.36278 0.48004
С	0.67719 5.7109 1.19795
Н	0.29338 6.39655 0.64735
Н	1.59896 5.91399 1.36741
Н	0.20093 5.66457 2.03059
С	1.50797 4.36417 -0.73349
Н	1.48254 3.50282 -1.15793
Н	2.40618 4.5518 -0.44657
н	1.22447 5.03721 -1.35574
C	-0.58311 -1.38006 1.73526
Č	-0.36711 -2.58269 2.59558
ч	0.8368 3.33253 2.22126
	-0.6506 -5.55255 2.22120
п	-0.09374 -2.40704 -3.47983
H	0.5/1/9 -2.78205 2.05/48
C	-1./0538 -2.51/6/ -0.01346
C	-3.08873 -2.65607 -0.14969
С	-3.53986 -3.7369 -0.89357
С	-2.67156 -4.62831 -1.48123
С	-1.31911 -4.48681 -1.31992
С	-0.82805 -3.42712 -0.58738
С	-4.01676 -1.68089 0.53494
С	-4.23979 -2.08887 1.98406
Н	-4.68936 -2.93687 2.0124
Н	-4.77882 -1.42666 2.42402
Н	-3 39308 -2 16106 2 43015
 С	-5 3658 -1 500/ 0 17371
C	J.JUJU -1.JUJH -0.1/J/1

Н	-5.21606 -1.34668 -1.10859
Н	-5.83602 -0.76444 0.20844
Н	-5.8872 -2.30716 -0.06645
Н	5.70566 -1.85291 -0.91862
Н	6.32043 0.16932 -1.62659
Н	4.86141 1.94149 -1.17347
Н	2.87863 1.74723 -0.22406
Н	2.61864 -2.73301 0.59701
Н	-1.22284 5.65839 -0.70959
Н	-3.46846 5.14421 -1.58062
Н	-4.10178 3.06548 -1.2601
Н	-2.87571 1.53075 -0.19393
Н	0.90089 3.713 1.11808
Н	-4.45796 -3.88078 -1.07388
Н	-3.11043 -5.2493 -1.9665
Н	-0.73302 -5.13667 -1.68785
Н	0.08401 -3.37721 -0.478
Н	-3.55875 -0.80222 0.58052
Ν	1.77933 -0.37223 0.66436
Ν	-0.50828 1.7062 0.74833
Ν	-1.1853 -1.34684 0.62617

Stoichiometry C34H43N3Tl(1+)

Framework group C1[X(C34H43N3Tl)] Deg. of freedom 237 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation:

Center	Atomic	A	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	0.018610	-0.083509	2.255965
2	1	0	0.004563	-0.122705	3.235795
3	6	0	1.475694	0.037252	1.819378
4	6	0	2.383292	0.678775	2.817058
5	1	0	3.268909	0.740391	2.450589
6	1	0	2.404998	0.148406	3.617819
7	1	0	2.060673	1.558900	3.024916
8	6	0	3.100261	-0.209695	0.131984
9	6	0	3.901980	-1.327513	-0.084833
10	6	0	5.120321	-1.118168	-0.730319
11	6	0	5.509287	0.147444	-1.163167
12	6	0	4.696746	1.225409	-0.948720
13	6	0	3.488420	1.047150	-0.297304
14	6	0	3.511045	-2.694881	0.415175
15	6	0	4.301634	-3.060218	1.646233
16	1	0	5.230770	-3.137411	1.418018
17	1	0	3.985944	-3.897277	1.993251
18	1	0	4.191530	-2.375478	2.311377
19	6	0	3.635799	-3.770421	-0.624249
20	1	0	3.091523	-3.546874	-1.383296
21	1	0	3.345450	-4.607578	-0.256005
22	1	0	4.554099	-3.843774	-0.899697
23	6	0	-0.819519	1.110862	1.830107
24	6	0	-1.963956	1.431665	2.722624
25	1	0	-2.448032	2.180173	2.366134
26	1	0	-1.635596	1.649363	3.597907
27	1	0	-2.549088	0.671303	2.778766
28	6	0	-1.338573	2.731075	0.193238

29	6	0	-0.817834	4.019155	0.044002
30	6	0	-1.657349	4.927438	-0.608713
31	6	0	-2.859384	4.613053	-1.091473
32	6	0	-3.350783	3.324903	-0.961731
33	6	0	-2.575809	2.384732	-0.308671
34	6	0	0.575303	4.362779	0.480037
35	6	Õ	0.677183	5.710899	1.197953
36	1	Ő	0 293379	6 396553	0 647347
37	1	Ő	1 598951	5 913989	1 367410
38	1	Ő	0 200928	5 664574	2.030595
39	6	Ő	1 507963	4 364169	-0 733490
40	1	Ő	1 482541	3 502823	-1 157927
41	1	Ő	2 406172	4 551804	-0 446567
42	1	0	1 224464	5.037209	-1 355743
13	6	0	-0 583106	-1 380063	1 735256
43	6	0	0.367111	2 582601	2 505582
45 45	1	0	0.836702	3 332533	2.373302
45 46	1	0	0.695735	2 407636	3 170816
40	1	0	-0.093733	-2.407030	2 627 479
47 10		0	1 705277	-2.762032	2.03/4/8
40	6	0	-1./033//	-2.317074	-0.013404
49 50	0	0	-3.088720	-2.030072	-0.149091
50	0	0	-3.339801	-3.730900	-0.895505
51	6	0	-2.6/1559	-4.628307	-1.481231
52	0	0	-1.319109	-4.480815	-1.31991/
55	6	0	-0.828042	-3.42/121	-0.58/380
54	6	0	-4.016/60	-1.680896	0.534937
55	6	0	-4.239787	-2.088876	1.984061
56	1	0	-4.689357	-2.9368/3	2.012404
57	1	0	-4.778819	-1.426666	2.424024
58	l	0	-3.393079	-2.161065	2.430149
59	6	0	-5.365799	-1.509400	-0.173705
60	l	0	-5.216055	-1.346686	-1.108593
61	1	0	-5.836014	-0.764447	0.208441
62	l	0	-5.887199	-2.30/166	-0.066446
63	1	0	5.705661	-1.852902	-0.918624
64	1	0	6.320426	0.169324	-1.626590
65	1	0	4.861410	1.941496	-1.173468
66	1	0	2.878626	1.747233	-0.224064
67	1	0	2.618645	-2.733003	0.597007
68	1	0	-1.222843	5.658390	-0.709589
69	1	0	-3.468467	5.144206	-1.580622
70	1	0	-4.101784	3.065479	-1.260104
71	1	0	-2.875715	1.530750	-0.193932
72	1	0	0.900883	3.712997	1.118076
73	1	0	-4.457956	-3.880786	-1.073882
74	1	0	-3.110425	-5.249299	-1.966502
75	1	0	-0.733019	-5.136673	-1.687849
76	1	0	0.084016	-3.377206	-0.477995
77	1	0	-3.558751	-0.802224	0.580520
78	7	0	1.779334	-0.372226	0.664361
79	7	0	-0.508285	1.706202	0.748331
80	7	0	-1.185302	-1.346836	0.626165
81	81	0	-0.088425	0.101083	-1.291919

Rotational constants (GHZ): 0.0954184 0.0934007 0.0606679 Standard basis: LANL2DZ (5D, 7F)

There are 437 symmetry adapted basis functions of A symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

437 basis functions, 1127 primitive gaussians, 439 cartesian basis functions

140 alpha electrons 140 beta electrons

nuclear repulsion energy 4616.8692356483 Hartrees. NAtoms= 81 NActive= 81 NUniq= 81 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=T Big=T One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 38503 NPrTT= 272384 LenC2= 34176 LenP2D= 128614. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 437 RedAO=T NBF= 437 NBsUse= 437 1.00D-06 NBFU= 437 Defaulting to unpruned grid for atomic number 81. Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 4.44D-02 ExpMax= 5.91D+03 ExpMxC= 2.05D+02 IAcc=2 IRadAn= 0 AccDes = 0.00 D + 00HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV = 1ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 81. FoFCou: FMM=F IPFlag= 100000 FMFlg1= 0 FMFlag= 2001 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl = 0NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: (A) (A) (A) (A) (A) (A) (A) (A) (A)(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06.

No special actions if energy rises. Defaulting to unpruned grid for atomic number 81. SCF Done: E(RB3LYP) = -1536.06076743A.U. after 14 cycles Convg = 0.5589D-08-V/T = 2.0091Population analysis using the SCF density. Orbital symmetries: (A) (A) (A) (A) (A) (A) (A) (A) (A)(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)The electronic state is 1-A. Alpha occ. eigenvalues -- -14.46067 -14.45824 -14.45645 -10.38160 -10.38047 Alpha occ. eigenvalues -- -10.37703 -10.32761 -10.32320 -10.32200 -10.32120 Alpha occ. eigenvalues -- -10.29136 -10.28950 -10.28710 -10.27688 -10.27382 Alpha occ. eigenvalues -- -10.27249 -10.27164 -10.26991 -10.26863 -10.26757 Alpha occ. eigenvalues -- -10.26713 -10.26651 -10.26532 -10.26529 -10.26523 Alpha occ. eigenvalues -- -10.26456 -10.26411 -10.26143 -10.25969 -10.25902 Alpha occ. eigenvalues -- -10.25497 -10.22364 -10.22258 -10.21747 -10.21616 Alpha occ. eigenvalues -- -10.21543 -10.21273 -1.09888 -1.07768 -1.07515 Alpha occ. eigenvalues -- -0.97988 -0.97020 -0.96615 -0.93410 -0.92095 Alpha occ. eigenvalues -- -0.91799 -0.91596 -0.89930 -0.89613 -0.87129 Alpha occ. eigenvalues -- -0.86528 -0.86029 -0.85551 -0.85250 -0.84931 Alpha occ. eigenvalues -- -0.84228 -0.83386 -0.83370 -0.83134 -0.83108

Alpha occ. eigenvalues	-0.82961	-0.81238	-0.81015	-0.80919	-0.75881
Alpha occ. eigenvalues	-0.75331	-0.75287	-0.74923	-0.74651	-0.73862
Alpha occ. eigenvalues	-0.70213	-0.69936	-0.69586	-0.68926	-0.68556
Alpha occ. eigenvalues	-0.67186	-0.64341	-0.63771	-0.62364	-0.61353
Alpha occ. eigenvalues	-0.60977	-0.60604	-0.59802	-0.59567	-0.58748
Alpha occ. eigenvalues	-0.58585	-0.58294	-0.58039	-0.57679	-0.57470
Alpha occ. eigenvalues	-0.56805	-0.56258	-0.55887	-0.55484	-0.55374
Alpha occ. eigenvalues	-0.54972	-0.54881	-0.54741	-0.54456	-0.54040
Alpha occ. eigenvalues	-0.53818	-0.52262	-0.52162	-0.52051	-0.51507
Alpha occ. eigenvalues	-0.51455	-0.51214	-0.50445	-0.50319	-0.50135
Alpha occ. eigenvalues	-0.49836	-0.49228	-0.48623	-0.48160	-0.47994
Alpha occ. eigenvalues	-0.47144	-0.46770	-0.46114	-0.45912	-0.44877
Alpha occ. eigenvalues	-0.44805	-0.44278	-0.43648	-0.43575	-0.43314
Alpha occ. eigenvalues	-0.43155	-0.42754	-0.42409	-0.42109	-0.42014
Alpha occ. eigenvalues	-0.40928	-0.40198	-0.39886	-0.37125	-0.35063
Alpha occ. eigenvalues	-0.34857	-0.34211	-0.33300	-0.33024	-0.32804
Alpha virt. eigenvalues	-0.14977	-0.14661	-0.13090	-0.11933	-0.11442
Alpha virt. eigenvalues	-0.10316	-0.09478	-0.09295	-0.09130	-0.08763
Alpha virt. eigenvalues	-0.08370	-0.06297	-0.01248	-0.00560	0.00139
Alpha virt. eigenvalues	0.01182	0.01961	0.02306	0.03099	0.04151
Alpha virt. eigenvalues	0.04620	0.04931	0.05030	0.05235	0.05422
Alpha virt. eigenvalues	0.05442	0.05788	0.06135	0.06318	0.06491
Alpha virt. eigenvalues	0.06837	0.07171	0.07224	0.07552	0.07816
Alpha virt. eigenvalues	0.08369	0.08579	0.08703	0.08820	0.09152
Alpha virt. eigenvalues	0.09394	0.09728	0.10175	0.10257	0.10731
Alpha virt. eigenvalues	0.10823	0.11221	0.11674	0.12086	0.12297
Alpha virt. eigenvalues	0.12611	0.12701	0.13299	0.13486	0.13632
Alpha virt. eigenvalues	0.13998	0.14384	0.14627	0.15202	0.15380
Alpha virt. eigenvalues	0.15763	0.16150	0.16196	0.16286	0.16872
Alpha virt. eigenvalues	0.17077	0.17163	0.17556	0.17684	0.18048
Alpha virt. eigenvalues	0.18403	0.18621	0.18846	0.19176	0.19576
Alpha virt. eigenvalues	0.19864	0.20184	0.20359	0.20866	0.21274
Alpha virt. eigenvalues	0.21708	0.22049	0.22365	0.22672	0.22925
Alpha virt. eigenvalues	0.23048	0.23263	0.23440	0.23792	0.24144
Alpha virt. eigenvalues	0.24227	0.24576	0.24938	0.25115	0.25219
Alpha virt. eigenvalues	0.25732	0.25910	0.26061	0.26454	0.26499
Alpha virt. eigenvalues	0.26784	0.27133	0.27493	0.27631	0.27863
Alpha virt. eigenvalues	0.28059	0.28407	0.28685	0.29211	0.29491
Alpha virt. eigenvalues	0.29972	0.30500	0.30672	0.30934	0.31175
Alpha virt. eigenvalues	0.31847	0.32216	0.32269	0.32401	0.33070
Alpha virt. eigenvalues	0.33181	0.33434	0.33822	0.34169	0.34230
Alpha virt. eigenvalues	0.34329	0.34802	0.35044	0.35131	0.35506
Alpha virt. eigenvalues	0.35957	0.36399	0.36778	0.36982	0.37290
Alpha virt. eigenvalues	0.37799	0.38038	0.38378	0.38596	0.39124
Alpha virt. eigenvalues	0.39251	0.39596	0.40316	0.40809	0.40962
Alpha virt. eigenvalues	0.41847	0.42258	0.42351	0.42515	0.42983
Alpha virt. eigenvalues	0.43427	0.43731	0.43947	0.44310	0.44589
Alpha virt. eigenvalues	0.45032	0.45482	0.45864	0.46323	0.46587
Alpha virt. eigenvalues	0.47086	0.47543	0.47697	0.48599	0.48987
Alpha virt. eigenvalues	0.49653	0.49970	0.50163	0.50584	0.50862
Alpha virt. eigenvalues	0.51231	0.51568	0.52517	0.53020	0.53522
Alpha virt. eigenvalues	0.53962	0.54683	0.55257	0.55561	0.56374
Alpha virt. eigenvalues	0.56741	0.57299	0.58660	0.59333	0.59578
Alpha virt. eigenvalues	0.61403	0.61981	0.62558	0.63364	0.64047
Alpha virt. eigenvalues	0.65097	0.65368	0.65987	0.66496	0.66786
Alpha virt. eigenvalues	0.67583	0.68066	0.68895	0.70132	0.71150
Alpha virt. eigenvalues	0.72163	0.72993	0.73964	0.75243	0.77078
Alpha virt. eigenvalues	0.78203	0.78872	0.79450	0.80986	0.88598
Alpha virt. eigenvalues	0.89478	0.90222	0.93047	0.93470	1.02039
Alpha virt. eigenvalues	1.02501	1.03175	1.04839	1.05491	1.05564
Alpha virt. eigenvalues	1.06202	1.09208	1.09851	1.11271	1.11841
Alpha virt. eigenvalues	1.12786	1.14247	1.14556	1.15717	1.16070
· ·					

Alpha virt. eigenvalues	1.16952	1.17061	1.17570	1.17834	1.18255
Alpha virt. eigenvalues	1.18643	1.19527	1.20019	1.20163	1.21065
Alpha virt. eigenvalues	1.21391	1.21914	1.22282	1.22659	1.23423
Alpha virt. eigenvalues	1.24163	1.24724	1.25368	1.25506	1.25771
Alpha virt. eigenvalues	1.26097	1.26424	1.26936	1.27358	1.27997
Alpha virt. eigenvalues	1.28841	1.29158	1.29931	1.30502	1.30852
Alpha virt. eigenvalues	1.32262	1.32373	1.33183	1.34285	1.35148
Alpha virt. eigenvalues	1.35451	1.36376	1.37381	1.37857	1.38553
Alpha virt. eigenvalues	1.39648	1.40729	1.41538	1.42766	1.44595
Alpha virt. eigenvalues	1.46057	1.47175	1.47921	1.49048	1.50881
Alpha virt. eigenvalues	1.51643	1.52937	1.54545	1.55253	1.56392
Alpha virt. eigenvalues	1.58906	1.60527	1.60807	1.63041	1.65167
Alpha virt. eigenvalues	1.66316	1.68111	1.73415	1.80676	1.81752
Alpha virt. eigenvalues	1.91630	10.57886			

Condensed to atoms (all electrons):

Mulliken atomic charges:

		1
1	С	-0.345637
2	Н	0.261845
3	С	0.136261
4	Ĉ	-0.784317
5	н	0.300981
6	н	0.277472
7	н	0.275783
8	\hat{C}	0.042686
0	C	0.359054
10	C	0.357054
11	C	0.32/070
12	C	-0.324979
12	C	-0.473370
13	C	-0.430230
14	C	-0.276389
15	C	-0./36/80
16	H	0.252459
1/	H	0.242144
18	H	0.235857
19	C	-0.751775
20	Н	0.240684
21	Η	0.245516
22	Η	0.242444
23	С	0.150880
24	С	-0.791223
25	Η	0.300635
26	Η	0.281527
27	Η	0.282342
28	С	0.057885
29	С	0.291357
30	С	-0.455316
31	С	-0.302448
32	С	-0.381474
33	С	-0.496997
34	С	-0.267020
35	С	-0.747159
36	Η	0.241692
37	Η	0.248789
38	Н	0.248500
39	С	-0.740936
40	Н	0.232808
41	Н	0.243249
42	Н	0.258595
43	C	0.141358
44	Č	-0.786800
45	Н	0.298653

46	н	0 278258
47	н	0.279146
48	C	0.082634
49	C	0.302155
50	C	-0.442070
51	Č	-0.337277
52	Č	-0.283531
53	Č	-0.479015
54	Č	-0.227188
55	C	-0.747564
56	Н	0.259140
57	Н	0.247543
58	Н	0.239839
59	С	-0.755739
60	Н	0.248076
61	Η	0.249937
62	Η	0.239505
63	Η	0.312922
64	Η	0.314465
65	Η	0.506990
66	Η	0.335561
67	Η	0.266570
68	Η	0.381039
69	Η	0.306198
70	Η	0.407852
71	Η	0.367801
72	Η	0.239102
73	Η	0.319739
74	Η	0.345635
75	Η	0.311077
76	Η	0.365662
77	Η	0.215004
78	Ν	-0.212215
79	Ν	-0.231154
80	Ν	-0.237550
81	Tl	0.699781

Sum of Mulliken atomic charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms:

1 C -0.083792 3 C 0.136261 4 C 0.069918 8 C 0.042686 9 C 0.359054 10 C -0.145793 11 C -0.010514 12 C 0.031620 12 C 0.031620 13 C -0.100689 14 C -0.010019 15 C -0.006320 19 C -0.023130 23 C 0.150880 24 C 0.073281 28 C 0.057885 29 C 0.291357 30 C -0.074276 31 C 0.003751 32 C 0.026377 33 C -0.129195 34 C -0.027918 35 C -0.008178 39 C -0.006284

1

43 C 0.141358 44 C 0.069258 48 C 0.082634 49 C 0.302155 50 C -0.122331 51 C 0.008357 52 C 0.027546 53 C -0.113353 54 C -0.012185 55 C -0.001043 59 C -0.018221 78 N -0.212215 79 N -0.231154 80 N -0.237550 81 Tl 0.699781 Sum of Mulliken charges with hydrogens summed into heavy atoms = 1.00000Electronic spatial extent (au): $\langle R^{**}2 \rangle =$ 18924.6193 1.0000 electrons Charge= Dipole moment (field-independent basis, Debye): X =-0.4921 -0.4135 Z= 4.0742 Tot= 4.1246 Y= Quadrupole moment (field-independent basis, Debye-Ang): XX= -189.5188 YY= -191.1702 ZZ= -211.1044 XY= 1.1969 XZ= 0.6882 YZ= -0.4394Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 7.7457 YY= 6.0943 ZZ= -13.8400 1.1969 XZ= 0.6882 YZ= XY =-0.4394 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -4.6716 YYY= 38.0961 ZZZ= -89.2270 XYY= -14.7519 XXY= -33.5144 XXZ= -90.0328 XZZ= -7.2190 YZZ= 0.2380 -0.9132 YYZ= -88.2014 XYZ= Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -10242.4267 YYYY= -10157.7575 ZZZZ= -2606.0210 XXXY= 3.1792 XXXZ= -142.0794 YYYX= 56.6727 YYYZ= 19.1741 ZZZX= 25.6691 ZZZY=-3366.2900 XXZZ= -11.6704 XXYY= -2274.1099 YYZZ= -2210.0402 XXYZ= -29.9268 YYXZ= 161.6365 ZZXY= 10.2778 N-N= 4.616869235648D+03 E-N=-1.277907172422D+04 KE= 1.522227716595D+03 ****************************Gaussian NBO Version 3.1***************************** NATURAL ATOMIC ORBITAL AND NATURAL BOND ORBITAL ANALYSIS ******************************Gaussian NBO Version 3.1*************************** /RESON /: Allow strongly delocalized NBO set

Analyzing the SCF density

Job title: single-Point XRD Monomer

Storage needed: 593108 in NPA (33535799 available)

NATURAL POPULATIONS: Natural atomic orbital occupancies

NA	0 A	tom N	o lang Tyj	pe(AO) C	occupancy	Energy
1	С	1 S	Cor(1S)	1.99885	-10.17823	
2	С	1 S	Val(2S)	0.96147	-0.30265	
3	С	1 S	Ryd(3S)	0.00107	1.40050	
4	С	1 px	Val(2p)	1.07544	-0.22540	
5	С	1 px	Ryd(3p)	0.00635	0.40913	
6	С	1 py	Val(2p)	1.07282	-0.22533	
7	С	1 py	Ryd(3p)	0.00593	0.39310	
8	С	1 pz	Val(2p)	1.19714	-0.17447	
9	С	1 pz	Ryd(3p)	0.01811	0.49910	

10	H u	2 S	Val(1S) Pvd(2S)	0.77396	0.06461
11	п	23	Kyu(25)	0.00191	0.93007
12	С	3 S	Cor(1S)	1.99906	-10.24722
13	С	3 S	Val(2S)	0.85454	-0.26383
14	С	3 S	Rvd(3S)	0.00473	0.96572
15	č	3 nv	Val(2n)	0.96585	-0.18186
16	C	3 px	$\operatorname{Prod}(2p)$	0.00603	0.52053
17	C	2 px	Kyu(3p)	0.00095	0.32933
1/	C	5 py	var(2p)	0.03907	-0.21933
18	C	3 py	Kyd(Sp)	0.00837	0.40414
19	C	3 pz	Val(2p)	0.88277	-0.136/4
20	C	3 pz	Ryd(3p)	0.00676	0.45364
21	С	4 S	Cor(1S)	1.99907	-10.10342
22	С	4 S	Val(2S)	1.02364	-0.23373
23	С	4 S	Ryd(3S)	0.00054	1.10653
24	С	4 px	Val(2p)	1.20795	-0.16145
25	С	4 px	Ryd(3p)	0.00339	0.23328
26	С	4 py	Val(2p)	1.21658	-0.15400
27	С	4 pv	Rvd(3p)	0.00185	0.23721
28	Ċ	4 pz	Val(2n)	1.18886	-0.16520
29	č	4 nz	Rvd(3n)	0.00296	0.20000
2)	C	ч pz	Kyu(5p)	0.00270	0.20000
30	Η	5 S	Val(1S)	0.76986	0.09223
31	Н	5 S	Ryd(2S)	0.00123	0.86155
32	н	65	Val(1S)	0 77304	0 07660
32	ц	68	$\operatorname{Pud}(2S)$	0.00104	0.07000
55	11	03	Kyu(23)	0.00104	0.79982
34	Η	7 S	Val(1S)	0.77323	0.07481
35	Н	7 S	Ryd(2S)	0.00103	0.80112
36	С	8 S	Cor(1S)	1.99881	-10.18644
37	С	8 S	Val(2S)	0.84527	-0.20242
38	С	8 S	Ryd(3S)	0.00186	1.10551
39	С	8 px	Val(2p)	0.88888	-0.12982
40	Ċ	8 px	Rvd(3n)	0.00886	0.54268
<u>41</u>	č	8 nv	Val(2n)	1 08534	-0 14524
<u>1</u> 2	C	8 py	$\operatorname{Rvd}(2p)$	0.00444	0.14524
12	C	8 pz	$V_{0}(2p)$	1 02212	0.10712
43	C	8 pz	val(2p)	0.01015	-0.19/12
44	C	o pz	Kyd(Sp)	0.01015	0.30034
45	С	9 S	Cor(1S)	1.99899	-10.15023
46	С	9 S	Val(2S)	0.89236	-0.20644
47	С	9 S	Ryd(3S)	0.00146	1.13947
48	С	9 px	Val(2p)	1.05073	-0.13701
49	С	9 px	Ryd(3p)	0.00612	0.49689
50	С	9 py	Val(2p)	1.05462	-0.13202
51	С	9 py	Rvd(3p)	0.00935	0.63543
52	С	9 pz	Val(2p)	0.99956	-0.16951
53	Ċ	9 pz	Ryd(3p)	0.00671	0.44914
51	C	10.5	$C_{or}(10)$	1 00000	10 10140
34 55	C	10 5	Uor(15)	1.99909	-10.12148
22	C	10 S	val(2S)	0.94051	-0.19459
56	C	10 S	Ryd(3S)	0.00098	1.02364
57	С	10 px	Val(2p)	1.08594	-0.10559
58	С	10 px	Ryd(3p)	0.00564	0.34590
59	С	10 py	Val(2p)	1.12159	-0.08377
60	С	10 py	Ryd(3p)	0.00452	0.47351
61	С	10 pz	Val(2p)	1.00561	-0.16770
62	С	10 pz	Ryd(3p)	0.00287	0.33541
63	С	11 S	Cor(1S)	1.99922	-10.12108
-----	--------	-----------------	--------------------	---------	-----------
64	С	11 S	Val(2S)	0.94300	-0.17917
65	С	11 S	Ryd(3S)	0.00073	0.92872
66	С	11 px	Val(2p)	1.11961	-0.06035
67	С	11 px	Rvd(3p)	0.00595	0.34696
68	Ċ	11 pv	Val(2p)	1.04428	-0.10144
69	C	11 pv	Rvd(3n)	0.00304	0 37339
70	č	11 pz	Val(2n)	1 02710	-0 14414
71	c	11 pz	Rvd(3n)	0.00341	0.32163
/ 1	C	II PL	Kyu(5p)	0.00541	0.52105
72	С	12 S	Cor(1S)	1.99860	-10.07897
73	С	12 S	Val(2S)	0.87686	-0.04148
74	Ċ	12 S	Rvd(3S)	0.00046	0.93356
75	Ċ	12 px	Val(2p)	1.04962	-0.11940
76	Ĉ	12 px	Rvd(3p)	0.00305	0.37150
77	Ċ	12 pv	Val(2n)	1.12539	0.06061
78	Ĉ	12 pv	Rvd(3p)	0.00590	0.30891
79	Ċ	12 pz	Val(2n)	1.01127	-0.15385
80	Č	12 pz	Rvd(3p)	0.00315	0.30871
00	C	p2	11) û(0 p)	0100010	0100071
81	С	13 S	Cor(1S)	1.99908	-10.12502
82	С	13 S	Val(2S)	0.93220	-0.18576
83	Ċ	13 S	Rvd(3S)	0.00101	1.08246
84	Ċ	13 px	Val(2p)	1.09385	-0.10538
85	Ċ	13 px	Rvd(3n)	0.00373	0.44158
86	C	13 pr	Val(2n)	1 11245	-0.08955
87	c	13 py	Rvd(3n)	0.00742	0.40928
88	C	13 py	Val(2n)	1 04538	-0.18510
80	C	13 pz 13 pz	Val(2p) Rvd(3p)	0.00355	0.38011
09	C	15 pz	Kyu(Sp)	0.00555	0.58011
90	С	14 S	Cor(1S)	1.99897	-10.11174
91	Ĉ	14 S	Val(2S)	0.92086	-0 17825
92	c	14 S	Rvd(3S)	0.00049	1 40005
03	C	1/ nv	Val(2n)	1 1/888	-0.05590
0/	C	14 px	Var(2p) Pvd(3p)	0.00842	0.30511
05	c	14 px	Val(2p)	1.02246	0.13614
95	C	14 py	Val(2p) Pvd(3p)	0.00437	0.13014
90	C	14 py	Kyu(3p)	1.02006	0.39390
97	C	14 pz	var(2p) Pud(2p)	0.00204	-0.15502
90	C	14 pz	Kyu(sp)	0.00504	0.39497
99	С	15 S	Cor(1S)	1 99918	-10 05755
100	C	15 \$	Val(2S)	1 01189	-0 17118
100	C	15 5	Pvd(3S)	0.00044	1 06038
101	C	15 ov	$V_{\rm ol}(2n)$	1 20146	0.10145
102	C	15 px	Val(2p) Pvd(3p)	0.00181	-0.10143
103	C	15 px	$V_{al}(3p)$	1 22670	0.20982
104	C	15 py	var(2p)	1.22079	-0.09212
105	C	15 py	Kyd(3p)	0.00255	0.25477
100	C	15 pz	val(2p)	1.1313/	-0.11532
107	C	15 pz	Ryd(3p)	0.00335	0.25078
100	п	16 5	$V_{0}(1S)$	0 70907	0 12125
100	п u	10 5	Val(1S)	0.79807	0.12123
109	п	10 5	Kyu(25)	0.00134	0.80388
110	ч	17 S	Val(1S)	0 70812	0 12164
111	и П	17 5	Val(13) Rvd(2S)	0.79612	0.12104
111	11	1/ 3	Kyu(23)	0.00132	0.17390
112	н	18 S	Val(18)	0 80593	0 11278
112	Н	18 5	Rvd(2S)	0.00373	0.83343
113	11	10.0	ityu(20)	0.00127	0.000770
114	С	19 S	Cor(1S)	1.99919	-10.05368
115	č	19 S	Val(2S)	1 00883	-0 16711
	\sim			1.00000	

116	С	19 S	Ryd(3S)	0.00042	1.07018
117	C	19 px	Val(2p)	1.24151	-0.09272
118	С	19 px	Ryd(3p)	0.00220	0.24474
119	С	19 py	Val(2p)	1.15832	-0.10646
120	С	19 py	Ryd(3p)	0.00279	0.26979
121	С	19 pz	Val(2p)	1.16343	-0.10498
122	С	19 pz	Ryd(3p)	0.00285	0.24722
123	Н	20 S	Val(1S)	0.80214	0.11945
124	Η	20 S	Ryd(2S)	0.00122	0.80525
125	Н	21 S	Val(1S)	0.79798	0.12269
126	Η	21 S	Ryd(2S)	0.00133	0.80984
127	Н	22 S	Val(1S)	0.80417	0.11611
128	Η	22 S	Ryd(2S)	0.00160	0.83814
129	С	23 S	Cor(1S)	1.99907	-10.25071
130	С	23 S	Val(2S)	0.85588	-0.26859
131	С	23 S	Ryd(3S)	0.00466	0.98341
132	С	23 px	Val(2p)	0.92426	-0.19745
133	С	23 px	Ryd(3p)	0.00692	0.47526
134	С	23 py	Val(2p)	0.88814	-0.19480
135	С	23 py	Rvd(3p)	0.00866	0.44836
136	Ċ	23 pz	Val(2n)	0.86846	-0.15560
137	Ċ	23 pz	Rvd(3p)	0.00699	0.43547
	~	r-)-(-F)		
138	С	24 S	Cor(1S)	1.99907	-10.10434
139	С	24 S	Val(2S)	1.02132	-0.23408
140	С	24 S	Ryd(3S)	0.00058	1.12788
141	С	24 px	Val(2p)	1.16285	-0.17238
142	С	24 px	Ryd(3p)	0.00324	0.23615
143	С	24 py	Val(2p)	1.25110	-0.15304
144	С	24 py	Ryd(3p)	0.00232	0.21037
145	С	24 pz	Val(2p)	1.20291	-0.16481
146	С	24 pz	Ryd(3p)	0.00284	0.21778
147	Н	25 S	Val(1S)	0.76964	0.08941
148	Η	25 S	Ryd(2S)	0.00129	0.86432
149	Н	26 S	Val(1S)	0.77072	0.07769
150	Η	26 S	Ryd(2S)	0.00109	0.80310
151	Н	27 S	Val(1S)	0.77325	0.06896
152	Η	27 S	Ryd(2S)	0.00119	0.85552
153	С	28 S	Cor(1S)	1.99882	-10.18747
154	С	28 S	Val(2S)	0.84601	-0.20681
155	С	28 S	Ryd(3S)	0.00189	1.07416
156	С	28 px	Val(2p)	0.99718	-0.14674
157	С	28 px	Ryd(3p)	0.00604	0.47160
158	С	28 py	Val(2p)	0.98233	-0.14024
159	С	28 py	$Ryd(\bar{3p})$	0.00764	0.54521
160	С	28 pz	Val(2p)	1.02870	-0.19937
161	С	28 pz	Ryd(3p)	0.00975	0.48189
162	С	29 S	Cor(1S)	1.99900	-10.15377
163	С	29 S	Val(2S)	0.89260	-0.21042
164	С	29 S	Ryd(3S)	0.00137	1.14676
165	С	29 px	Val(2p)	1.04372	-0.14084
166	С	29 px	Ryd(3p)	0.00896	0.58575
167	Ċ	29 nv	Val(2n)	1.04222	-0.12811
/	-	PJ			011

168	С	29 py	Ryd(3p)	0.00617	0.50000
169	С	29 pz	Val(2p)	0.99109	-0.17322
170	С	29 pz	Ryd(3p)	0.00758	0.44859
171	С	30 S	Cor(1S)	1.99889	-10.09573
172	С	30 S	Val(2S)	0.89521	-0.11227
173	С	30 S	Rvd(3S)	0.00094	1.01922
174	Ċ	30 px	Val(2n)	1.08726	-0.08983
175	Ĉ	30 px	Rvd(3n)	0.00273	0.48146
176	Ċ	30 pv	Val(2n)	1.14060	-0.04083
177	C	30 pv	Rvd(3n)	0.00767	0.31273
178	Č	30 pz	Val(2n)	1 00960	-0 16918
179	C	30 pz	Ryd(3p)	0.00250	0.35710
180	С	31 S	Cor(1S)	1 99922	-10 12066
181	Č	31 S	Val(2S)	0.93378	-0.17285
182	C	31 S	Rvd(3S)	0.00085	0.94226
183	c	31 nx	Val(2n)	1 08831	-0.07598
184	C	31 px	Rvd(3n)	0.00408	0.36262
185	C	31 px	Val(2p)	1 00262	0.00623
186	C	31 py	$\operatorname{Pud}(2p)$	0.00477	0 35313
187	C	31 py	Val(2p)	1 03172	0.33313
188	C	31 pz	Var(2p) Pvd(3p)	0.00355	-0.14245
100	C	51 pz	Kyu(5p)	0.00555	0.52151
189	С	32 S	Cor(1S)	1.99905	-10.10748
190	С	32 S	Val(2S)	0.91324	-0.12777
191	С	32 S	Ryd(3S)	0.00065	0.91603
192	С	32 px	Val(2p)	1.11127	-0.02434
193	С	32 px	Ryd(3p)	0.00619	0.30306
194	С	32 py	Val(2p)	1.05079	-0.10265
195	С	32 py	Ryd(3p)	0.00312	0.37342
196	С	32 pz	Val(2p)	1.01109	-0.15632
197	С	32 pz	Ryd(3p)	0.00353	0.30318
198	С	33 S	Cor(1S)	1.99906	-10.12239
199	С	33 S	Val(2S)	0.92454	-0.17958
200	C	33 S	Rvd(3S)	0.00100	1.04310
201	Ċ	33 px	Val(2n)	1.06634	-0.14035
202	Ċ	33 px	Rvd(3n)	0.00537	0.38826
203	Č	33 pv	Val(2p)	1.15410	-0.06357
204	Ċ	33 pv	Rvd(3n)	0.00611	0.39889
205	C	33 pz	Val(2n)	1.05604	-0.18926
206	Ċ	33 pz	Ryd(3p)	0.00339	0.39788
207	C	34 S	Cor(1S)	1.99911	-10 13177
208	c	34 S	Val(2S)	0.94745	-0 22701
200	c	34 S	Rvd(3S)	0.00051	1 39024
210	C	34 nv	Val(2n)	1.03163	-0.13/9/
210	C	34 px	$\operatorname{Rvd}(3n)$	0.00381	0.32257
211	c	34 px	Val(2p)	1.09350	-0.12043
212	C	34 py	$\operatorname{Rvd}(3p)$	0.00729	0.47413
213	C	34 pz	Val(2p)	1 07296	-0 11/8/
214	C	34 pz	Ryd $(3p)$	0.00446	0.37496
216	C	35 S	Cor(18)	1 99017	-10 05775
210	c	35 5	Val(2S)	1 01282	-0 17233
217	C	35 8	$\mathbf{R}\mathbf{v}\mathbf{d}(\mathbf{2S})$	0.00030	1 07031
210	c	35 nv	$V_{al}(2n)$	1 2/28/	-0.00062
217 220	C	35 px	v ar(2p) Pvd(2p)	1.24204	0.09002
220 221	C	35 px	$V_{al}(2p)$	1 10051	0.25514
221 222	C	35 py	v ar(2p) R vd(2p)	0.00250	0.11039
222 222	C	35 py	Vol(2p)	1 20200	0.23107
445	C	55 pz	v ai(2p)	1.20377	-0.07707

224	С	35 p	z Ryd(3p)	0.00313	0.23186
225	ц	36 8	$V_{2}(1S)$	0 80633	0 1 1 2 0 7
223	п	26 0	val(1S)	0.00033	0.11297
220	п	50 S	Kyu(25)	0.00142	0.82080
227	ч	37 8	$V_{2}(1S)$	0 70566	0 12557
227	и П	27 0	$\operatorname{Pud}(2\mathbf{S})$	0.79500	0.12557
220	п	5/ 5	Kyu(25)	0.00128	0.80111
220	и	28 C	$V_{2}(1S)$	0 70783	0 12467
229	11	20 3	Val(13)	0.79783	0.12407
230	п	20 2	Kyu(25)	0.00122	0.79038
231	С	30 S	Cor(1S)	1 00018	-10.06503
231	C	30 5	Val(2S)	1.01292	-0.17710
232	c	30 5	Rvd(3S)	0.000/19	1 07002
233	c	30 n	x = Val(2n)	1 1795/	-0.11224
234	C	39 n	$x = \frac{Val(2p)}{Val(3p)}$	0.00296	0 30469
235	C	30 p	x = Kyu(3p) y = Val(2p)	1 23/137	-0.09555
230	C	30 p	$\mathbf{y} = \mathbf{Val}(2\mathbf{p})$	0.00274	0.28344
238	c	30 n	z Val(2p)	1 1/023	-0.11852
230	C	30 p	z = Val(2p)	0.00245	0.25018
239	C	59 p.	2 Kyu (3p)	0.00243	0.23918
240	н	40 S	Val(18)	0.81209	0 10457
240	н	40 S	$P_{vd}(2S)$	0.01209	0.10457
241	11	40.5	Kyu(25)	0.00119	0.05759
242	н	41 S	Val(18)	0 79679	0 1 1 7 4 0
242	н	41 S	$\operatorname{Rvd}(2S)$	0.00131	0.7913/
273	11	71 5	Kyu(25)	0.00151	0.77154
244	н	42 S	Val(1S)	0 79808	0 12158
245	н	12 5	$P_{vd}(2S)$	0.00143	0.12130
245	11	42 0	Kyu(25)	0.00145	0.04450
246	С	43 S	Cor(1S)	1 99905	-10 25074
247	C	43 S	Val(2S)	0.85403	-0.26639
248	C	13 5	Pvd(3S)	0.00485	0.96548
240	c	43 n	x = Val(2n)	0.82861	-0 21204
250	C	43 n	$\mathbf{x} = \mathbf{V}\mathbf{u}(2\mathbf{p})$	0.00906	0.43831
251	c	13 p	Val(2p)	0.9818/	-0 18769
252	c	43 p	v = Rvd(3n)	0.00627	0.53732
253	C	43 n	z Val(2p)	0.86941	-0 14923
257	c	43 p	z = Rvd(3n)	0.00696	0.14923
234	C	-5 р	2 Kyu(3p)	0.00070	0.44005
255	С	44 S	Cor(1S)	1.99907	-10.10650
256	C	44 S	Val(2S)	1.02293	-0.23659
257	C	44 S	Rvd(3S)	0.00057	1 11131
258	Č	44 n	x $Val(2p)$	1.24905	-0.15192
259	Ĉ	44 n	x $Rvd(3n)$	0.00152	0.24298
260	Č	44 p	v Val $(2p)$	1.16004	-0.17522
261	Ċ	44 p	v $Rvd(3p)$	0.00381	0.23140
262	Ċ	44 n	z Val(2n)	1.20613	-0.16383
263	C	44 n	z = Rvd(3p)	0.00271	0.21375
200	U	· · P	i i i i i i i i i i i i i i i i i i i	0.002/1	0.21070
264	Н	45 S	Val(1S)	0.76997	0.08805
265	Н	45 S	Rvd(2S)	0.00125	0.85407
200	••		11)0(22)	0.00120	0.00107
266	Н	46 S	Val(1S)	0.77360	0.07630
267	Н	46 S	Rvd(2S)	0.00101	0.80367
_0,	••		,,,,,,,,,,		
268	Н	47 S	Val(1S)	0.77039	0.07366
269	Н	47 S	Rvd(2S)	0.00108	0.83039
	-	. 2	J ~ (-~)		
270	С	48 S	Cor(1S)	1.99882	-10.19319
271	С	48 S	Val(2S)	0.84400	-0.20950
272	С	48 S	Ryd(3S)	0.00193	1.09493
			• • /		

273	С	48 px	Val(2p)	1.06694	-0.14786
274	С	48 px	Rvd(3p)	0.00570	0.51649
275	С	48 pv	Val(2p)	0.91875	-0.14584
276	C	48 pv	Rvd(3p)	0.00701	0.50163
277	Ċ	48 nz	Val(2n)	1 02050	-0 19595
278	C	48 pz	Rvd(3n)	0.01031	0.50461
	č	10 p2	11) U(0 p)	0101001	0.00101
279	С	49 S	Cor(1S)	1.99897	-10.15331
280	C	49 S	Val(2S)	0.89025	-0.20885
281	С	49 S	Rvd(3S)	0.00134	1.13968
282	Ċ	49 px	Val(2n)	1.05840	-0.13353
283	Č	49 px	Rvd(3n)	0.00740	0.58215
284	C	49 pv	Val(2p)	1.04189	-0.15077
285	C	49 pv	Rvd(3n)	0.00713	0 49129
286	C	49 nz	Val(2n)	1 00988	-0 16944
287	C	49 pz	Rvd(3n)	0.00720	0.46459
207	C	17 PZ	Ryd(5p)	0.00720	0.10159
288	С	50 S	Cor(1S)	1 99907	-10 11805
289	C	50 S	Val(2S)	0.93192	-0 18389
290	C	50 S	Rvd(3S)	0.00094	1 02161
201	C	50 D	Val(2n)	1 16585	0.06050
291	C	50 px	P_{r} Rvd(3p)	0.00690	0.38882
292	C	50 px	$V_{al}(2p)$	1.03835	0.13542
293	C	50 py	var(2p) Pud(2p)	1.03633	-0.13342
294	C	50 py	Kyu(3p)	1.01221	0.40103
293	C	50 pz	var(2p)	1.01551	-0.10157
290	C	50 pz	Kyu(Sp)	0.00502	0.55809
297	С	51 S	Cor(1S)	1.99915	-10.11084
298	Ĉ	51 S	Val(2S)	0.92699	-0.15757
299	C	51 S	Rvd(3S)	0.00068	0 92099
300	c	51 px	Val(2n)	1 07423	-0.07802
301	C	51 px	Rvd(3n)	0.00331	0 38517
302	C	51 px	Val(2p)	1 08793	-0.09476
302	C	51 py	$\operatorname{Rvd}(2p)$	0.00552	0.31619
304	C	51 py	$V_{al}(2p)$	1.03803	0.13268
304	C	51 pz	Val(2p) Pvd(3p)	0.00360	-0.13208
305	C	51 pz	Kyu(5p)	0.00509	0.31210
306	С	52 S	Cor(1S)	1.99921	-10.12840
307	С	52 S	Val(2S)	0.94036	-0.18890
308	С	52 S	Ryd(3S)	0.00075	0.92157
309	С	52 px	Val(2p)	1.10138	-0.08499
310	С	52 px	Ryd(3p)	0.00477	0.36204
311	С	52 py	Val(2p)	1.07820	-0.10031
312	С	52 py	Ryd(3p)	0.00455	0.34307
313	С	52 pz	Val(2p)	1.02182	-0.15580
314	С	52 pz	Ryd(3p)	0.00352	0.30907
315	С	53 S	Cor(1S)	1.99906	-10.12647
316	С	53 S	Val(2S)	0.92450	-0.18435
317	С	53 S	Ryd(3S)	0.00106	1.04226
318	С	53 px	Val(2p)	1.16421	-0.05392
319	С	53 px	Ryd(3p)	0.00756	0.39307
320	С	53 py	Val(2p)	1.05528	-0.16014
321	С	53 py	Ryd(3p)	0.00379	0.38611
322	С	53 pz	Val(2p)	1.05467	-0.18423
323	С	53 pz	Ryd(3p)	0.00335	0.38415
224	C	54 9	$C_{out}(10)$	1 00015	10 12760
324 225	C	54 S	$\frac{\text{Cor}(15)}{\text{Vel}(25)}$	1.99913	-10.13/09
525 206	C	34 S	val(25)	0.9318/	-0.23911
320 227	C	54 S	Kya(3S)	0.00052	1.42055
327	C	54 px	val $(2p)$	1.04990	-0.13657
528	C	54 px	куd(3p)	0.00613	0.48979

329 330	C C	54 p 54 p	by Val(by Ryde	2p) (3p)	1.1277 0.0066	5 -(54 ().10814).33244
331	С	54 p	oz Val(2p)	1.0116	7 -0	0.14255
332	С	54 g	oz Ryd	(3p)	0.0027	4 (0.38700
333	С	55 \$	S Cor(1S)	1.99910	5 -1	0.06492
334	С	55 \$	S Val	2S)	1.01167	7 -0	.17896
335	С	55 \$	S Rvd(3S)	0.0004	7	.07575
336	Č	55 r	ox Val	2p)	1.2269	6 -(0.09705
337	Ċ	55 r	ox Rvd	(3n)	0.0026	57 ().24345
338	C	55 r	ov Val	(2n)	1 2370	9_() 10166
339	Č	55 r	by Ryde	(3n)	0.0020	$\frac{1}{2}$) 26222
340	c	55 r	nz Valí	(2p) (2n)	1.0921	1(13308
341	C	55 p	pz Ryd	(3p)	0.0033	0 ().25454
342	Н	56 \$	S Val(1S)	0.7950	5 0	.12187
343	Η	56 \$	S Ryd((2S)	0.0016	0 ().81022
344	Н	57 5	S Val(1S)	0.7966	5 0	.11565
345	Η	57 \$	S Ryd((2S)	0.0013	3 ().78894
346	Н	58 \$	S Val(1S)	0.81619	ə 0	.09712
347	Η	58 \$	S Ryd((2S)	0.0015	7 ().92973
348	С	59 S	S Cor(1S)	1.9991′	7 -1	0.05966
349	С	59 5	S Val(2S)	1.01302	2 -0	.17565
350	С	59 5	S Ryd(3S)	0.0004	4 1	.07304
351	С	59 p	ox Val(2p)	1.1169	0-0).11876
352	С	59 p	ox Ryd	(3p)	0.0029	2	0.24587
353	С	59 p	by Val(2p)	1.2430	9 -().09318
354	С	59 p	by Ryd	(3p)	0.0022	.5 (0.25650
355	С	59 p	oz Val(2p)	1.2086) -(0.09957
356	С	59 p	oz Ryd	(3p)	0.0030	2 ().25099
357	н	60.9	S Val(1S)	0 79638	з 0	12210
358	Η	60 \$	S Ryd((2S)	0.0011	9 ().80085
359	Н	61 \$	S Val(1S)	0.79349	ə 0	.12590
360	Η	61 \$	S Ryd((2S)	0.0011	6 ().82659
361	Н	62 \$	S Val(1S)	0.8006	5 0	.11624
362	Η	62 \$	S Ryd((2S)	0.0016	1 ().79331
363	Н	63 \$	S Val(1S)	0.8117	1 0	.14245
364	Η	63 \$	S Ryd((2S)	0.0015	6 ().91368
365	н	64 \$	S Val(1S)	0.8172	2 0	.17625
366	Η	64 \$	S Ryd((2S)	0.0016	3 ().85488
367	н	65	S Val(1S)	0.9027	5 0	31958
368	Н	65 \$	S Ryd((2S)	0.0019	3 ().74535
9.40			a 	1.0	0.00.00		
369 370	H H	66 S	S Val(S Ryd(1S) (2S)	0.8249	030	.14493
2.0		55 1		_~/		- (
371	Н	67 \$	S Val(1S)	0.83380	0 0	.18341
372	Η	67 \$	S Ryd((2S)	0.0030	8 ().88845
373	Н	68 5	S Val	1S)	0.8473	5 0	.23812
374	Η	68 5	S Ryd((2S)	0.0022	7 ().88681
375	Н	69 \$	S Val(1S)	0.8075	5 0	.16359

376	Н	69 5	S	Ryd(2S)	0.00187	0.86588
377	н	70	c	$V_{2}(1S)$	0 85001	0.24626
378	п Ц	70 3	5 6	Val(1S) Pvd(2S)	0.03901	0.24020
570	11	70 .	5	Kyu(25)	0.00100	0.00550
379	Н	71 \$	S	Val(1S)	0.83087	0.16039
380	Н	71 5	S	Rvd(2S)	0.00160	0.95580
200	••	, 1 ,	5	1090(20)	0.00100	0.72200
381	Н	72 \$	S	Val(1S)	0.81340	0.13279
382	Н	72 \$	S	Ryd(2S)	0.00271	0.88587
				• • •		
383	Η	73 \$	S	Val(1S)	0.81282	0.15077
384	Η	73 S	S	Ryd(2S)	0.00165	0.91122
385	Η	74 \$	S	Val(1S)	0.82711	0.20420
386	Η	74 \$	S	Ryd(2S)	0.00188	0.84901
207		75 0	a	1/ 1/ 10	0.01004	0 1 5 2 4 2
38/	H	15 2	5	Val(1S)	0.81024	0.15343
388	Н	15 3	8	Ryd(28)	0.00142	0.86362
380	ц	76 9	ç	$V_{0}l(1S)$	0 82102	0 15604
300	н	76 9	5 5	$P_{vd}(2S)$	0.02192	0.13094
390	11	/0 .	3	Kyu(25)	0.00137	0.93041
391	Н	77 \$	S	Val(1S)	0.81379	0.09645
392	Н	77 \$	S	Rvd(2S)	0.00261	0.93724
			-)-(-~)		
393	Ν	78 \$	S	Cor(1S)	1.99936	-14.27015
394	Ν	78 \$	S	Val(2S)	1.35906	-0.64535
395	Ν	78 \$	S	Ryd(3S)	0.00212	1.64127
396	Ν	78 p	рх	Val(2p)	1.45024	-0.33403
397	Ν	78 p	px	Ryd(3p)	0.01087	0.84700
398	Ν	78 p	рy	Val(2p)	1.32774	-0.33066
399	Ν	78 g	ру	Ryd(3p)	0.00533	0.66485
400	Ν	78 p	pz	Val(2p)	1.43505	-0.35864
401	Ν	78 p	pz	Ryd(3p)	0.00688	0.63682
400		70 (a	G (10)	1 000 20	1405055
402	N N	/9 S	5	Cor(1S)	1.99938	-14.27255
403	N	79 8	S	Val(2S)	1.36445	-0.65274
404	N	79 3	8	Ryd(3S)	0.00219	1.63845
405	IN N	79 I	px	val(2p)	1.52834	-0.34979
400	IN N	79 I 70 -	рх	Kya(3p)	0.00703	0.09805
407	IN N	79 F	ру	var(2p)	1.29/90	-0.52907
400	IN N	79 F	py pz	$V_{al}(2p)$	0.00790	0.81343
409	N	70 r	92 97	Val(2p) Pvd(3p)	0.00643	0.63748
-10	14	/) I	ΡZ	Kyu(5p)	0.000+5	0.05740
411	Ν	80 \$	S	Cor(1S)	1.99935	-14.27397
412	Ν	80 \$	S	Val(2S)	1.35429	-0.65040
413	Ν	80 \$	S	Rvd(3S)	0.00228	1.64037
414	Ν	80 r	рх	Val(2p)	1.27512	-0.33382
415	Ν	80 p	рх	Ryd(3p)	0.00582	0.72062
416	Ν	80 p	рy	Val(2p)	1.57002	-0.35366
417	Ν	80 p	ру	Ryd(3p)	0.01116	0.79622
418	Ν	80 p	pz	Val(2p)	1.39683	-0.36244
419	Ν	80 I	pz	Ryd(3p)	0.00643	0.65260
4		<u>.</u>	-		1 0	0
420	Tl	81 8	Ś	Val(6S)	1.95204	-0.41212
421	TI TI	81 8	>	Kyd(7S)	0.00019	10.33245
422	11 T1	81 p	JX	val(op)	0.05081	-0.07/58
423	11 T1	01 p	JX	Kyu(/p)	0.00144	0.2842/
424 125	11 T1	01 p	y W	val(op)	0.02918	-0.00801
423	11	01 p	y	rcyu(/p)	0.00108	0.50558

426	Tl	81 pz	Val(6p)	0.09308	-0.03013
427	Tl	81 pz	Ryd(7p)	0.00234	0.38458
428	Tl	81 dxy	Cor(5d)	1.99814	-0.83170
429	Tl	81 dxy	Ryd(6d)	0.00007	1.40745
430	Tl	81 dxz	Cor(5d)	1.99759	-0.82763
431	Tl	81 dxz	Ryd(6d)	0.00016	1.48405
432	Tl	81 dyz	Cor(5d)	1.99709	-0.82704
433	Tl	81 dyz	Ryd(6d)	0.00018	1.51843
434	Tl	81 dx2y	2 Cor(5d)	1.99798	-0.83182
435	Tl	81 dx2y	2 Ryd(6d)	0.00005	1.41231
436	Tl	81 dz2	Cor(5d)	1.99743	-0.82763
437	Tl	81 dz2	Ryd(6d)	0.00010	1.44805

[68 electrons found in the effective core potential]

WARNING: 1 low occupancy (<1.9990e) core orbital found on C 1
1 low occupancy (<1.9990e) core orbital found on C 8
1 low occupancy (<1.9990e) core orbital found on C 9
1 low occupancy (<1.9990e) core orbital found on C 12
1 low occupancy (<1.9990e) core orbital found on C 14
1 low occupancy (<1.9990e) core orbital found on C 28
1 low occupancy (<1.9990e) core orbital found on C 29
1 low occupancy (<1.9990e) core orbital found on C 30
1 low occupancy (<1.9990e) core orbital found on C 48
1 low occupancy (<1.9990e) core orbital found on C 49
5 low occupancy (<1.9990e) core orbital found on T1 81

Summary of Natural Population Analysis:

Natural Population

		1	Nat	1 mol		• F		
_	Ato	m N	Nati No	Charge	Core	Valence	Rydberg	Total
	С	1	-0.	33719	1.99885	4.30687	0.03147	6.33719
	Н	2	0.2	22412	0.00000	0.77396	0.00191	0.77588
	С	3	0.4	43191	1.99906	3.54223	0.02679	5.56809
	С	4	-0.0	54484	1.99907	4.63703	0.00874	6.64484
	Η	5	0.2	22891	0.00000	0.76986	0.00123	0.77109
	Η	6	0.2	22592	0.00000	0.77304	0.00104	0.77408
	Η	7	0.2	22574	0.00000	0.77323	0.00103	0.77426
	С	8	0.1	12429	1.99881	3.85161	0.02530	5.87571
	С	9	-0.0	01989	1.99899	3.99728	0.02363	6.01989
	С	10	-0.	16676	1.99909	4.15365	0.01401	6.16676
	С	11	-0.	14635	1.99922	4.13400	0.01313	6.14635
	С	12	-0.	.07429	1.99860	4.06313	0.01256	6.07429
	С	13	-0.	19868	1.99908	4.18389	0.01571	6.19868
	С	14	-0.	13756	1.99897	4.12227	0.01632	6.13756
	С	15	-0.	.57883	1.99918	4.57151	0.00814	6.57883
	Н	16	0.	20040	0.00000	0.79807	0.00154	0.79960
	Н	17	0.	20056	0.00000	0.79812	0.00132	0.79944
	Н	18	0.	19280	0.00000	0.80593	0.00127	0.80720
	С	19	-0.	.57953	1.99919	4.57209	0.00826	6.57953
	Η	20	0.	19664	0.00000	0.80214	0.00122	0.80336
	Н	21	0.	20069	0.00000	0.79798	0.00133	0.79931
	Η	22	0.	19423	0.00000	0.80417	0.00160	0.80577
	С	23	0.	43696	1.99907	3.53673	0.02723	5.56304
	С	24	-0.	.64623	1.99907	4.63819	0.00898	6.64623
	Η	25	0.	22907	0.00000	0.76964	0.00129	0.77093
	Η	26	0.	22819	0.00000	0.77072	0.00109	0.77181
	Η	27	0.	22556	0.00000	0.77325	0.00119	0.77444
	С	28	0.	12165	1.99882	3.85421	0.02532	5.87835

С	29	0.00730	1.99900	3.96963	0.02408	5.99270	
С	30	-0.14541	1.99889	4.13267	0.01384	6.14541	
С	31	-0.15889	1.99922	4.14642	0.01325	6.15889	
С	32	-0.09894	1.99905	4.08639	0.01350	6.09894	
С	33	-0.21596	1.99906	4.20102	0.01588	6.21596	
С	34	-0.16073	1.99911	4.14555	0.01607	6.16073	
С	35	-0.57676	1.99917	4.56917	0.00843	6.57676	
Η	36	0.19225	0.00000	0.80633	0.00142	0.80775	
Н	37	0.20307	0.00000	0.79566	0.00128	0.79693	
Н	38	0.20095	0.00000	0.79783	0.00122	0.79905	
С	39	-0.57488	1.99918	4.56705	0.00865	6.57488	
Η	40	0.18672	0.00000	0.81209	0.00119	0.81328	
Η	41	0.20190	0.00000	0.79679	0.00131	0.79810	
Η	42	0.20049	0.00000	0.79808	0.00143	0.79951	
С	43	0.43993	1.99905	3.53389	0.02713	5.56007	
С	44	-0.64582	1.99907	4.63814	0.00860	6.64582	
Η	45	0.22878	0.00000	0.76997	0.00125	0.77122	
Н	46	0.22539	0.00000	0.77360	0.00101	0.77461	
Η	47	0.22854	0.00000	0.77039	0.00108	0.77146	
С	48	0.12604	1.99882	3.85019	0.02495	5.87396	
С	49	-0.02245	1.99897	4.00041	0.02307	6.02245	
С	50	-0.16245	1.99907	4.14942	0.01395	6.16245	
С	51	-0.13953	1.99915	4.12719	0.01320	6.13953	
С	52	-0.15456	1.99921	4.14176	0.01359	6.15456	
С	53	-0.21348	1.99906	4.19867	0.01575	6.21348	
С	54	-0.15637	1.99915	4.14119	0.01602	6.15637	
С	55	-0.57545	1.99916	4.56782	0.00847	6.57545	
Н	56	0.20335	0.00000	0.79505	0.00160	0.79665	
Н	57	0.20202	0.00000	0.79665	0.00133	0.79798	
H	58	0.18224	0.00000	0.81619	0.00157	0.81776	
C	59	-0.58943	1.99917	4.58161	0.00864	6.58943	
Н	60	0.20243	0.00000	0.79638	0.00119	0.79757	
H	61	0.20535	0.00000	0.79349	0.00116	0.79465	
H	62	0.19773	0.00000	0.80066	0.00161	0.80227	
H	63	0.18673	0.00000	0.81171	0.00156	0.81327	
H	64	0.18115	0.00000	0.81722	0.00163	0.81885	
H	65	0.09531	0.00000	0.90275	0.00193	0.90469	
H	66	0.1/33/	0.00000	0.82490	0.00173	0.82603	
H	67	0.16312	0.00000	0.83380	0.00308	0.84062	
H	08	0.13038	0.00000	0.84/33	0.00227	0.04902	
H	09 70	0.19058	0.00000	0.80/33	0.00166	0.00742	
H	70	0.15955	0.00000	0.83901	0.00160	0.0000/	
н u	/1 72	0.10/33	0.00000	0.0300/	0.00100	0.03247	
H TT	12	0.10309	0.00000	0.01040	0.002/1	0.01011	
п U	73 74	0.10333	0.00000	0.01202	0.00103	0.01447	
п Ц	74 75	0.17101	0.00000	0.02711	0.00100	0.81166	
п U	15 76	0.10004	0.00000	0.01024	0.00142	0.87340	
п U	70	0.1/031	0.00000	0.02192	0.00137	0.81640	
п N	79 78	-0.1000	1 90036	5 57207	0.00201	7 59663	
N	70 70	-0.53005	1.22230	5 50615	0.02320	7 61974	
N	80	-0 62132	1 99930	5 59677	0.02421	7 62132	
	81	0.02132	77 98873	2 10511	0.02371	80 09954	

* Total * 1.00000 151.95394 195.34617 0.69989 348.00000

Natural Population

Effective Core	68.00000
Core	83.95394 (99.9452% of 84)
Valence	195.34617 (99.6664% of 196)
Natural Minimal	Basis 347.30011 (99.7989% of 348)

Natural Rydberg Basis 0.69989 (0.2011% of 348)

Atom No	Natural Electron Configuration
с 1	$[core]^{2}S(0.96)^{2}p(3.35)^{3}p(0.03)$
H 2	1S(0.77)
C_{3}	[core]2S(0.85)2p(2.69)3p(0.02)
C 4	[core]2S(1.02)2p(3.61)3p(0.01)
Н 5	1S(0.77)
Н б	1S(0.77)
Η 7	1S(0.77)
C 8	[core]2S(0.85)2p(3.01)3p(0.02)
C 9	[core]2S(0.89)2p(3.10)3p(0.02)
C 10	[core]2S(0.94)2p(3.21)3p(0.01)
C 11	[core]2S(0.94)2p(3.19)3p(0.01)
C 12	[core]2S(0.88)2p(3.19)3p(0.01)
C 13	[core]2S(0.93)2p(3.25)3p(0.01)
C 14	[core]2S(0.92)2p(3.20)3p(0.02)
C 15	[core]2S(1.01)2p(3.56)3p(0.01)
H 16	IS(0.80)
H 1/	15(0.80)
П 10	13(0.01) [core]28(101)2p(356)3p(001)
С 19 H 20	15(0.80)
H 20	15(0.80) 15(0.80)
H 22	15(0.80)
C 23	[core]2S(0.86)2p(2.68)3p(0.02)
C 24	[core]2S(1.02)2p(3.62)3p(0.02)
H 25	1S(0.77)
H 26	1S(0.77)
H 27	1S(0.77)
C 28	[core]2S(0.85)2p(3.01)3p(0.02)
C 29	[core]2S(0.89)2p(3.08)3p(0.02)
C 30	[core]2S(0.90)2p(3.24)3p(0.01)
C 31	[core]2S(0.93)2p(3.21)3p(0.01)
C 32	[core]2S(0.91)2p(3.17)3p(0.01)
C 33	[core]2S(0.92)2p(3.28)3p(0.01)
C 34	[core]2S(0.95)2p(3.20)3p(0.02)
C 35	[core]2S(1.01)2p(3.56)3p(0.01)
H 36	IS(0.81)
H 3/	15(0.80)
П 30	13(0.00) [core]28(1.01)2p(3.55)3p(0.01)
H 40	15(0.81)
H 41	15(0.80)
H 42	1S(0.80)
C 43	[core]2S(0.85)2p(2.68)3p(0.02)
C 44	[core]2S(1.02)2p(3.62)3p(0.01)
Н 45	1S(0.77)
H 46	1S(0.77)
H 47	1S(0.77)
C 48	[core]2S(0.84)2p(3.01)3p(0.02)
C 49	[core]2S(0.89)2p(3.11)3p(0.02)
C 50	[core]2S(0.93)2p(3.22)3p(0.01)
C 51	[core]2S(0.93)2p(3.20)3p(0.01)
C 52	[core]2S(0.94)2p(3.20)3p(0.01)
C 53	[core]2S(0.92)2p(3.27)3p(0.01)
C 54	[core]2S(0.95)2p(3.19)3p(0.02)
U 55	$[core]_{2S(1.01)}_{2p(3.56)}_{3p(0.01)}$
H 56	15(0.80) 15(0.80)
H 57	15(0.80)

Η	58	1S(0.82)
С	59	[core]2S(1.01)2p(3.57)3p(0.01)
Η	60	1S(0.80)
Η	61	1S(0.79)
Η	62	1S(0.80)
Η	63	1S(0.81)
Η	64	1S(0.82)
Η	65	1S(0.90)
Η	66	1S(0.82)
Η	67	1S(0.83)
Η	68	1S(0.85)
Η	69	1S(0.81)
Η	70	1S(0.86)
Η	71	1S(0.83)
Η	72	1S(0.81)
Η	73	1S(0.81)
Η	74	1S(0.83)
Η	75	1S(0.81)
Η	76	1S(0.82)
Η	77	1S(0.81)
Ν	78	[core]2S(1.36)2p(4.21)3p(0.02)
Ν	79	[core]2S(1.36)2p(4.23)3p(0.02)
Ν	80	[core]2S(1.35)2p(4.24)3p(0.02)
Tl	81	[core]6S(1.95)6p(0.15)7p(0.01)

NBO analysis skipped by request.

1|1|UNPC-E-C07CYG43054|SP|RB3LYP|LANL2DZ|C34H43N3T11(1+)|MCDSTFM|03-Ap r-2013|0||# rb3lyp/lanl2dz pop=npa geom=connectivity||single-Point XRD Monomer||1,1|C,0,0.01861,-0.083509,2.255965|H,0,0.004563,-0.122705,3. 235795|C,0,1.475694,0.037251,1.819378|C,0,2.383293,0.678773,2.817058|H ,0,3.26891,0.740388,2.450589|H,0,2.404998,0.148404,3.617819|H,0,2.0606 74,1.558898,3.024916|C,0,3.100261,-0.209698,0.131984|C,0,3.901979,-1.3 27516,-0.084833|C,0,5.12032,-1.118172,-0.730319|C,0,5.509287,0.147439, -1.163167|C,0,4.696747,1.225405,-0.94872|C,0,3.488421,1.047147,-0.2973 04|C,0,3.511043,-2.694884,0.415175|C,0,4.301631,-3.060222,1.646233|H,0 ,5.230767,-3.137415,1.418018|H,0,3.985941,-3.89728,1.993251|H,0,4.1915 28,-2.375482,2.311377|C,0,3.635796,-3.770424,-0.624249|H,0,3.09152,-3. 546877,-1.383296|H,0,3.345446,-4.607581,-0.256005|H,0,4.554096,-3.8437 78,-0.899697|C,0,-0.819518,1.110863,1.830107|C,0,-1.963955,1.431667,2. 722624|H,0,-2.44803,2.180175,2.366134|H,0,-1.635595,1.649364,3.597907| H,0,-2.549087,0.671305,2.778766|C,0,-1.338571,2.731076,0.193238|C,0,-0 .817831,4.019156,0.044002|C,0,-1.657345,4.927439,-0.608713|C,0,-2.8593 8,4.613055,-1.091473|C,0,-3.35078,3.324906,-0.961731|C,0,-2.575807,2.3 84734,-0.308671|C,0,0.575307,4.362779,0.480037|C,0,0.677188,5.710898,1 .197953|H,0,0.293384,6.396553,0.647347|H,0,1.598956,5.913988,1.36741|H ,0,0.200933,5.664574,2.030595|C,0,1.507967,4.364168,-0.73349|H,0,1.482 544,3.502822,-1.157927|H,0,2.406176,4.551802,-0.446567|H,0,1.224468,5. 037208,-1.355743|C,0,-0.583107,-1.380062,1.735256|C,0,-0.367113,-2.582 691,2.595582|H,0,-0.836795,-3.332532,2.221255|H,0,-0.695737,-2.407635, 3.479846|H,0,0.571789,-2.782032,2.637478|C,0,-1.705379,-2.517673,-0.01 3464|C,0,-3.088728,-2.656069,-0.149691|C,0,-3.539864,-3.736897,-0.8935 65|C,0,-2.671563,-4.628305,-1.481231|C,0,-1.319113,-4.486814,-1.319917 |C,0,-0.828045,-3.42712,-0.58738|C,0,-4.016761,-1.680893,0.534937|C,0, -4.239789,-2.088872,1.984061|H,0,-4.68936,-2.936869,2.012404|H,0,-4.77 882,-1.426662,2.424024|H,0,-3.393081,-2.161062,2.430149|C,0,-5.3658,-1 .509395,-0.173705|H,0,-5.216056,-1.346681,-1.108593|H,0,-5.836015,-0.7 64442,0.208441|H,0,-5.887201,-2.307161,-0.066446|H,0,5.705659,-1.85290 7,-0.918624|H,0,6.320426,0.169319,-1.62659|H,0,4.861412,1.941492,-1.17 3468|H,0,2.878627,1.747231,-0.224064|H,0,2.618643,-2.733005,0.597007|H ,0,-1.222838,5.658391,-0.709589|H,0,-3.468463,5.144209,-1.580622|H,0,-4.101781,3.065483,-1.260104|H,0,-2.875714,1.530752,-0.193932|H,0,0.900

$$\begin{split} 886,3.712996,1.118076|H,0,-4.457959,-3.880782,-1.073882|H,0,-3.11043,-\\ 5.249296,-1.966502|H,0,-0.733023,-5.136672,-1.687849|H,0,0.084013,-3.3\\ 77206,-0.477995|H,0,-3.558752,-0.802221,0.58052|N,0,1.779334,-0.372228\\ ,0.664361|N,0,-0.508284,1.706202,0.748331|N,0,-1.185303,-1.346835,0.62\\ 6165|T1,0,-0.088425,0.101083,-1.291919||Version=IA32W-G09RevB.01|State\\ =1-A|HF=-1536.0607674|RMSD=5.589e-009|Dipole=-0.1935887,-0.162696,1.60\\ 29179|Quadrupole=5.7587195,4.5309503,-10.2896698,0.8898621,0.5116285,-\\ 0.3266483|PG=C01[X(C34H43N3T11)]||@ \end{split}$$

TRUST EVERYONE, BUT CUT THE CARDS. Job cpu time: 0 days 1 hours 15 minutes 27.0 seconds. File lengths (MBytes): RWF= 106 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Wed Apr 03 11:13:36 2013.

Appendix 3. Gaussian output for dication dimer, LANL2-DZ, HF-SCF.

Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 28-Mar-2013

 $\label{eq:chk} \label{eq:chk} \end{tabular} \end{tabular} \label{eq:chk} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \label{eq:chk} \end{tabular} \e$

hf/lanl2dz guess=local pop=npa geom=connectivity

_____ 1/38=1,57=2/1;2/12=2,17=6,18=5,40=1/2;3/5=6,6=3,11=9,16=1,25=1,30=1/1,2,3; 4/9=10/1;5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1,40=-1/1,7; 99/5=1,9=1/99; _____ CSD ENTRY ofm27p-1 _____ Symbolic Z-matrix: Charge = 2 Multiplicity = 1C(PDBName=C1,ResName=UNK,ResNum=1) -0.621 11.017 13.349 H(PDBName=H1,ResName=UNK,ResNum=1) -1.177 10.346 12.9 C(PDBName=C2,ResName=UNK,ResNum=1) -0.739 10.785 14.852 C(PDBName=C3,ResName=UNK,ResNum=1) -2.015 10.148 15.295 H(PDBName=H3A,ResName=UNK,ResNum=1) -2.016 10.067 16.252 H(PDBName=H3B,ResName=UNK,ResNum=1) -2.09 9.275 14.9 H(PDBName=H3C,ResName=UNK,ResNum=1) -2.757 10.69 15.018 C(PDBName=C4,ResName=UNK,ResNum=1) 0.148 11.089 17.013 10.208 17.693 C(PDBName=C5,ResName=UNK,ResNum=1) 0.985 C(PDBName=C6,ResName=UNK,ResNum=1) 0.971 10.268 19.087 C(PDBName=C7,ResName=UNK,ResNum=1) 0.176 11.185 19.77 C(PDBName=C8,ResName=UNK,ResNum=1) -0.627 12.047 19.077 C(PDBName=C9,ResName=UNK,ResNum=1) -0.643 11.998 17.693 C(PDBName=C10,ResName=UNK,ResNum=1) 1.819 9.184 16.967 C(PDBName=C11,ResName=UNK,ResNum=1) 1.205 7.812 17.086 H(PDBName=H11A,ResName=UNK,ResNum=1) 1.219 7.534 18.005 H(PDBName=H11B,ResName=UNK,ResNum=1) 1.706 7.189 16.556

H(PDBName=H11C,ResName=UNK,ResNum=1) 0.296 7.84	16.775
C(PDBName=C12,ResName=UNK,ResNum=1) 3.252 9.155	17.411
H(PDBName=H12A,ResName=UNK,ResNum=1) 3.644 10.023	17.287
H(PDBName=H12B,ResName=UNK,ResNum=1) 3.736 8.508	16.894
H(PDBName=H12C,ResName=UNK,ResNum=1) 3.294 8.916	18.342
C(PDBName=C13,ResName=UNK,ResNum=1) -1.123 12.389	12.928
C(PDBName=C14,ResName=UNK,ResNum=1) -1.683 12.464	11.553
H(PDBName=H14A,ResName=UNK,ResNum=1) -1.952 13.366	11.366
H(PDBName=H14B,ResName=UNK,ResNum=1) -2.443 11.882	11.485
H(PDBName=H14C,ResName=UNK,ResNum=1) -1.013 12.193	10.92
C(PDBName=C15,ResName=UNK,ResNum=1) -1.289 14.701	13.374
C(PDBName=C16,ResName=UNK,ResNum=1) -2.299 15.389	14.053
C(PDBName=C17,ResName=UNK,ResNum=1) -2.443 16.734	13.698
C(PDBName=C18,ResName=UNK,ResNum=1) -1.672 17.353	12.804
C(PDBName=C19,ResName=UNK,ResNum=1) -0.656 16.666	12.16
C(PDBName=C20,ResName=UNK,ResNum=1) -0.475 15.328	12.454
C(PDBName=C21,ResName=UNK,ResNum=1) -3.102 14.741	15.141
C(PDBName=C22,ResName=UNK,ResNum=1) -4.597 15.06	15.071
H(PDBName=H22A,ResName=UNK,ResNum=1) -4.721 16.012	15.051
H(PDBName=H22B,ResName=UNK,ResNum=1) -5.038 14.696	15.841
H(PDBName=H22C,ResName=UNK,ResNum=1) -4.969 14.672	14.275
C(PDBName=C23,ResName=UNK,ResNum=1) -2.556 15.167	16.506
H(PDBName=H23A,ResName=UNK,ResNum=1) -1.629 14.924	16.571
H(PDBName=H23B,ResName=UNK,ResNum=1) -3.051 14.724	17.201
H(PDBName=H23C,ResName=UNK,ResNum=1) -2.647 16.117	16.605
C(PDBName=C24,ResName=UNK,ResNum=1) 0.815 10.804	12.893
C(PDBName=C25,ResName=UNK,ResNum=1) 1.185 9.393	12.567
H(PDBName=H25A,ResName=UNK,ResNum=1) 2.083 9.368	12.227
H(PDBName=H25B,ResName=UNK,ResNum=1) 0.582 9.048	11.905
H(PDBName=H25C.ResName=UNK.ResNum=1) 1.129 8.856	13.361
C(PDBName=C26,ResName=UNK,ResNum=1) 2.969 11.72	12.532
C(PDBName=C27,ResName=UNK,ResNum=1) 3.431 12.293	11.344
C(PDBName=C28,ResName=UNK,ResNum=1) 4.804 12.3 1	1.145
C(PDBName=C29,ResName=UNK,ResNum=1) 5.677 11.78	12.074
C(PDBName=C30,ResName=UNK,ResNum=1) 5.203 11.206	13.224
C(PDBName=C31.ResName=UNK.ResNum=1) 3.845 11.176	13.461
C(PDBName=C32,ResName=UNK,ResNum=1) 2.448 12.825	10.329
C(PDBName=C33,ResName=UNK,ResNum=1) 1.935 11.697	9.445
H(PDBName=H33A.ResName=UNK.ResNum=1) 2.663 11.335	8.935
H(PDBName=H33B,ResName=UNK,ResNum=1) 1.264 12.038	8.848
H(PDBName=H33C.ResName=UNK.ResNum=1) 1.555 11.008	9.994
C(PDBName=C34.ResName=UNK.ResNum=1) 3.008 13.957	9.46
H(PDBName=H34A.ResName=UNK.ResNum=1) 3.415 14.62	10.024
H(PDBName=H34B.ResName=UNK.ResNum=1) 2.294 14.36	8.959
H(PDBName=H34C.ResName=UNK.ResNum=1) 3.663 13.603	8.857
H(PDBName=H6.ResName=UNK.ResNum=1) 1.538 9.696 1	9.606
H(PDBName=H7.ResName=UNK.ResNum=1) 0.278 11.174	20.699
H(PDBName=H8, ResName=UNK, ResNum=1) - 1.078 = 12.575	19.405
H(PDBName=H9, ResName=UNK, ResNum=1) - 1.108 12.636	17.199
H(PDBName=H10.ResName=UNK.ResNum=1) 1.915 9.405	16.088
H(PDBName=H17 ResName=UNK ResNum=1) -3.034 17.078	14 214
H(PDBName=H18 ResName=UNK ResNum=1) -1.668 18.26	12,539
H(PDBName=H19 ResName=UNK ResNum=1) -0.128 17.012	11 593
H(PDBName=H20, ResName=UNK, ResNum=1) 0.176 14.842	12.038
H(PDBName=H21, ResName=UNK ResNum=1) - 3.047 13.778	15.075
H(PDBName=H28 ResName=I)NK ResNum=1) 5 205 12 708	10 391
H(PDBName=H29 ResName=I) S 12.700 H(PDBName=H29 ResName=I) K ResName=I G 536 II 897	11 825
H(PDBName=H30 ResName=I) NK ResNum=1 5.812 10.806	13 832
H(PDBName=H31, ResName=UNK ResNum=1) 3.512 10.600	14.23
H(PDBName=H32, ResName=UNK ResNum=1) 1.65 13.154	10.819
N(PDBName=N1.ResName=UNK ResNum=1) 0.214 11 175	15.584
N(PDBName=N2,ResName=UNK,ResNum=1) - 0.994 13 352	13.751
= (1 - 1) + (1	

N(PDBName=N3,ResName=UNK,ResNum=1) 1.576 12.849 11.81 Tl(PDBName=Tl1,ResName=UNK,ResNum=1) 1.393 13.539 14.838 Tl(PDBName=Tl1,ResName=UNK,ResNum=1) 2.419 13.341 18.333 C(PDBName=C4,ResName=UNK,ResNum=1) 3.665 15.791 16.158 C(PDBName=C5,ResName=UNK,ResNum=1) 2.828 16.672 15.478 C(PDBName=C6,ResName=UNK,ResNum=1) 2.842 16.612 14.084 C(PDBName=C7,ResName=UNK,ResNum=1) 3.637 15.695 13.401 C(PDBName=C8,ResName=UNK,ResNum=1) 4.44 14.833 14.094 C(PDBName=C9,ResName=UNK,ResNum=1) 4.456 14.882 15.478 C(PDBName=C1,ResName=UNK,ResNum=1) 4.433 15.863 19.822 H(PDBName=H1,ResName=UNK,ResNum=1) 4.99 16.534 20.271 C(PDBName=C2,ResName=UNK,ResNum=1) 4.551 16.095 18.319 C(PDBName=C3,ResName=UNK,ResNum=1) 5.827 16.732 17.876 H(PDBName=H3A,ResName=UNK,ResNum=1) 5.829 16.813 16.919 H(PDBName=H3B,ResName=UNK,ResNum=1) 5.903 17.605 18.271 H(PDBName=H3C,ResName=UNK,ResNum=1) 6.57 16.19 18.153 C(PDBName=C10,ResName=UNK,ResNum=1) 1.994 17.696 16.204 C(PDBName=C11,ResName=UNK,ResNum=1) 2.608 19.068 16.085 19.346 15.166 H(PDBName=H11A,ResName=UNK,ResNum=1) 2.594 H(PDBName=H11B.ResName=UNK.ResNum=1) 2.107 19.691 16.615 H(PDBName=H11C,ResName=UNK,ResNum=1) 3.516 19.04 16.396 C(PDBName=C12,ResName=UNK,ResNum=1) 0.56 17.725 15.759 H(PDBName=H12A,ResName=UNK,ResNum=1) 0.169 16.857 15.884 18.373 H(PDBName=H12B,ResName=UNK,ResNum=1) 0.077 16.277 H(PDBName=H12C,ResName=UNK,ResNum=1) 0.519 17.964 14.829 C(PDBName=C13,ResName=UNK,ResNum=1) 4.936 14.491 20.243 C(PDBName=C14,ResName=UNK,ResNum=1) 5.496 14.416 21.617 H(PDBName=H14A,ResName=UNK,ResNum=1) 5.765 13.514 21.805 H(PDBName=H14B,ResName=UNK,ResNum=1) 6.256 14.998 21.685 H(PDBName=H14C,ResName=UNK,ResNum=1) 4.825 14.687 22.251 C(PDBName=C15,ResName=UNK,ResNum=1) 5.102 12.179 19.796 C(PDBName=C16,ResName=UNK,ResNum=1) 6.111 11.491 19.118 C(PDBName=C17,ResName=UNK,ResNum=1) 6.256 10.146 19.473 C(PDBName=C18,ResName=UNK,ResNum=1) 5.485 9.527 20.367 C(PDBName=C19,ResName=UNK,ResNum=1) 4.469 10.214 21.01C(PDBName=C20,ResName=UNK,ResNum=1) 4.288 11.552 20.717 C(PDBName=C21,ResName=UNK,ResNum=1) 6.915 12.139 18.03 C(PDBName=C22,ResName=UNK,ResNum=1) 8.41 11.82 18.1 H(PDBName=H22A,ResName=UNK,ResNum=1) 8.533 10.868 18.12 12.184 H(PDBName=H22B,ResName=UNK,ResNum=1) 8.851 17.33 H(PDBName=H22C,ResName=UNK,ResNum=1) 8.781 12.208 18.896 C(PDBName=C23,ResName=UNK,ResNum=1) 6.369 11.713 16.665 H(PDBName=H23A,ResName=UNK,ResNum=1) 5.442 11.956 16.6 H(PDBName=H23B,ResName=UNK,ResNum=1) 6.864 12.156 15.97 H(PDBName=H23C,ResName=UNK,ResNum=1) 6.46 10.763 16.566 20.278 C(PDBName=C24,ResName=UNK,ResNum=1) 2.998 16.076 C(PDBName=C25,ResName=UNK,ResNum=1) 2.628 17.487 20.604 H(PDBName=H25A,ResName=UNK,ResNum=1) 1.73 17.512 20.944 H(PDBName=H25B,ResName=UNK,ResNum=1) 3.231 17.832 21.266 H(PDBName=H25C,ResName=UNK,ResNum=1) 2.684 18.025 19.81 C(PDBName=C26,ResName=UNK,ResNum=1) 0.844 15.16 20.639 C(PDBName=C27,ResName=UNK,ResNum=1) 0.382 14.587 21.826 22.025 C(PDBName=C28,ResName=UNK,ResNum=1) -0.992 14.58 C(PDBName=C29,ResName=UNK,ResNum=1) -1.864 15.1 21.097 15.674 C(PDBName=C30,ResName=UNK,ResNum=1) -1.39 19.947 C(PDBName=C31,ResName=UNK,ResNum=1) -0.032 15.704 19.71 C(PDBName=C32,ResName=UNK,ResNum=1) 1.365 14.055 22.841 C(PDBName=C33,ResName=UNK,ResNum=1) 1.878 15.183 23.725 H(PDBName=H33A,ResName=UNK,ResNum=1) 1.15 15.545 24.236 H(PDBName=H33B,ResName=UNK,ResNum=1) 2.549 14.842 24.323 H(PDBName=H33C,ResName=UNK,ResNum=1) 2.257 15.872 23.176 C(PDBName=C34,ResName=UNK,ResNum=1) 0.805 12.923 23.711

H(PDBName=H54A, Kesiname=UNK, Kesinum=1) 0.598	
	12.20 23.147
H(PDBName=H34B,ResName=UNK,ResNum=1) 1.519	12.52 24.211
H(PDBName=H34C,ResName=UNK,ResNum=1) 0.15	13.277 24.314
H(PDBName=H6,ResName=UNK,ResNum=1) 2.275 1	7.184 13.565
H(PDBName=H7,ResName=UNK,ResNum=1) 3.535 1	5.706 12.472
H(PDBName=H8,ResName=UNK,ResNum=1) 4.891 1	4.305 13.766
H(PDBName=H9,ResName=UNK,ResNum=1) 4.921 1	4.244 15.972
H(PDBName=H10,ResName=UNK,ResNum=1) 1.898	17.475 17.083
H(PDBName=H17,ResName=UNK,ResNum=1) 6.846	9.802 18.957
H(PDBName=H18,ResName=UNK,ResNum=1) 5.481	8.62 20.632
H(PDBName=H19,ResName=UNK,ResNum=1) 3.941	9.868 21.578
H(PDBName=H20,ResName=UNK,ResNum=1) 3.637	12.038 21.133
H(PDBName=H21,ResName=UNK,ResNum=1) 6.86	13.102 18.096
H(PDBName=H28,ResName=UNK,ResNum=1) -1.392	14.172 22.78
H(PDBName=H29,ResName=UNK,ResNum=1) -2.723	14.983 21.345
H(PDBName=H30,ResName=UNK,ResNum=1) -1.999	16.074 19.339
H(PDBName=H31,ResName=UNK,ResNum=1) 0.252	16.12 18.941
H(PDBName=H32,ResName=UNK,ResNum=1) 2.163	13.726 22.352
N(PDBName=N1,ResName=UNK,ResNum=1) 3.599 1	5.705 17.587
N(PDBName=N2,ResName=UNK,ResNum=1) 4.807 1	3.528 19.42
N(PDBName=N3,ResName=UNK,ResNum=1) 2.237 1	5.07 20.322

Residue 1 PDB Number 1_0 UNK charge 0.00000000 ave dist 0.000 Stoichiometry C68H86N6Tl2(2+) Framework group C1[X(C68H86N6Tl2)] Deg. of freedom 480 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation:

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-3.903023	0.051295	-2.737981
2	1	0	-4.514533	0.085596	-3.503394
3	6	0	-2.503247	-0.227432	-3.276213
4	6	0	-2.460164	-0.972930	-4.569492
5	1	0	-1.545611	-1.129417	-4.817515
6	1	0	-2.892297	-0.452722	-5.252444
7	1	0	-2.914133	-1.812707	-4.470777
8	6	0	-0.170439	-0.150782	-2.958032
9	6	0	0.684185	0.872376	-3.360395
10	6	0	2.019408	0.533222	-3.582174
11	6	0	2.485112	-0.764383	-3.385337
12	6	0	1.626865	-1.746963	-2.977845
13	6	0	0.293215	-1.440024	-2.765050
14	6	0	0.184239	2.270912	-3.616048
15	6	0	0.075302	2.538076	-5.096013
16	1	0	0.950346	2.513578	-5.490651
17	1	0	-0.315350	3.402468	-5.238301
18	1	0	-0.477148	1.865062	-5.502998
19	6	0	1.011329	3.333035	-2.953263
20	1	0	1.034524	3.177106	-2.005839
21	1	0	0.627484	4.194823	-3.126870
22	1	0	1.907183	3.306084	-3.303069
23	6	0	-4.397058	-1.039420	-1.801017
24	6	0	-5.870231	-1.237389	-1.780559
25	1	0	-6.091786	-1.924870	-1.148722
26	1	0	-6.170325	-1.496216	-2.654573
27	1	0	-6.299217	-0.417141	-1.523277
28	6	0	-3.930526	-2.580467	-0.074942

29	6	0	-3.537481	-3.917900	-0.181117
30	6	0	-3.868700	-4.722562	0.913689
31	6	0	-4.486773	-4.273217	2.005895
32	6	0	-4.844529	-2.938962	2.109501
33	6	0	-4.561165	-2.096006	1.051875
34	6	0	-2.743405	-4.417091	-1.351036
35	6	0	-3.218501	-5.772304	-1.879589
36	1	0	-3.237334	-6.408158	-1.160273
37	1	0	-2.617282	-6.078198	-2.561382
38	1	0	-4.100692	-5.679533	-2.247930
39	6	0	-1.265249	-4.513108	-0.965484
40	1	Õ	-0.951616	-3.651630	-0.678966
41	1	Õ	-0 754039	-4 801185	-1 727045
42	1	Ő	-1 160762	-5 146678	-0 252564
43	6	Ő	-3 945046	1 410207	-2 054612
44	6	0	-4 205935	2 575653	-2 953371
45 1	1	0	-4 280814	3 375466	-2 426758
ч <i>5</i> 46	1	0	-5.022881	2 / 32070	-2.420750
47	1	0	3 470004	2.452070	3 574825
47	6	0	2 652660	2.009170	-3.374823
40	6	0	-5.052009	2.077734	-0.073473
49 50	0	0	-4.041102	2.909372	0.808303
50	0	0	-4.440208	4.099082	1.030030
51	0	0	-3.329393	4.893029	1.510505
52 52	0	0	-2.380753	4.000231	0.572057
55	6	0	-2.535840	3.48//1/	-0.22/04/
54	6	0	-5.8/0955	2.099481	0.968/9/
55	6	0	-6.904465	2.519616	-0.066/48
56	1	0	-7.202563	3.411803	0.123697
57	1	0	-7.652825	1.918078	-0.034507
58	l	0	-6.510077	2.493668	-0.940994
59	6	0	-6.505344	2.084019	2.364325
60	1	0	-5.825671	1.911567	3.021302
61	1	0	-7.171417	1.392791	2.406236
62	1	0	-6.912835	2.933227	2.539671
63	l	0	2.655230	1.199916	-3.845393
64	1	0	3.404316	-0.872897	-3.515165
65	1	0	1.834315	-2.474982	-2.848538
66	l	0	-0.287553	-2.068439	-2.397481
67	1	0	-0.623664	2.406848	-3.216657
68	1	0	-3.527049	-5.496860	0.780988
69	1	0	-4.706301	-4.730062	2.803385
70	1	0	-5.227296	-2.596463	2.784907
71	1	0	-4.795310	-1.214323	1.081259
72	1	0	-2.826831	-3.811705	-2.100233
73	1	0	-5.041747	4.344775	2.343442
74	1	0	-3.322704	5.561882	2.121677
75	1	0	-1.641429	5.183719	0.456500
76	1	0	-1.893421	3.336427	-0.866954
77	1	0	-5.612911	1.174631	0.717379
78	7	0	-1.519237	0.154047	-2.581712
79	7	0	-3.535959	-1.658124	-1.095997
80	7	0	-3.736426	1.452274	-0.810506
81	81	0	-1.816362	-0.095993	0.135685
82	81	0	1.816323	0.095450	-0.136066
83	6	0	0.170681	0.151034	2.958188
84	6	0	-0.683944	-0.872124	3.360551
85	6	0	-2.019167	-0.532970	3.582331
86	6	0	-2.484871	0.764635	3.385494
87	6	0	-1.626623	1.747215	2.978002
88	6	0	-0.292974	1.440276	2.765207
89	6	0	3.902984	-0.051837	2.737600
90	1	0	4.514774	-0.085344	3.503551

91	6	0	2.503207	0.226889	3.275832
92	6	0	2.460125	0.972387	4.569111
93	1	0	1.545852	1.129669	4.817671
94	1	0	2.892539	0.452974	5.252601
95	1	0	2.914375	1.812959	4.470934
96	6	0	-0.183997	-2.270660	3.616204
97	6	0	-0.075061	-2.537824	5.096170
98	1	0	-0.950105	-2.513326	5.490807
99	1	0	0.315592	-3.402216	5.238458
100	1	0	0.477109	-1.865605	5.502617
101	6	0	-1.012327	-3.333367	2.953071
102	1	0	-1.034283	-3.176854	2.005995
103	1	0	-0.627206	-4.195139	3.127848
104	1	0	-1.906942	-3.305832	3.303225
105	6	0	4.397299	1.039672	1.801173
106	6	Õ	5.869514	1.237852	1.780905
107	1	0	6.092028	1.925122	1.148879
108	1	Õ	6.169608	1.496679	2.654918
109	1	Õ	6.299178	0.416598	1.522896
110	6	Ő	3 929808	2 580930	0.075287
111	6	Ő	3 537442	3 917358	0.180736
112	6	0	3 868942	4 722814	-0.913532
112	6	0	1 487014	1 273/69	-2 005739
113	6	0	4 8/3811	2 939/25	-2.003757
115	6	0	4 561407	2.006258	1 051710
115	6	0	4.301407	2.090258 A A173A3	1 351102
110	6	0	2.745047	4.417343	1.551192
117	0	0	3.218/42	5.772550	1.8/9/40
110	1	0	3.237293	0.40/013	1.139892
119	1	0	2.01/525	6.078450	2.301339
120	I	0	4.100653	5.6/8990	2.247549
121	0	0	1.265490	4.513361	0.965640
122	1	0	0.951858	3.651882	0.6/9122
123	1	0	0.754281	4.801437	1.727201
124	I	0	1.161003	5.146930	0.252721
125	6	0	3.945288	-1.409955	2.054769
126	6	0	4.206177	-2.575401	2.953528
127	1	0	4.281056	-3.375214	2.426914
128	I	0	5.023122	-2.431818	3.436086
129	1	0	3.480273	-2.669493	3.575803
130	6	0	3.652911	-2.677482	0.075632
131	6	0	4.640444	-2.969109	-0.868017
132	6	0	4.445269	-4.099414	-1.650222
133	6	0	3.329636	-4.892777	-1.516408
134	6	0	2.380994	-4.599979	-0.572480
135	6	0	2.536082	-3.487465	0.227203
136	6	0	5.870238	-2.099018	-0.968451
137	6	0	6.903748	-2.519153	0.067093
138	1	0	7.202804	-3.411550	-0.123541
139	1	0	7.653067	-1.917826	0.034663
140	1	0	6.509079	-2.494000	0.940802
141	6	0	6.505586	-2.083767	-2.364168
142	1	0	5.825913	-1.911315	-3.021146
143	1	0	7.170699	-1.392328	-2.405890
144	1	0	6.913077	-2.932975	-2.539515
145	1	0	-2.654988	-1.199664	3.845550
146	1	0	-3.404074	0.873149	3.515322
147	1	0	-1.834074	2.475234	2.848695
148	1	0	0.287795	2.068691	2.397638
149	1	0	0.623905	-2.406596	3.216814
150	1	0	3.527009	5.496317	-0.781369
151	1	0	4.706543	4.730314	-2.803228
152	1	0	5.227537	2.596715	-2.784751

153	1	0	4.795551	1.214575	-1.081102
154	1	0	2.827073	3.811957	2.100390
155	1	0	5.041988	-4.344523	-2.343285
156	1	0	3.321986	-5.561420	-2.121332
157	1	0	1.641671	-5.183467	-0.456343
158	1	0	1.893663	-3.336175	0.867111
159	1	0	5.613153	-1.1/43/9	-0./1/222
160 161	7	0	1.519479	-0.153/95	2.581869
162	7	0	3 736668	-1 452022	0.810662
	, 				
Rotationa	l consta	unts (Gl	HZ): 0.03	63398 0.4	.0248776 0.0221224
Standard	basis: L	ANL2	DZ (5D, 7F)		
There are	874 s	ymmeti	ry adapted ba	sis function	ns of A symmetry.
Integral b	uffers v	vill be	262144 wor	rds long.	
Raffenetti	1 integ	gral for	mat.		
Two-elect	tron into	egral sy	mmetry is tu	rned on.	
8/4 basi	s functi	ons, 2	254 primitive	gaussians,	8/8 cartesian basis functions
280 alph	a electr	ons	280 beta elec	ctrons	76 Hortroop
NAtoms-	162 N	A ctive	- 162 NUmi	5.12924519 a- 162 SEa	7/0 natures. $a_{c} = 1.00 \pm 0.0 \text{ NAtEMM} = 50 \text{ NAOKEM} = T \text{ Big} = T$
One-elect	ron inte	orals c	omputed usir	1– 102 SFa 19 PRISM	L = 1.00D + 00 NAII MM = 50 NAOKI M = 1 DIg = 1
1 Symm	etry one	erations	s used in ECF	Int.	
ECPInt: 1	NShTT	= 1537	/35 NPrTT =	1086464 Le	enC2= 123334 LenP2D= 411860.
LDataN:	DoStor	⊤T Ma	xTD1= 6 Lei	n= 172	
NBasis=	874 Re	edAO=	T NBF= 8	74	
NBsUse=	874 1	.00D-0	6 NBFU= 8	374	
Initial gue	ess orbi	tals wil	l be localized	l using meth	hod 0.
Harris fun	ictional	with I	ExCor= 205	diagonalize	ed for initial guess.
ExpMin=	4.44D-	-02 Exp	Max = 5.91D	+03 ExpMx	xC= 2.05D+02 IAcc=2 IRadAn= 0 AccDes= 0.00D+00
HarFok:	IExCor	= 205	AccDes=0.0	0D+00 IRa	dAn = 0 IDoV = 1
ScaDFX=	: 1.000	000 I.0	000000 1.00	0000 1.000	91
FoFCou:	g to unp FMM–	F IPFla	$g_{10} = 0 F$	MFlag-	$100000 \text{ FMF}[\sigma] = 2001$
NFx1	Flo=		οIE=T BraΓ)BF=F KetΓ	DBF=T FulRan=T
Ome	ga = 0.0	000000	0.00000001	.000000 0.	$.000000 \ 0.000000 \ ICntrl= 500 \ IOpCl= 0$
NMa	ut0= 1	NMat	S0= 1 NMa	utT0 = 0 N	MatD0 = 1 NMtDS0 = 0 NMtDT0 = 0
I1Ce	nt=	4 N	Grid= (0.	
Petite list	used in	FoFCo	ou.		
LocMO: U	Using B	oys me	ethod		
Initial Tra	ce=0.3	322639	12D-01 Initia	ıl TraceA= (0.26228830D+04
RMSG=(0.21826	247D-(J6		
LocMO: U	Using E	Soys me	thod	1	0.7((0)204D.02
Initial Tra	ce=0.6	01010/ 516167	13D-01 Initia	1 TraceA = (0.70098294D+02 0.76608204D+02
Initial Tra	ce = 0.0	516167	13D-01 Initia 13D-01 Initia	al Trace $A = ($	0.70098294D+02 0.76698294D+02
Localizati	on faile	ed after	3 tries of 1	000 iteratio	ons each. Last change $= 0.81024714$ D-05
RMSG= ().12953	000D-0	03	ooo norano	nis cucini Eust chunge 010102171112 05
Initial gue	ess orbi	tal sym	metries:		
Occup	oied (A	.) (Å) (Å	A) (A) (A) (A	A)(A)(A)(A)(A)	A) (A) (A) (A)
	(A) (A)) (A) (A	A) (A) (A) (A	.) (A) (A) (A	A) (A) (A)
	(A) (A)) (A) (A	(A) (A) (A) (A)	.) (A) (A) (A	A) (A) (A)
	(A) (A)) (A) (A	4) (A) (A) (A	.) (A) (A) (A	A) (A) (A)
	(A) (A)) (A) (A	4) (A) (A) (A	.) (A) (A) (A	
	$(\mathbf{A})(\mathbf{A})$) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	A) (A) (A) (A A) (A) (A) (A	.) (A) (A) (<i>F</i> .) (A) (A) (<i>f</i>	
	(A) (A)	$(\mathbf{A})(\mathbf{A})(\mathbf{A})$	(A) (A) (A) (A)	(A)(A)(A)(A)(A)	(A)(A)(A)
	(A) (A)) (A) (4	λ) (Α) (Α) (Α	(A)(A)(A)(A)	A) (A) (A)
	(A) (A)) (A) (A	A) (A) (A) (A	(A) (A) (A) (A	A) (A) (A)
	(A) (A) (A) (A	A) (A) (A) (A	(A) (A) (A) (A	(A) (A) (A)
	(A) (A) (A) (A	A) (A) (A) (A	.) (A) (A) (A	A) (A) (A)
	(A) (A) (A) (A	A) (A) (A) (A	.) (A) (A) (A	A) (A) (A)

(A) (A) (A) (A)(A) (A) (A) (A) (A) (A)The electronic state of the initial guess is 1-A.

Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. energy=1.00D-06. Requested convergence on No special actions if energy rises. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RHF) = -3049.18216743 A.U. after 15 cycles Convg = 0.8302D-08-V/T = 2.0017Population analysis using the SCF density. Orbital symmetries: (A)(A)(A)(A)

(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)
(12) (12) (12) (12) (12) (12) (12) (12)
(A)
$(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})(\mathbf{A})$
(A)
(A)
(A)
$\begin{array}{c} (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)$
(A)
(A)
(A) (A) (A) (A) (A) (A) (A)
The electronic state is 1-A.
Alpha occ. eigenvalues15.75088 -15.75084 -15.75023 -15.75015 -15.74633
Alpha occ. eigenvalues15.74624 -11.49845 -11.49838 -11.49679 -11.49667
Alpha occ. eigenvalues11.49597 -11.49591 -11.44399 -11.44398 -11.43842
Alpha occ. eigenvalues11.43830 -11.43004 -11.42998 -11.42821 -11.42815
Alpha occ. eigenvalues11.40729 -11.40726 -11.39819 -11.39819 -11.39439
Alpha occ. eigenvalues11.39425 -11.39100 -11.39097 -11.38849 -11.38846
Alpha occ. eigenvalues11.38650 -11.38646 -11.384/3 -11.384/2 -11.3/9/2
Alpha occ. eigenvalues11.3/969 -11.3/955 -11.3/955 -11.3/955 -11.3/956
Alpha occ. eigenvalues $-11.3/1/9 - 11.3/1/3 - 11.3/041 - 11.3/054 - 11.30/00$
Alpha occ. eigenvalues11.30701 -11.30700 -11.30704 -11.30345 -11.30340 Alpha occ. eigenvalues11.36513 -11.36511 -11.36471 -11.36468 -11.36399
Alpha occ eigenvalues11 36394 -11 36219 -11 36216 -11 36149 -11 36143
Alpha occ. eigenvalues11.35875 -11.35871 -11.32319 -11.32313 -11.31504
Alpha occ. eigenvalues11.31501 -11.31440 -11.31429 -11.31286 -11.31281
Alpha occ. eigenvalues11.31066 -11.31064 -11.30741 -11.30734 -1.47608
Alpha occ. eigenvalues1.47597 -1.45042 -1.45028 -1.44600 -1.44598
Alpha occ. eigenvalues1.34550 -1.34443 -1.33424 -1.33306 -1.32896
Alpha occ. eigenvalues1.32881 -1.27838 -1.27826 -1.27503 -1.27470
Alpha occ. eigenvalues1.26333 -1.26326 -1.25890 -1.25883 -1.22966
Alpha occ. eigenvalues1.22954 -1.22827 -1.22827 -1.20135 -1.20117
Alpha occ. eigenvalues1.19700 -1.19660 -1.19485 -1.19453 -1.19076
Alpha occ. eigenvalues1.19060 -1.18146 -1.18120 -1.17449 -1.17391
Alpha occ. eigenvalues1.16494 -1.16473 -1.13302 -1.13298 -1.12896
Alpha occ. eigenvalues1.12892 -1.12636 -1.12631 -1.06038 -1.06036
Alpha occ. eigenvalues1.05080 -1.05072 -1.04212 -1.04188 -1.04024
Alpha occ. eigenvalues $-1.039/1 - 1.03852 - 1.03814 - 1.02684 - 1.02679$
Alpha occ. eigenvalues $-0.99562 - 0.99407 - 0.995394 - 0.995386 - 0.99243$
Alpha occ. eigenvalues0.98999 -0.98998 -0.98880 -0.98880 -0.98889
Alpha occ. eigenvalues0.9000 -0.90306 -0.9/492 -0.9/402 -0.9/315
Alpha occ eigenvalues0.97502 -0.90070 -0.90050 -0.95740 -0.95752 Alpha occ eigenvalues0.93575 -0.93563 -0.80620 -0.80584 -0.88652
Alpha occ eigenvalues0.75575 -0.75505 -0.87020 -0.87584 -0.88032
Alpha occ eigenvalues0.85877 -0.85855 -0.85508 -0.85407 -0.8084//
Alpha occ. eigenvalues

Alpha	occ. eigenvalues	-0.82486	-0.82475	-0.82172	-0.82137	-0.81959
Alpha	occ. eigenvalues	-0.81944	-0.80653	-0.80617	-0.80424	-0.80409
Alpha	occ. eigenvalues	-0.79960	-0.79941	-0.79866	-0.79836	-0.79419
Alpha	occ. eigenvalues	-0.79408	-0.79190	-0.79163	-0.78524	-0.78510
Alpha	occ. eigenvalues	-0.78404	-0.78325	-0.78203	-0.78088	-0.77971
Alpha	occ. eigenvalues	-0.77966	-0.77560	-0.77535	-0.76965	-0.76950
Alpha	occ. eigenvalues	-0.75954	-0.75814	-0.75002	-0.74988	-0.74392
Alpha	occ. eigenvalues	-0.74358	-0.74083	-0.74069	-0.73975	-0.73942
Alpha	occ. eigenvalues	-0.73336	-0.73334	-0.73221	-0.73182	-0.72941
Alpha	occ. eigenvalues	-0.72896	-0.72617	-0.72607	-0.72505	-0.72498
Alpha	occ. eigenvalues	-0.72264	-0.72248	-0.71716	-0.71176	-0.70742
Alpha	occ. eigenvalues	-0.70652	-0.70188	-0.70103	-0.69421	-0.68977
Alpha	occ. eigenvalues	-0.68526	-0.68422	-0.67861	-0.67389	-0.66677
Alpha	occ. eigenvalues	-0.66619	-0.66054	-0.65860	-0.65342	-0.65264
Alpha	occ eigenvalues	-0 64990	-0 64707	-0 64308	-0 64160	-0.63742
Alpha	occ eigenvalues	-0.63666	-0.63308	-0.63154	-0.63102	-0.62911
Alpha	occ eigenvalues	-0.62858	-0.62781	-0 62475	-0 62222	-0.61801
Alpha	occ eigenvalues	-0.61765	-0.61241	-0.61078	-0 60814	-0 60772
Alpha	occ eigenvalues	-0 50364	_0 5020	_0 50015	_0 58075	-0 58036
Alpha	occ. eigenvalues	-0.59504	-0.59202	-0.59015	-0.50775	-0.50550
Alpha	occ. eigenvalues	-0.20073	-0.33377	-0.30440	0.20222	0.0000
Alpha	occ. eigenvalues	-0.49328	-0.4931/	-0.4909/	-0.40990	0.40929
Alpha	virt. eigenvalues	-0.4/901	-0.4/040	-0.4/141	-0.4099/	-0.404/2
Alpha	virt. eigenvalues	-0.09331	-0.09302	-0.00100	-0.05/45	-0.04694
Alpha	virt. eigenvalues	-0.04013	-0.04521	-0.04313	-0.03390	-0.03381
Alpha	virt. eigenvalues	-0.03221	-0.02677	-0.02484	-0.01903	-0.01/63
Alpha	virt. eigenvalues	-0.01260	-0.00873	-0.007/99	-0.00186	-0.00034
Alpha	virt. eigenvalues	0.00170	0.01132	0.03232	0.04732	0.05269
Alpha	virt. eigenvalues	0.05957	0.05971	0.06623	0.06991	0.0/401
Alpha	virt. eigenvalues	0.07405	0.08013	0.08023	0.09214	0.09332
Alpha	virt. eigenvalues	0.09642	0.09957	0.09972	0.10562	0.10808
Alpha	virt. eigenvalues	0.11008	0.11108	0.11261	0.11331	0.11912
Alpha	virt. eigenvalues	0.12028	0.12297	0.12396	0.12853	0.12904
Alpha	virt. eigenvalues	0.12953	0.13059	0.13218	0.13472	0.13771
Alpha	virt. eigenvalues	0.13907	0.14103	0.14186	0.14482	0.14509
Alpha	virt. eigenvalues	0.14682	0.14877	0.15002	0.15188	0.15244
Alpha	virt. eigenvalues	0.15529	0.15810	0.16049	0.16119	0.16121
Alpha	virt. eigenvalues	0.16255	0.16331	0.16666	0.16900	0.17241
Alpha	virt. eigenvalues	0.17474	0.17608	0.17750	0.18189	0.18247
Alpha	virt. eigenvalues	0.18286	0.18441	0.18507	0.18782	0.18789
Alpha	virt. eigenvalues	0.18905	0.19263	0.19363	0.19602	0.19740
Alpha	virt. eigenvalues	0.19765	0.19932	0.20419	0.20508	0.21098
Alpha	virt. eigenvalues	0.21246	0.21390	0.21575	0.21619	0.21690
Alpha	virt. eigenvalues	0.22012	0.22093	0.22390	0.22464	0.22483
Alpha	virt. eigenvalues	0.22885	0.22987	0.23196	0.23242	0.23770
Alpha	virt. eigenvalues	0.24017	0.24211	0.24383	0.24555	0.24618
Alpha	virt. eigenvalues	0.24737	0.24801	0.25335	0.25434	0.25515
Alpha	virt. eigenvalues	0.25721	0.25845	0.26132	0.26430	0.26443
Alnha	virt eigenvalues	0 26493	0 26770	0.26805	0 27074	0 27363
Alpha	virt eigenvalues	0.20493	0.28015	0.28155	0.28//0	0.28/00
	virt eigenvalues	0.27052	0.20013	0.20133	0.20449	0.20477
Alpha	virt eigenvelues	0.20330	0.20701	0.20075	0.20749	0.22004
Alaba	virt. cigenvalues	0.27471	0.29302	0.27130	0.29709	0.27731
Alpha	viit. eigenvalues	0.3034/	0.30419	0.304/3	0.30/44	0.30993
Alpha	virt. eigenvalues	0.31041	0.31/09	0.2170/	0.321/1	0.32402
Alpha	virt. eigenvalues	0.32368	0.32700	0.32722	0.328/0	0.32894
Alpha	virt. eigenvalues	0.33374	0.33413	0.33723	0.33799	0.338/2
Alpha	virt. eigenvalues	0.33938	0.34121	0.34220	0.34299	0.34/12
Alpha	virt. eigenvalues	0.35170	0.35338	0.35515	0.35661	0.35811
Alpha	virt. eigenvalues	0.35852	0.36105	0.36277	0.36357	0.36526
Alpha	virt. eigenvalues	0.36772	0.36833	0.37338	0.37479	0.37620
Alpha	virt. eigenvalues	0.37867	0.38097	0.38180	0.38241	0.38410
Alpha	virt. eigenvalues	0.38537	0.38578	0.38863	0.39104	0.39187
Alpha	virt. eigenvalues	0.39503	0.39779	0.39943	0.40312	0.40421

Alpha virt. eigenvalues	0.40705	0.41010	0.41151	0.41298	0.41509
Alpha virt. eigenvalues	0.41540	0.41853	0.41980	0.42295	0.42471
Alpha virt. eigenvalues	0.42474	0.42720	0.43032	0.43134	0.43309
Alpha virt. eigenvalues	0.43411	0.43652	0.43778	0.44063	0.44439
Alpha virt. eigenvalues	0.44518	0.44727	0.44960	0.45034	0.45369
Alpha virt. eigenvalues	0.45560	0.45844	0.46069	0.46123	0.46151
Alpha virt. eigenvalues	0.46351	0.46524	0.46593	0.46792	0.47413
Alpha virt. eigenvalues	0.47528	0.47845	0.47879	0.48061	0.48274
Alpha virt. eigenvalues	0.48562	0.48898	0.49426	0.49543	0.49663
Alpha virt. eigenvalues	0.49667	0.49902	0.50145	0.50405	0.50540
Alpha virt eigenvalues	0 50758	0 51013	0 51134	0 51169	0.51528
Alpha virt eigenvalues	0.51636	0.51912	0.52047	0.52319	0.52588
Alpha virt eigenvalues	0.51050	0.52842	0.52017	0.52315	0.52500
Alpha virt, eigenvalues	0.52700	0.52042	0.53981	0.53205	0.53427
Alpha virt. eigenvalues	0.55025	0.55334	0.55507	0.54175	0.54170
Alpha virt. eigenvalues	0.55025	0.55554	0.55507	0.55575	0.55055
Alpha virt. cigenvalues	0.50209	0.50520	0.57959	0.50702	0.57377
Alpha virt. eigenvalues	0.57575	0.57010	0.57050	0.36232	0.36575
Alpha virt. eigenvalues	0.50722	0.30700	0.30/10	0.39220	0.39340
Alpha virt. eigenvalues	0.59/33	0.59945	0.00180	0.00039	0.00/59
Alpha virt. eigenvalues	0.60986	0.61144	0.61269	0.61854	0.62084
Alpha virt. eigenvalues	0.62211	0.62447	0.62780	0.62935	0.63194
Alpha virt. eigenvalues	0.63424	0.63446	0.63749	0.63936	0.64115
Alpha virt. eigenvalues	0.64393	0.64596	0.64635	0.65179	0.65466
Alpha virt. eigenvalues	0.65794	0.66062	0.66169	0.66414	0.66633
Alpha virt. eigenvalues	0.66686	0.66836	0.67144	0.67297	0.67706
Alpha virt. eigenvalues	0.67835	0.68238	0.68621	0.68728	0.68791
Alpha virt. eigenvalues	0.69179	0.69189	0.69551	0.69590	0.70057
Alpha virt. eigenvalues	0.70622	0.70636	0.71069	0.71196	0.71750
Alpha virt. eigenvalues	0.71921	0.72246	0.72270	0.72556	0.72818
Alpha virt. eigenvalues	0.73124	0.73133	0.73575	0.73882	0.73968
Alpha virt. eigenvalues	0.74386	0.74707	0.74743	0.75460	0.75709
Alpha virt. eigenvalues	0.75967	0.76000	0.76771	0.76899	0.77451
Alpha virt. eigenvalues	0.77500	0.77853	0.78321	0.78683	0.78729
Alpha virt. eigenvalues	0.79126	0.80095	0.80108	0.80460	0.81081
Alpha virt. eigenvalues	0.81414	0.81601	0.82021	0.82660	0.82853
Alpha virt. eigenvalues	0.83223	0.83503	0.83878	0.84953	0.85425
Alpha virt. eigenvalues	0.85785	0.86277	0.86398	0.87373	0.88317
Alpha virt. eigenvalues	0.88361	0.88574	0.89227	0.89667	0.89926
Alpha virt. eigenvalues	0.90148	0.90585	0.91349	0.91483	0.91798
Alpha virt. eigenvalues	0.92350	0.92760	0.92972	0.93887	0.94374
Alpha virt. eigenvalues	0.94823	0.96183	0.96978	0.97136	0.97275
Alpha virt. eigenvalues	0.97432	0.98346	0.98655	0.99130	0.99769
Alpha virt. eigenvalues	1.00296	1.00628	1.00865	1.01814	1.02757
Alpha virt. eigenvalues	1.04318	1.05952	1.08030	1.09066	1.09234
Alpha virt. eigenvalues	1.09642	1.12297	1.13442	1.13620	1.14103
Alpha virt. eigenvalues	1.16232	1.16783	1.16892	1.18859	1.21355
Alpha virt. eigenvalues	1.21982	1.22293	1.22734	1.22892	1.22957
Alpha virt. eigenvalues	1.23305	1.23510	1.24306	1.24838	1.25693
Alpha virt, eigenvalues	1.25921	1.26932	1.27269	1.28373	1.28803
Alpha virt, eigenvalues	1.29143	1.31460	1.31718	1.31767	1.32328
Alpha virt eigenvalues	1 32673	1 33087	1 34621	1 35238	1 35996
Alpha virt eigenvalues	1.32073	1.335007	1.31021	1 38089	1 38657
Alpha virt eigenvalues	1.30033	1 38961	1.30027	1.30007	1 39895
Alpha virt eigenvalues	1 40550	1 40710	1 41287	1 41/106	1 41830
Alpha virt aiganvaluas	1 / 2011	1 / 2201	1.71207	1 / 2700	1 / 0725
Alpha virt aigenvalues	1.42011	1.42371	1.42010	1.42709	1.42/33
Alpha virt. eigenvalues	1.43241	1.43410	1.4.001/	1.44272	1.44410
Alpha virt. eigenvalues	1.44002	1.44/20 1.46225	1.44944	1.43039	1.43420
Alpha virt. eigenvalues	1.43839	1.40333	1.40048	1.400/3	1.4/340
Alpha virt. eigenvalues	1.4/001	1.48010	1.483/9	1.48542	1.48933
Alpha virt. eigenvalues	1.49529	1.49693	1.49/49	1.50642	1.50/30
Alpha virt. eigenvalues	1.51148	1.51167	1.51586	1.51720	1.52164
Alpha virt. eigenvalues	1.52178	1.52416	1.52603	1.53687	1.53768

Alpha virt. eigenvalues	1.54347	1.54387	1.55288	1.55421	1.55820
Alpha virt. eigenvalues	1.56069	1.56622	1.56904	1.57221	1.57494
Alpha virt. eigenvalues	1.58083	1.58523	1.58545	1.58863	1.59323
Alpha virt. eigenvalues	1.59603	1.60139	1.60507	1.60771	1.61000
Alpha virt. eigenvalues	1.61110	1.61464	1.62028	1.62308	1.63412
Alpha virt. eigenvalues	1.63742	1.64264	1.64439	1.64682	1.65232
Alpha virt. eigenvalues	1.65442	1.66726	1.67039	1.67645	1.68252
Alpha virt. eigenvalues	1.68797	1.69084	1.69282	1.70001	1.70716
Alpha virt. eigenvalues	1.71119	1.71767	1.72397	1.72433	1.74789
Alpha virt. eigenvalues	1.75517	1.76024	1.76056	1.77146	1.77785
Alpha virt. eigenvalues	1.78425	1.79487	1.80623	1.80675	1.81787
Alpha virt. eigenvalues	1.81862	1.82416	1.82621	1.84087	1.84388
Alpha virt. eigenvalues	1.85199	1.85368	1.86986	1.87814	1.88056
Alpha virt. eigenvalues	1.88411	1.89587	1.90192	1.90529	1.92132
Alpha virt. eigenvalues	1.95009	1.95599	1.95696	1.97487	2.04621
Alpha virt. eigenvalues	2.05814	2.06451	2.06695	2.09298	2.09788
Alpha virt. eigenvalues	2.16137	2.17473	11.53991	11.57164	
~					

Condensed to atoms (all electrons):

Mulliken atomic charges:

		1
1	С	-0.252190
2	Н	0.250828
3	С	0.216690
4	С	-0.669704
5	Н	0.265583
6	Н	0.246625
7	н	0.241505
8	С	0.107307
9	Ĉ	0.209248
10	С	-0.372072
11	Č	-0.306830
12	C	-0.435532
13	C	-0 386803
14	c	-0 219147
15	C	-0 594735
16	н	0.206865
17	н	0.200005
18	н	0.194467
10	C	-0.609538
20	н	0 196345
21	н	0.216148
$\frac{21}{22}$	н	0.210140
22	C	0.231423
23	C	0.231423
24	с u	-0.079570
25	и П	0.270324
20	и П	0.231100
21	П	0.241833
20	C	0.111093
29	C	0.192873
21	C	-0.340632
21	C	-0.203533
32	C	-0.348430
22	C	-0.392404
34 25	C	-0.218081
35		-0.605227
30	H	0.196501
3/	H	0.208089
38	H	0.2138/2
39	U	-0.6133/1
40	H	0.189681
41	H	0.211336
42	Η	0.209494

12 C	0 222424
45 C	0.222424
44 C	-0.6/0828
45 H	0.267531
46 H	0.247170
47 H	0.239748
48 C	0 169735
10 C	0.211035
49 C	0.211035
50 C	-0.359286
51 C	-0.321570
52 C	-0.232270
53 C	-0.402102
54 C	-0 188631
55 C	0.600123
55 C	-0.000123
50 H	0.220378
57 H	0.212517
58 H	0.184616
59 C	-0.625848
60 H	0 193974
61 U	0.216840
	0.210849
62 H	0.209332
63 H	0.275532
64 H	0.278348
65 H	0.505514
66 H	0 300290
67 U	0.225502
07 II (0 II	0.223392
68 H	0.31/010
69 H	0.269346
70 H	0.351199
71 H	0.308607
72 H	0 202696
72 II 73 II	0.202070
75 П 74 Ц	0.270343
74 H	0.303183
75 H	0.265057
76 H	0.311626
77 H	0.179088
78 N	-0.437361
70 N	0.471569
79 IN	-0.4/1308
80 N	-0.482800
81 Tl	0.843670
82 Tl	0.843656
83 C	0.107556
84 C	0 209256
04 C	0.207250
	-0.372002
86 C	-0.306827
87 C	-0.435517
88 C	-0.386861
89 C	-0.251924
90 H	0.250517
91 C	0.216378
$\frac{1}{0}$	0.210370
92 C	-0.070271
93 H	0.265719
94 H	0.246739
95 H	0.241322
96 C	-0.219981
97 C	-0 594918
09 U	0.274910
70 H	0.200827
99 H	0.207902
100 H	0.194854
101 C	-0.609052
102 H	0.196359
103 H	0.215704
104 H	0 206548
101 11	0.200040

105 C	0.231597
106 C	-0.679641
107 H	0.270587
108 H	0.251188
109 H	0.241371
110 C	0.111142
111 C	0.192365
112 C	-0.341176
113 C	-0.265516
114 C	-0.347540
115 C	-0.392533
116 C	-0.218126
117 C	-0.604925
118 H	0.196/19
110 II 110 U	0.190419
119 II 120 U	0.208037
120 П 121 С	0.213694
121 C	-0.013457
122 H	0.189680
123 H	0.211352
124 H	0.209444
125 C	0.222759
126 C	-0.670923
127 H	0.267528
128 H	0.247251
129 H	0.239643
130 C	0.170366
131 C	0.209987
132 C	-0.358604
133 C	-0 321508
155 0	0.021000
134 C	-0 232295
134 C	-0.232295
134 C 135 C 136 C	-0.232295 -0.402321
134 C 135 C 136 C 137 C	-0.232295 -0.402321 -0.189097 0.600182
134 C 135 C 136 C 137 C 138 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266
134 C 135 C 136 C 137 C 138 H 130 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347
134 C 135 C 136 C 137 C 138 H 139 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347
134 C 135 C 136 C 137 C 138 H 139 H 140 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824
134 C 135 C 136 C 137 C 138 H 139 H 140 H 140 H 141 C 142 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 144 H 145 H 145 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515 0.300311
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 149 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515 0.300311 0.225709
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 149 H 150 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.2078318 0.505515 0.300311 0.225709 0.317645
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 149 H 150 H 151 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515 0.300311 0.225709 0.317645 0.269357
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 149 H 150 H 151 H 152 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515 0.300311 0.225709 0.317645 0.269357 0.350444
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 149 H 150 H 151 H 152 H 153 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.278318 0.505515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 149 H 150 H 151 H 152 H 153 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.2093515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 145 H 145 H 146 H 147 H 148 H 147 H 150 H 151 H 152 H 153 H 154 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.2093515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 144 H 145 H 145 H 146 H 147 H 148 H 150 H 151 H 152 H 153 H 154 H 155 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337 0.303414
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 143 H 144 H 144 H 145 H 145 H 146 H 147 H 148 H 150 H 151 H 152 H 153 H 154 H 155 H 155 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.278318 0.505515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337 0.303414 0.265042
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 144 H 144 H 145 H 145 H 145 H 146 H 147 H 148 H 150 H 151 H 151 H 152 H 155 H 155 H 156 H 157 H 158 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.209350 0.275485 0.209350 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337 0.303414 0.265042 0.311615
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 144 H 144 H 145 H 144 H 145 H 145 H 150 H 151 H 152 H 153 H 155 H 155 H 156 H 157 H 158 H	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.209350 0.275485 0.2093515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337 0.303414 0.265042 0.311615 0.179342
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 144 H 144 H 145 H 145 H 146 H 147 H 148 H 147 H 150 H 151 H 152 H 153 H 155 H 155 H 156 H 157 H 158 H 159 H 160 N	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.209350 0.275485 0.2093515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337 0.303414 0.265042 0.311615 0.179342 -0.436492
134 C 135 C 136 C 137 C 138 H 139 H 140 H 141 C 142 H 144 H 144 H 145 H 145 H 146 H 147 H 148 H 147 H 148 H 150 H 151 H 152 H 153 H 155 H 155 H 155 H 157 H 158 H 159 H 160 N	-0.232295 -0.402321 -0.189097 -0.600182 0.220266 0.212347 0.184868 -0.625824 0.193940 0.216985 0.209350 0.275485 0.209350 0.275485 0.209350 0.275485 0.209350 0.275485 0.2093515 0.300311 0.225709 0.317645 0.269357 0.350444 0.308662 0.202655 0.276337 0.303414 0.265042 0.311615 0.179342 -0.436492 -0.436492

162 N -0.482849 Sum of Mulliken atomic charges = 2.00000 Mulliken charges with hydrogens summed into heavy atoms:

1 1 C -0.001362

3 C	0 216690
1 C	0.084000
+ C	0.004009
	0.107507
90	0.209248
10 C	-0.096539
11 C	-0.028482
12 C	0.069983
13 C	-0.086513
14 C	0.006444
15 C	0.014533
19 C	0.009087
23 C	0 231423
23 C 24 C	0.084104
24 C	0.004104
20 C	0.111093
29 C	0.1928/3
30 C	-0.023842
31 C	0.003991
32 C	0.002743
33 C	-0.083856
34 C	-0.015385
35 C	0.013236
39 C	-0.002860
43 C	0 222424
43 C	0.0222424
44 C	0.063022
40 C	0.109/33
49 C	0.211035
50 C	-0.082741
51 C	-0.018387
52 C	0.032788
53 C	-0.090476
54 C	-0.009543
55 C	0.017389
59 C	-0.005693
78 N	-0.437361
70 N	0.437561
20 N	-0.471308
00 IN 01 TI	-0.482800
81 11	0.843670
82 TI	0.843656
83 C	0.107556
84 C	0.209256
85 C	-0.096577
86 C	-0.028508
87 C	0.069998
88 C	-0.086550
89 C	-0.001407
91 C	0 216378
$\frac{91}{02}$ C	0.083500
92 C	0.005709
90 C	0.003728
97 C	0.014664
101 C	0.009558
105 C	0.231597
106 C	0.083506
110 C	0.111142
111 C	0.192365
112 C	-0.023531
113 C	0.003840
114 C	0.002904
115 C	0.002904
115 C	-0.0030/1
110 C	-0.0134/1
11/ C	0.013425
121 C	-0.002982
125 C	0.222759

126 C 0.083499 130 C 0.170366 131 C 0.209987 132 C -0.082267 133 C -0.018094 134 C 0.032746 135 C -0.090707 136 C -0.009755 137 C 0.017299 141 C -0.005549 160 N -0.436492 161 N -0.471150 162 N -0.482849 Sum of Mulliken charges with hydrogens summed into heavy atoms = 2.00000Electronic spatial extent (au): <R**2>= 55202.9585 2.0000 electrons Charge= Dipole moment (field-independent basis, Debye): X=-0.0031 Y= -0.0015 Z= -0.0048 Tot= 0.0059 Quadrupole moment (field-independent basis, Debye-Ang): -298.8042 YY= -390.5274 ZZ= -383.5218 XX= -6.0084 XZ= XY= 31.7039 YZ= -0.4827 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX =58.8136 YY= -32.9096 ZZ= -25.9040-6.0084 XZ= XY= 31.7039 YZ= -0.4827 Octapole moment (field-independent basis, Debye-Ang**2): -0.0861 YYY= -0.0239 XYY= XXX= -0.1594 ZZZ= -0.0297 0.0396 XXZ= -0.0790 XZZ= XXY= -0.0555 YZZ= -0.0228 YYZ= -0.0745 XYZ= -0.0551 Hexadecapole moment (field-independent basis, Debye-Ang**3): -20676.0528 ZZZZ= XXXX= -31841.8220 YYYY= -14703.6030 XXXY= -663.8631 XXXZ= 371.9583 YYYX= 172.2126 YYYZ= 264.2004 ZZZX= 602.2799 ZZZY= -245.5156 XXYY= -9057.2627 XXZZ= -7206.0783 YYZZ= -5764.0171 138.3847 YYXZ= -319.5868 ZZXY= XXYZ= 78.7356 N-N= 1.483812924520D+04 E-N=-3.672155847758D+04 KE= 3.044102641575D+03 ****************************Gaussian NBO Version 3.1***************************** NATURAL ATOMIC ORBITAL AND NATURAL BOND ORBITAL ANALYSIS ****************************Gaussian NBO Version 3.1***************************** /RESON /: Allow strongly delocalized NBO set

Analyzing the SCF density

Job title: CSD ENTRY ofm27p-1

Storage needed: 2371396 in NPA (33481086 available)

NATURAL POPULATIONS: Natural atomic orbital occupancies

NA	O A	tom N	o lang Tyj	pe(AO) O	ccupancy	Energy
1	С	1 S	Cor(1S)	1.99893	-11.27205	
2	С	1 S	Val(2S)	0.96186	-0.36708	
3	С	1 S	Ryd(3S)	0.00101	1.58822	
4	С	1 px	Val(2p)	1.11642	-0.24400	
5	С	1 px	Ryd(3p)	0.01288	0.55384	
6	С	1 py	Val(2p)	1.07397	-0.26180	
7	С	1 py	Ryd(3p)	0.00747	0.50405	
8	С	1 pz	Val(2p)	1.14276	-0.23518	
9	С	1 pz	Ryd(3p)	0.01640	0.57488	
10	Η	2 S	Val(1S)	0.79141	0.08711	

11	Н	2 S	Ryd(2S)	0.00188	1.10628
12	С	3 S	Cor(1S)	1.99910	-11.35481
13	č	35	Val(2S)	0.86100	-0.30022
14	C	35	$\operatorname{Pud}(3S)$	0.00100	1 14436
14	C	2	$\operatorname{Kyu}(33)$	0.00388	0.15205
15	C	3 px	val(2p)	0.90800	-0.15295
16	С	3 px	Ryd(3p)	0.00782	0.63484
17	С	3 py	Val(2p)	0.79617	-0.19456
18	С	3 py	Ryd(3p)	0.00875	0.53807
19	С	3 pz	Val(2p)	0.90593	-0.17738
20	С	3 pz	Ryd(3p)	0.00770	0.58516
21	С	4 S	Cor(1S)	1 99921	-11 18998
22	Ċ	4 S	Val(2S)	1 02168	-0 29787
22	c	15	$\operatorname{Pud}(3S)$	0.00048	1 27553
23	C	4.5	$\operatorname{Kyu}(33)$	1 24901	0.10020
24	C	4 px	var(2p)	1.24601	-0.19929
25	C	4 px	Ryd(3p)	0.00333	0.28232
26	С	4 py	Val(2p)	1.19165	-0.19665
27	С	4 py	Ryd(3p)	0.00229	0.30510
28	С	4 pz	Val(2p)	1.11551	-0.20203
29	С	4 pz	Ryd(3p)	0.00359	0.28427
20		5 0	XX 1/ 10)	0.70006	0.11000
30	Н	28	Val(1S)	0./8906	0.11082
31	Н	5 8	Ryd(2S)	0.00177	1.02062
32	Н	6 S	Val(1S)	0.78977	0.09810
33	Н	6 S	Ryd(2S)	0.00118	0.94870
24	тт	7 6	$\mathbf{V}_{\mathbf{c}}\mathbf{l}(1\mathbf{C})$	0 70152	0.00497
54 25	п	13	var(15)	0.79132	0.09487
35	Н	78	Ryd(28)	0.00119	0.95575
36	С	8 S	Cor(1S)	1.99883	-11.29468
37	С	8 S	Val(2S)	0.84033	-0.23918
38	С	8 S	Ryd(3S)	0.00213	1.28228
39	С	8 px	Val(2p)	0.88772	-0.13756
40	С	8 px	Rvd(3p)	0.01529	0.77112
41	Ĉ	8 nv	Val(2n)	1 06946	-0 19183
12	č	8 py	$\operatorname{Rvd}(3n)$	0.00611	0.60524
12	c	8 pz	$V_{al}(2p)$	1.02354	0.22612
43	C	8 pz	$\operatorname{Rvd}(3n)$	0.00968	0 53457
	C	0 pz	Rya(5p)	0.00700	0.55157
45	С	9 S	Cor(1S)	1.99901	-11.25586
46	С	9 S	Val(2S)	0.89396	-0.26245
47	С	9 S	Ryd(3S)	0.00201	1.34440
48	С	9 px	Val(2p)	1.05920	-0.17506
49	С	9 px	Ryd(3p)	0.00814	0.66532
50	С	9 py	Val(2p)	1.06608	-0.18629
51	С	9 pv	Rvd(3p)	0.01044	0.78458
52	Ĉ	9 nz	Val(2n)	0.97809	-0 19729
53	C	9 nz	Rvd(3n)	0.00815	0 59846
00	U	, hr	nya(op)	0.00010	0.00010
54	C	10 S	Cor(1S)	1.99917	-11.22975
55	С	10 S	Val(2S)	0.93608	-0.25868
56	С	10 S	Ryd(3S)	0.00123	1.23450
57	С	10 px	Val(2p)	1.10502	-0.14090
58	С	10 px	Ryd(3p)	0.00767	0.53040
59	С	10 py	Val(2p)	1.10607	-0.14228
60	С	10 pv	Ryd(3p)	0.00542	0.61848
61	Ċ	10 pz	Val(2n)	0.99658	-0.20457
62	Ċ	10 pz	Ryd(3p)	0.00473	0.44020
63	С	11 S	Cor(1S)	1.99927	-11.22864
_			()		

64	$\begin{array}{c} C \\ C $	11 S	Val(2S)	0.93766	-0.24601
65		11 S	Ryd(3S)	0.00139	1.15270
66		11 px	Val(2p)	1.15098	-0.07987
67		11 px	Ryd(3p)	0.00767	0.56618
68		11 py	Val(2p)	1.04558	-0.15532
69		11 py	Ryd(3p)	0.00513	0.49905
70		11 pz	Val(2p)	1.00132	-0.20526
71		11 pz	Ryd(3p)	0.00544	0.45228
72 73 74 75 76 77 78 79 80		11 pz 12 S 12 S 12 S 12 px 12 px 12 px 12 py 12 py 12 pz 12 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	1.99869 0.87488 0.00097 1.05697 0.00547 1.11289 0.00799 0.99086 0.00622	-11.18199 -0.08383 1.16680 -0.14698 0.58273 0.02650 0.45816 -0.19836 0.50797
81 82 83 84 85 86 87 88 89	$\begin{array}{c} C \\ C $	13 S 13 S 13 S 13 px 13 px 13 py 13 py 13 pz 13 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99915\\ 0.92837\\ 0.00129\\ 1.09602\\ 0.00593\\ 1.09939\\ 0.00857\\ 1.04271\\ 0.00534 \end{array}$	-11.22924 -0.24426 1.29689 -0.14647 0.64182 -0.14630 0.51635 -0.21043 0.54299
90 91 92 93 94 95 96 97 98	C C C C C C C C C C	 14 S 14 S 14 S 14 px 14 px 14 py 14 py 14 pz 14 pz 	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	1.99908 0.92029 0.00056 1.12586 0.01017 1.00669 0.00534 1.04396 0.00423	-11.20315 -0.22427 1.61746 -0.10578 0.50332 -0.14877 0.50625 -0.14629 0.57121
99	C	15 S	Cor(1S)	1.99932	-11.14347
100		15 S	Val(2S)	1.00955	-0.22887
101		15 S	Ryd(3S)	0.00068	1.25091
102		15 px	Val(2p)	1.21737	-0.13504
103		15 px	Ryd(3p)	0.00289	0.28576
104		15 py	Val(2p)	1.21073	-0.13170
105		15 py	Ryd(3p)	0.00357	0.32907
106		15 pz	Val(2p)	1.06666	-0.14271
107		15 pz	Ryd(3p)	0.00339	0.31558
108 109 110 111	H H H	16 S 16 S 17 S 17 S	Val(1S) Ryd(2S) Val(1S) Ryd(2S)	0.81864 0.00159 0.81555 0.00132	0.13188 0.95180 0.13883 0.94405
112	H	18 S	Val(1S)	0.82517	0.12471
113	H	18 S	Ryd(2S)	0.00153	0.98833
114	C	19 S	Cor(1S)	1.99936	-11.14315
115	C	19 S	Val(2S)	1.00192	-0.21980
116	C	19 S	Ryd(3S)	0.00064	1.29075
117	C	19 px	Val(2p)	1.17466	-0.14137

118 119	C C	19 px	Ryd(3p) Val(2p)	0.00288	0.44358
120	C	19 py 19 pv	Rvd(3n)	0.00406	0 42527
120	C	19 py	Val(2p)	1 17746	_0 13/99
121	C	10 pz	$\operatorname{Prod}(2p)$	0.00401	0.40581
122	C	19 pz	Kyu(5p)	0.00401	0.40501
122	ц	20 5	$V_{0}(1S)$	0.83176	0 11545
123	п	20 5	Val(15)	0.05170	1 1 2 2 2 2
124	п	20 3	Kyu(25)	0.00165	1.13222
105	тт	21 0	$V_{2}(10)$	0.01421	0.12000
125	H	21 5	Val(1S)	0.81431	0.13999
126	Н	21 S	Ryd(2S)	0.00130	1.00321
105		aa a	TT 1/ 40	0.00056	0.40400
127	H	22 S	Val(IS)	0.82356	0.12103
128	Η	22 S	Ryd(2S)	0.00200	1.07722
129	С	23 S	Cor(1S)	1.99910	-11.35409
130	С	23 S	Val(2S)	0.86216	-0.30181
131	С	23 S	Ryd(3S)	0.00599	1.17906
132	С	23 px	Val(2p)	0.94897	-0.16292
133	С	23 px	Ryd(3p)	0.00762	0.61354
134	С	23 py	Val(2p)	0.83456	-0.18183
135	С	23 py	Ryd(3p)	0.00985	0.56420
136	С	23 pz	Val(2p)	0.82173	-0.17730
137	С	23 pz	Rvd(3p)	0.00735	0.56772
		1	J < 1/		
138	С	24 S	Cor(1S)	1.99921	-11.18567
139	Ċ	24 S	Val(2S)	1.01945	-0.29248
140	Č	24 S	Rvd(3S)	0.00052	1 30306
141	c	24 nv	Val(2n)	1 08138	-0 20344
1/2	c	24 px 24 px	$P_{vd}(2p)$	0.00417	0.26943
142	C	24 px 24 py	Val(2p)	1 23633	0.20045
143	C	24 py	Var(2p) Pud(2p)	0.00268	-0.19404
144	C	24 py	Kyu(3p)	0.00208	0.28121
145	C	24 pz	val(2p)	1.24212	-0.19560
146	C	24 pz	Ryd(3p)	0.00273	0.32972
1 47	тт	25 G	V 1(10)	0.70500	0.11765
14/	H	25 5	Val(1S)	0.78528	0.11/65
148	н	25 8	Ryd(28)	0.00164	1.02729
1.40	тт	26.0	V 1(10)	0 70020	0.10460
149	H	26 S	Val(1S)	0.78838	0.10460
150	Н	26 S	Ryd(2S)	0.00122	0.95665
1.5.1		27 G	W 1(10)	0.70200	0.00100
151	H	27 S	Val(IS)	0.79309	0.09182
152	Η	27 S	Ryd(2S)	0.00141	1.02298
150	~	2 0 G	G (10)	1 00007	11 001 60
153	C	28 S	Cor(1S)	1.99887	-11.28162
154	C	28 S	Val(2S)	0.84282	-0.22953
155	С	28 S	Ryd(3S)	0.00213	1.25351
156	С	28 px	Val(2p)	1.03844	-0.21037
157	С	28 px	Ryd(3p)	0.00821	0.58847
158	С	28 py	Val(2p)	1.00248	-0.15896
159	С	28 py	Ryd(3p)	0.00740	0.70382
160	С	28 pz	Val(2p)	0.95165	-0.15270
161	С	28 pz	Ryd(3p)	0.01203	0.71391
162	С	29 S	Cor(1S)	1.99909	-11.24637
163	С	29 S	Val(2S)	0.89525	-0.25036
164	С	29 S	Ryd(3S)	0.00166	1.32968
165	С	29 px	Val(2p)	0.98873	-0.17977
166	С	29 px	Ryd(3p)	0.00867	0.61704
167	С	29 py	Val(2p)	1.04083	-0.15566
168	С	29 pv	Ryd(3p)	0.00723	0.66828
169	С	29 pz	Val(2p)	1.04026	-0.16926
			× 1 /		

170	С	29	pz	Ryd(3p)	0.00961	0.71487
171	С	30	S	Cor(1S)	1.99902	-11.18389
172	Ĉ	30	S	Val(2S)	0.89533	-0 14333
173	c	30	S	Pud(3S)	0.00082	1 17866
174	C	30	D DV	Val(2n)	1.01066	0.15725
174	C	20	рх	var(2p)	0.00250	-0.13723
1/5	C	30	рх	Ryd(3p)	0.00358	0.48237
176	С	30	ру	Val(2p)	1.13809	-0.05310
177	С	30	ру	Ryd(3p)	0.00844	0.38633
178	С	30	pz	Val(2p)	1.06352	-0.15371
179	С	30	pz	Ryd(3p)	0.00401	0.60754
180	С	31	S	Cor(1S)	1 99930	-11 21043
181	Ĉ	31	ŝ	Val(2S)	0.93314	-0.21601
101	C	21	S C	$\operatorname{Pud}(2S)$	0.00002	1.00451
102	C	21	5	$\operatorname{Kyu}(33)$	1.00262	0.17061
105	C	21	рх	var(2p)	1.00505	-0.17001
184	C	31	рх	Ryd(3p)	0.00445	0.43618
185	С	31	ру	Val(2p)	1.07636	-0.12849
186	С	31	ру	Ryd(3p)	0.00569	0.45170
187	С	31	pz	Val(2p)	1.11755	-0.07846
188	С	31	pz	Ryd(3p)	0.00613	0.47506
180	C	32	S	Cor(1S)	1 00015	-11 19673
109	C	22	5 6	$V_{\rm el}(2S)$	0.01255	-11.19075
190	C	32	3 0	Val(2S)	0.91255	-0.10304
191	C	32	3	Ryd(35)	0.00067	1.09116
192	C	32	рх	Val(2p)	1.01505	-0.15677
193	С	32	px	Ryd(3p)	0.00597	0.41362
194	С	32	ру	Val(2p)	1.05668	-0.12009
195	С	32	ру	Ryd(3p)	0.00459	0.49367
196	С	32	pz	Val(2p)	1.08833	-0.06421
197	С	32	pz	Ryd(3p)	0.00686	0.41796
108	C	33	S	Cor(1S)	1 00018	11 21233
100	C	33	S S	$V_{\rm ol}(2S)$	0.02214	0.22080
199	C	22	3 0	Val(2S)	0.92214	-0.22080
200	C	33	3	Ryd(35)	0.00108	1.22010
201	C	33	рх	Val(2p)	1.03973	-0.20267
202	С	33	рх	Ryd(3p)	0.00596	0.48339
203	С	33	ру	Val(2p)	1.15018	-0.08704
204	С	33	ру	Ryd(3p)	0.00758	0.65136
205	С	33	pz	Val(2p)	1.06724	-0.18083
206	С	33	pz	Ryd(3p)	0.00603	0.60472
			1			
207	С	34	S	Cor(1S)	1.99922	-11.21822
208	С	34	S	Val(2S)	0.94685	-0.27348
209	С	34	S	Ryd(3S)	0.00058	1.60318
210	С	34	рх	Val(2p)	1.00594	-0.15481
211	С	34	px	Rvd(3p)	0.00377	0.48577
212	Ċ	34	nv	Val(2n)	1 08159	-0 14814
212	C	34	PJ DV	Pud(3n)	0.00805	0.63338
213	C	24	РУ	$V_{0}(3p)$	1.09490	0.05558
214	C	34 34	pz pz	Val(2p) Rvd(3p)	0.00665	0.42957
			r	J = (= F)		
216	С	35	S	Cor(1S)	1.99931	-11.13756
217	С	35	S	Val(2S)	1.01098	-0.22442
218	С	35	S	Ryd(3S)	0.00059	1.23917
219	С	35	рх	Val(2p)	1.20587	-0.12728
220	С	35	px	Rvd(3n)	0.00357	0.32649
221	č	35	r" nv	Val(2n)	1 08910	-0 13160
221	c	35	РУ nv	$\operatorname{Rvd}(2p)$	0.00212	0.31076
222	C	25	РУ 107	$V_{0}(2p)$	1 10755	0.51020
223		33 25	μz	v ar(2p)	1.17/33	-0.12097
224	U	22	pz	куа(эр)	0.00315	0.30823

225	H	36 S	Val(1S)	0.82602	0.12908
226	H	36 S	Ryd(2S)	0.00159	0.97989
227	H	37 S	Val(1S)	0.81581	0.14498
228	H	37 S	Ryd(2S)	0.00133	0.95319
229	H	38 S	Val(1S)	0.81484	$0.14803 \\ 0.94508$
230	H	38 S	Ryd(2S)	0.00140	
231 232 233 234 235 236 237 238 239	C C C C C C C C C C	39 S 39 S 39 S 39 p 39 p 39 p 39 p 39 p 39 p 39 p	Cor(1S) Val(2S) Ryd(3S) Val(2p) K Ryd(3p) Val(2p) K Ryd(3p) Val(2p) K Val(2p) K Val(2p) K Val(2p) K Val(3p)	$\begin{array}{c} 1.99933\\ 1.00867\\ 0.00076\\ 1.08397\\ 0.00496\\ 1.20378\\ 0.00374\\ 1.21023\\ 0.00295 \end{array}$	-11.15296 -0.23427 1.24935 -0.15863 0.53590 -0.13693 0.36585 -0.14001 0.46601
240	H	40 S	Val(1S)	0.83655	$0.10713 \\ 1.10801$
241	H	40 S	Ryd(2S)	0.00170	
242	H	41 S	Val(1S)	0.81644	0.13023
243	H	41 S	Ryd(2S)	0.00148	0.98739
244	H	42 S	Val(1S)	0.82081	0.12650
245	H	42 S	Ryd(2S)	0.00161	1.00927
246 247 248 249 250 251 252 253 254	C C C C C C C C C C	43 S 43 S 43 S 43 p 43 p 43 p 43 p 43 p 43 p	Cor(1S) Val(2S) Ryd(3S) X Val(2p) X Ryd(3p) Y Val(2p) Y Ryd(3p) Z Val(2p) Z Ryd(3p)	$\begin{array}{c} 1.99909\\ 0.86016\\ 0.00600\\ 0.74324\\ 0.00859\\ 0.98410\\ 0.00755\\ 0.87663\\ 0.00848\\ \end{array}$	-11.35547 -0.30019 1.14807 -0.19945 0.52761 -0.20557 0.67900 -0.12188 0.59986
255 256 257 258 259 260 261 262 263	C C C C C C C C C C	44 S 44 S 44 P 44 p 44 p 44 p 44 p 44 p	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Z Ryd(3p)	$\begin{array}{c} 1.99921\\ 1.02112\\ 0.00051\\ 1.22623\\ 0.00179\\ 1.14573\\ 0.00426\\ 1.18567\\ 0.00312 \end{array}$	-11.19041 -0.29796 1.28171 -0.19376 0.34341 -0.20379 0.30051 -0.20297 0.25621
264	H	45 S	Val(1S)	0.78619	0.11333
265	H	45 S	Ryd(2S)	0.00161	1.01208
266	H	46 S	Val(1S)	0.79046	$0.10100 \\ 0.95458$
267	H	46 S	Ryd(2S)	0.00114	
268	H	47 S	Val(1S)	0.79155	0.09297
269	H	47 S	Ryd(2S)	0.00122	0.98862
270 271 272 273 274	C C C C C	48 S 48 S 48 S 48 p 48 p	Cor(1S) Val(2S) Ryd(3S) Val(2p) K Val(2p) K Ryd(3p)	1.99888 0.84005 0.00221 1.07657 0.00627	-11.29133 -0.23402 1.27263 -0.19916 0.60824

275	С	48 nv	Val(2n)	0 89827	-0 13605
276	C	18 py	$\operatorname{Rvd}(3n)$	0.00816	0.66725
270	C	40 py	Val(2p)	1 00999	-0 19723
277	C	40 pz	Val(2p) Pud(2p)	0.01202	0.75660
210	C	48 pz	Kyd(Sp)	0.01505	0.73000
279	С	19 S	Cor(1S)	1 99907	-11 24745
280	C	40 S	$V_{\rm el}(2S)$	0.80313	0.25013
200	C	49 3	val(2S)	0.09313	-0.23013
281	C	49 5	Kyd(3S)	0.00171	1.32700
282	C	49 px	Val(2p)	1.04443	-0.1/918
283	С	49 px	Ryd(3p)	0.00929	0.77333
284	С	49 py	Val(2p)	1.04011	-0.17592
285	С	49 py	Ryd(3p)	0.00771	0.62753
286	С	49 pz	Val(2p)	1.01875	-0.17475
287	С	49 pz	Ryd(3p)	0.00801	0.61591
200	C	50 0	G (10)	1 00010	11 01100
288	C	50 5	Cor(1S)	1.99918	-11.21129
289	С	50 S	Val(2S)	0.93155	-0.22962
290	С	50 S	Ryd(3S)	0.00095	1.18040
291	С	50 px	Val(2p)	1.08404	-0.14323
292	С	50 px	Rvd(3p)	0.00532	0.51336
293	Ċ	50 nv	Val(2n)	1 04000	-0 15714
201	C	50 py	\mathbf{P}	0.00481	0.10/19
294	C	50 py	Kyu(3p)	1.00100	0.49400
295	C	50 pz	Val(2p)	1.08180	-0.13480
296	С	50 pz	Ryd(3p)	0.00644	0.42841
297	С	51 S	Cor(1S)	1 99924	-11 20373
298	č	51 \$	Val(2S)	0.92674	-0.20259
200	C	51 6	$\operatorname{Pud}(2S)$	0.02074	1.07607
299	C	51 5	Kyd(55)	0.00073	1.07607
300	C	51 px	Val(2p)	1.03213	-0.15114
301	С	51 px	Ryd(3p)	0.00441	0.46321
302	С	51 py	Val(2p)	1.08880	-0.11276
303	С	51 py	Ryd(3p)	0.00677	0.39913
304	С	51 pz	Val(2p)	1.06578	-0.11621
305	C	51 pz	Ryd(3p)	0.00537	0.42501
306	С	52 S	Cor(1S)	1.99931	-11.22261
307	С	52 S	Val(2S)	0.93789	-0.23607
308	С	52 S	Rvd(3S)	0.00080	1.09222
309	С	52 px	Val(2n)	1.10719	-0.12363
310	č	52 pr	Rvd(3n)	0.00753	0 56947
311	c	52 px	Val(2p)	1.06525	0.13207
212	C	52 py	var(2p)	0.00572	-0.13207
312	C	52 py	Kyd(Sp)	0.00572	0.44094
313	C	52 pz	Val(2p)	1.02510	-0.16868
314	С	52 pz	Ryd(3p)	0.00495	0.45743
315	С	53 S	Cor(1S)	1.99917	-11.22051
316	C	53 S	Val(2S)	0.92171	-0.22801
317	C	53 S	$\operatorname{Pud}(3S)$	0.00110	1 22741
210	C	55 5	Kyu(33)	1.10405	1.22741
318	C	53 px	val(2p)	1.10495	-0.14244
319	C	53 px	Ryd(3p)	0.00781	0.55883
320	С	53 py	Val(2p)	1.05827	-0.19058
321	С	53 py	Ryd(3p)	0.00536	0.55804
322	С	53 pz	Val(2p)	1.09553	-0.15512
323	С	53 pz	Ryd(3p)	0.00615	0.54939
204	C	51 0	$C_{ar}(10)$	1 00026	11 00000
324 22 <i>5</i>	C C	J4 3	Cor(15)	1.99920	-11.22233
525	C	54 S	val(2S)	0.95163	-0.28527
326	С	54 S	Ryd(3S)	0.00053	1.62833
327	С	54 px	Val(2p)	1.01768	-0.15426
328	С	54 px	Ryd(3p)	0.00480	0.53404
329	С	54 nv	Val(2n)	1.12147	-0.12629
330	Ĉ	54 nv	Rvd(3n)	0.00780	0 45924
550	C	2 · P)		0.00700	0.1 <i>3)</i> 2- T

331	С	54	pz	Val(2p)	1.02786	-0.15897
332	С	54	pz	Ryd(3p)	0.00615	0.61665
			1	5 (1)		
333	С	55	S	Cor(1S)	1.99931	-11.14166
334	Ĉ	55	ŝ	Val(2S)	1 00925	-0 22704
335	č	55	S	$\operatorname{Rvd}(3S)$	0.00071	1 26559
336	C	55	D DV	$V_{al}(2n)$	1 1/386	0.13778
227	C	55	px	var(2p)	1.14360	-0.13778
337	C	55	px	Ryd(3p)	0.00375	0.32307
338	С	55	ру	Val(2p)	1.21456	-0.13406
339	С	55	ру	Ryd(3p)	0.00254	0.34287
340	С	55	pz	Val(2p)	1.13381	-0.13154
341	С	55	pz	Ryd(3p)	0.00380	0.34172
342	Η	56	S	Val(1S)	0.81336	0.14778
343	Η	56	S	Ryd(2S)	0.00168	0.96431
344	Η	57	S	Val(1S)	0.81524	0.14048
345	Η	57	S	Ryd(2S)	0.00138	0.94484
				3 < 7		
346	Н	58	S	Val(1S)	0.83798	0.11261
347	н	58	ŝ	Rvd(2S)	0.00199	1 09642
517		20	5	10,0(25)	0.00177	1.09012
348	С	59	S	Cor(1S)	1 99932	-11 14035
340	C	50	S	$V_{0}(2S)$	1.01030	0 22745
250	C	50	5 6	Val(2S)	0.00062	1 25906
350	C	59	3	Kyd(3S)	0.00062	1.23890
351	C	59	px	Val(2p)	1.19358	-0.12950
352	С	59	px	Ryd(3p)	0.00370	0.34019
353	С	59	ру	Val(2p)	1.22378	-0.12999
354	С	59	ру	Ryd(3p)	0.00266	0.32920
355	С	59	pz	Val(2p)	1.08689	-0.13840
356	С	59	pz	Ryd(3p)	0.00364	0.31959
				• • • •		
357	Н	60	S	Val(1S)	0.82474	0.12813
358	Н	60	S	Rvd(2S)	0.00151	1.00355
) -(-~)		
359	н	61	S	Val(1S)	0 81045	0 14938
360	н	61	ŝ	Rvd(2S)	0.00124	0.98023
500	11	01	5	Kyu(25)	0.00124	0.90025
361	н	62	S	Val(1S)	0.81770	0 13986
262	п П	62	s c	Val(1S)	0.0177	0.13980
302	п	02	3	Kyu(25)	0.00177	0.94219
262	тт	\sim	C	$V_{1}(10)$	0.01/20	0 1 (5 (5
363	н	63	2	Val(1S)	0.81638	0.16565
364	Н	63	S	Ryd(2S)	0.00161	1.09128
			~			
365	Н	64	S	Val(1S)	0.82582	0.18861
366	Η	64	S	Ryd(2S)	0.00184	1.03693
367	Η	65	S	Val(1S)	0.91394	0.31883
368	Η	65	S	Ryd(2S)	0.00253	0.94337
369	Η	66	S	Val(1S)	0.82798	0.16987
370	Η	66	S	Ryd(2S)	0.00223	1.13794
371	Н	67	S	Val(1S)	0.84958	0.19413
372	Н	67	S	Rvd(2S)	0.00349	1.04760
	••	21	~	,		10.700
373	н	68	S	Val(1S)	0.86108	0.26314
371	ц	68	S	Rvd(2C)	0.00100	1 07363
514	11	00	5	Nyu(20)	0.00244	1.02303
375	н	60	S	Val(18)	0 81684	0 20103
276	н Ц	60	5	Val(10)	0.01004	1 00010
3/0	п	09	3	ryu(25)	0.00185	1.00919

377 378	H H	70 S 70 S	Val(1S) Ryd(2S)	0.87358 0.00166	0.26751 0.95212	
379 380	H H	71 S 71 S	Val(1S) Ryd(2S)	0.84246 0.00196	0.18418 1.17034	
381 382	H H	72 S 72 S	Val(1S) Ryd(2S)	0.82959 0.00297	0.15266 1.04587	
383 384	H H	73 S 73 S	Val(1S) Ryd(2S)	0.82115 0.00177	0.18636 1.03754	
385 386	H H	74 S 74 S	Val(1S) Ryd(2S)	0.83755 0.00193	0.23446 0.97402	
387 388	H H	75 S 75 S	Val(1S) Ryd(2S)	0.82226 0.00167	0.17974 1.03300	
389 390	H H	76 S 76 S	Val(1S) Ryd(2S)	0.83390 0.00185	0.18064 1.10447	
391 392	H H	77 S 77 S	Val(1S) Ryd(2S)	0.83288 0.00288	0.11470 1.13127	
393	N	78 S	Cor(1S)	1.99942	-15.54873	
394	N	78 S	Val(2S)	1.35763	-0.82856	
395	N	78 S	Ryd(3S)	0.00224	1.8/193	
396	N	78 px	Val(2p)	1.27956	-0.41181	
397	N	78 px	Ryd(3p)	0.00618	1.05621	
398	N	78 py	Val(2p)	1.39925	-0.43528	
399	N	/8 py	Ryd(3p)	0.00648	0.86972	
400	N	78 pz	Val(2p)	1.608/3	-0.51914	
401	Ν	78 pz	Ryd(3p)	0.01133	0.83397	
402	Ν	79 S	Cor(1S)	1.99943	-15.54541	
403	Ν	79 S	Val(2S)	1.36584	-0.83321	
404	Ν	79 S	Ryd(3S)	0.00235	1.87886	
405	Ν	79 px	Val(2p)	1.71077	-0.55281	
406	Ν	79 px	Ryd(3p)	0.01103	0.81731	
407	Ν	79 py	Val(2p)	1.30273	-0.40644	
408	Ν	79 py	Ryd(3p)	0.00815	1.01902	
409	Ν	79 pz	Val(2p)	1.29188	-0.40687	
410	Ν	79 pz	Ryd(3p)	0.00462	0.94962	
411	N	80 S	Cor(1S)	1.99940	-15.54890	
412	Ν	80 S	Val(2S)	1.35513	-0.83043	
413	Ν	80 S	Ryd(3S)	0.00248	1.86850	
414	Ν	80 px	Val(2p)	1.31360	-0.41128	
415	Ν	80 px	Ryd(3p)	0.00635	0.90966	
416	Ν	80 py	Val(2p)	1.58469	-0.49613	
417	N	80 py	Ryd(3p)	0.01192	1.03300	
418	N	80 pz	Val(2p)	1.41789	-0.47985	
419	Ν	80 pz	Ryd(3p)	0.00703	0.86495	
420	Tl	81 S	Val(6S)	1.86031	-0.50950	
421	T1	81 S	Ryd(7S)	0.00026	10.43803	
422	Tl	81 px	Val(6p)	0.14815	0.29681	
423	Tl	81 px	Ryd(7p)	0.00689	0.74371	
424	Tl	81 py	Val(6p)	0.04989	0.08526	
425	TI	81 py	Ryd(7p)	0.00252	0.39611	
426	TI	81 pz	Val(6p)	0.07609	0.14829	
427	TT	81 pz	Kyd(7p)	0.00571	0.53874	
428	T1	81	dxv	Cor(5d)	1.99543	-0.98571
-------------	-----------	----------	---------------------------	----------------------------	----------	-----------
429	TI	81	dyv	Rvd(6d)	0.00005	1 79162
120	т1	Q1	dvz	Cor(5d)	1 00504	0.08407
430	11 TT1	01		Col(30)	1.99394	-0.96407
431	11	81	axz	Ryd(6d)	0.00005	1./8409
432	11	81	dyz	Cor(5d)	1.99/60	-0.98521
433	ΤI	81	dyz	Ryd(6d)	0.00004	1.73441
434	T1	81	dx2y	/2 Cor(5d)	1.99727	-0.98780
435	T1	81	dx2y	/2 Ryd(6d)	0.00003	1.67956
436	T1	81	dz2	Cor(5d)	1.99654	-0.98333
437	Tl	81	dz2	Ryd(6d)	0.00007	1.80301
438	Tl	82	S	Val(6S)	1.86039	-0.50954
439	T1	82	S	Ryd(7S)	0.00026	10.43798
440	T1	82	рх	Val(6p)	0.14816	0.29684
441	T1	82	рх	Ryd(7p)	0.00688	0.74394
442	T1	82	ру	Val(6p)	0.04989	0.08527
443	T1	82	py	Ryd(7p)	0.00252	0.39612
444	T1	82	pz	Val(6p)	0.07610	0.14835
445	T1	82	pz	Rvd(7p)	0.00571	0.53868
446	Т1	82	dxv	Cor(5d)	1,99543	-0.98573
447	T1	82	dxv	Rvd(6d)	0.00005	1 79162
448	TI	82	dxz	Cor(5d)	1 99594	-0.98408
110	TI	82	dvz	Rvd(6d)	0.00005	1 78/63
450	т1 Т1	82	dvz	Cor(5d)	1 99760	0.08523
451	т1 Т1	02 02	duz	Dud(6d)	0.00004	1 72/29
451	11 T1	02	uyz	$r_{yu}(0u)$	1.00727	1./3430
452		82	dx2y	$2 \operatorname{Cor}(5d)$	1.99727	-0.98/81
453		82	dx2y	72 Ryd(6d)	0.00003	1.6/961
454	11	82	dz2	Cor(5d)	1.99654	-0.98335
455	TI	82	dz2	Ryd(6d)	0.00007	1.80303
456	С	83	S	Cor(1S)	1.99883	-11.29468
457	С	83	S	Val(2S)	0.84034	-0.23916
458	С	83	S	Rvd(3S)	0.00213	1.28231
459	С	83	рх	Val(2p)	0.88768	-0.13748
460	Ĉ	83	nx	Rvd(3n)	0.01529	0.77123
461	Ĉ	83	nv	Val(2n)	1 06946	-0 19181
462	č	83	PJ nV	Rvd(3n)	0.00611	0.60529
463	C	83	Py pz	Val(2p)	1.02356	-0.22609
405	C	83	pz pz	Val(2p) Pvd(3p)	0.00068	0.53457
404	C	05	Ρz	Kyu(5p)	0.00908	0.55457
465	С	84	S	Cor(1S)	1.99901	-11.25583
466	С	84	S	Val(2S)	0.89397	-0.26245
467	С	84	S	Ryd(3S)	0.00201	1.34441
468	С	84	px	Val(2p)	1.05922	-0.17505
469	С	84	рх	Ryd(3p)	0.00813	0.66533
470	С	84	ру	Val(2p)	1.06614	-0.18630
471	С	84	ру	Ryd(3p)	0.01043	0.78452
472	С	84	pz	Val(2p)	0.97812	-0.19727
473	С	84	pz	Ryd(3p)	0.00815	0.59847
474	С	85	S	Cor(1S)	1.99917	-11.22972
475	С	85	S	Val(2S)	0.93607	-0.25865
476	C	85	S	Rvd(3S)	0.00123	1.23445
477	С	85	px	Val(2n)	1.10500	-0.14087
478	Ċ	85	DX	Rvd(3n)	0.00767	0.53039
479	č	85	r" nv	Val(2n)	1.10607	-0.14225
480	c	85	rj nv	Rvd(3n)	0.005/2	0.618/18
481	c	85	РЈ 107	$V_{al}(2n)$	0.000-12	_0.20/155
487	c	85	Р ² 107	Rvd(2p)	0.00473	0.20433
70 <i>2</i>	C	05	$\mathbf{P}_{\mathbf{r}}$	ryu(5p)	0.007/3	0.77022
483	С	86	S	Cor(1S)	1.99927	-11.22861
484	С	86	S	Val(2S)	0.93766	-0.24597

485	С	86 S	Ryd(3S)	0.00139	1.15275
486	С	86 px	Val(2p)	1.15098	-0.07984
487	Ċ	86 pr	Rvd(3n)	0.00767	0 56616
188	c	86 pv	Val(2p)	1 04559	0.15520
400	C	86 py	Val(2p)	0.00512	-0.13329
409	C	80 py	Kyd(3p)	0.00313	0.49905
490	C	86 pz	val(2p)	1.00133	-0.20523
491	С	86 pz	Ryd(3p)	0.00544	0.45231
492	С	87 S	Cor(1S)	1.99869	-11.18196
493	С	87 S	Val(2S)	0.87488	-0.08380
494	С	87 S	Ryd(3S)	0.00097	1.16683
495	С	87 px	Val(2p)	1.05696	-0.14693
496	С	87 nx	Rvd(3n)	0.00547	0.58273
497	Ċ	87 pr	Val(2n)	1 11289	0.02654
108	c	87 py	Pvd(3n)	0.00700	0.02001
490	C	87 py	$V_{0}(3p)$	0.00799	0.43810
499 500	C	87 pz	$\operatorname{Rvd}(3p)$	0.99084	0.19831
500	C	07 pz	Ryd(5p)	0.00021	0.50000
501	С	88 S	Cor(1S)	1.99915	-11.22921
502	С	88 S	Val(2S)	0.92837	-0.24422
503	С	88 S	Ryd(3S)	0.00129	1.29694
504	С	88 px	Val(2p)	1.09602	-0.14643
505	С	88 px	Rvd(3p)	0.00593	0.64185
506	С	88 pv	Val(2p)	1.09938	-0.14626
507	Ċ	88 pv	Rvd(3n)	0.00857	0 51636
508	C	88 pz	Val(2p)	1 0/269	-0.21038
500	C	88 pz	$\operatorname{Pvd}(2p)$	0.00534	0.54306
509	C	66 pz	Kyu(5p)	0.00554	0.54500
510	С	89 S	Cor(1S)	1.99893	-11.27202
511	С	89 S	Val(2S)	0.96185	-0.36717
512	Ċ	89 S	Rvd(3S)	0.00101	1.58842
513	Ċ	89 nx	Val(2n)	1 11642	-0 24406
514	C	89 px	$\operatorname{Rvd}(3n)$	0.01289	0.55/18
515	c	80 pv	Val(2p)	1.07403	0.26174
516	C	80 py	$\operatorname{Pud}(2p)$	0.00747	-0.20174
510	C	89 py	Kyu(3p)	0.00747	0.30413
517	C	89 pz	val(2p)	1.14282	-0.23530
518	C	89 pz	Ryd(3p)	0.01641	0.57556
519	Н	90 S	Val(1S)	0.79125	0.08655
520	Η	90 S	Ryd(2S)	0.00188	1.10619
521	С	91 S	Cor(1S)	1.99910	-11.35455
522	Ċ	91 S	Val(2S)	0.86065	-0 29960
523	c	01 S	$\operatorname{Rvd}(3S)$	0.00000	1 14423
523	C	01 pv	Val(2n)	0.00909	0 15275
524	C	91 px	Val(2p)	0.90879	-0.15275
525	C	91 px	Kyu(3p)	0.00783	0.03311
526	C	91 py	val(2p)	0.79640	-0.19449
527	C	91 py	Ryd(3p)	0.00876	0.53820
528	С	91 pz	Val(2p)	0.90615	-0.17730
529	С	91 pz	Ryd(3p)	0.00770	0.58503
530	С	92 S	Cor(1S)	1.99921	-11.19006
531	С	92 S	Val(2S)	1.02181	-0.29809
532	С	92 S	Ryd(3S)	0.00048	1.27597
533	С	92 px	Val(2p)	1.24802	-0.19928
534	Č	92 nx	Rvd(3n)	0.00333	0.28255
535	č	92 pr	Val(2n)	1 10160	-0 19683
536	c	92 py	$\mathbf{R}\mathbf{v}\mathbf{d}(2\mathbf{p})$	0.00220	0 20572
530	C	92 py	Val(2p)	1 11567	-0.20323
520	C	92 pz	v ar(2p)	0.00250	0.20109
528	C	92 pz	ryu(sp)	0.00359	0.28427
539	Η	93 S	Val(1S)	0.78904	0.11101

540	Η	93 S	Ryd(2S)	0.00177	1.02048
5/11	ц	04 \$	$V_{0}(1S)$	0 78075	0.00822
542	п ц	94 S 04 S	Val(15) Pvd(25)	0.76975	0.09822
542	11	J 4 5	Kyu(25)	0.00110	0.94072
543	н	95 S	Val(1S)	0 79136	0.09422
544	н	95 S	Rvd(2S)	0.00118	0.95616
511	11	<i>)5 6</i>	Rya(25)	0.00110	0.95010
545	С	96 S	Cor(1S)	1.99908	-11.20329
546	С	96 S	Val(2S)	0.92052	-0.22450
547	С	96 S	Rvd(3S)	0.00056	1.61743
548	С	96 px	Val(2p)	1.12566	-0.10567
549	С	96 px	Ryd(3p)	0.01018	0.50347
550	С	96 py	Val(2p)	1.00654	-0.14877
551	С	96 py	Ryd(3p)	0.00534	0.50629
552	С	96 pz	Val(2p)	1.04388	-0.14624
553	С	96 pz	Ryd(3p)	0.00423	0.57119
554	С	97 S	Cor(1S)	1.99932	-11.14324
555	С	97 S	Val(2S)	1.00935	-0.22840
556	С	97 S	Ryd(3S)	0.00068	1.25086
557	С	97 px	Val(2p)	1.21739	-0.13490
558	С	97 px	Ryd(3p)	0.00289	0.28575
559	С	97 py	Val(2p)	1.21078	-0.13156
560	С	97 py	Ryd(3p)	0.00357	0.32908
561	С	97 pz	Val(2p)	1.06673	-0.14265
562	С	97 pz	Ryd(3p)	0.00339	0.31561
563	Н	98 S	Val(1S)	0.81865	0.13182
564	Н	98 S	Ryd(2S)	0.00159	0.95202
		00 9	11 1/ 10	0.01555	0.10076
565	H	99 S	Val(1S)	0.81555	0.138/6
366	н	99 S	Ryd(28)	0.00132	0.94424
567	ц	100 5	$V_{2}(1S)$	0 82526	0 12570
568	н	100 S	$P_{vd}(2S)$	0.02320	0.12370
500	11	100 5	Kyu(23)	0.00155	0.90777
569	С	101 S	Cor(1S)	1.99936	-11.14319
570	С	101 S	Val(2S)	1.00207	-0.21988
571	С	101 S	Ryd(3S)	0.00064	1.29054
572	С	101 px	Val(2p)	1.17457	-0.14100
573	С	101 px	Ryd(3p)	0.00288	0.44386
574	С	101 py	Val(2p)	1.14685	-0.14379
575	С	101 py	Ryd(3p)	0.00406	0.42544
576	С	101 pz	Val(2p)	1.17738	-0.13475
577	С	101 pz	Ryd(3p)	0.00401	0.40590
578	ц	102 5	$V_{\rm el}(1S)$	0 83185	0 11561
570	п ц	102 S	$\mathbf{P}_{\mathbf{vd}}(\mathbf{2S})$	0.00163	1 1 2 1 0 2
519	11	102 3	Kyu(23)	0.00103	1.13175
580	н	103 S	Val(1S)	0 81428	0 13908
581	н	103 S	Rvd(2S)	0.01420	1 00349
501	11	105 5	Ryd(25)	0.00151	1.00547
582	Н	104 S	Val(1S)	0.82369	0.12207
583	Н	104 S	Rvd(2S)	0.00200	1.07621
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,-(=>)		
584	С	105 S	Cor(1S)	1.99910	-11.35397
585	С	105 S	Val(2S)	0.86193	-0.30149
586	С	105 S	Ryd(3S)	0.00598	1.17885
587	С	105 px	Val(2p)	0.94892	-0.16277
588	С	105 px	Ryd(3p)	0.00761	0.61342
589	С	105 py	Val(2p)	0.83481	-0.18182

590	C 105 py	Ryd(3p)	0.00985	0.56421
591	C 105 pz	Val(2p)	0.82168	-0.17726
592	C 105 pz	Ryd(3p)	0.00735	0.56770
593	C 106 S	Cor(1S)	1.99921	-11.18582
594	C 106 S	Val(2S)	1.01962	-0.29308
595	C 106 S	Ryd(3S)	0.00052	1.30329
596	C 106 px	Val(2p)	1.08186	-0.20365
597	C 106 px	Ryd(3p)	0.00417	0.26828
598	C 106 py	Val(2p)	1.23632	-0.19512
599	C 106 py	Ryd(3p)	0.00269	0.28123
600	C 106 pz	Val(2p)	1.24214	-0.19561
601	C 106 pz	Ryd( 3p)	0.00273	0.32962
602	H 107 S	Val(1S)	0.78517	0.11761
603	H 107 S	Ryd(2S)	0.00164	1.02730
<b>CO 1</b>	U 100 C	V.1(10)	0 70020	0 10 472
604	H 108 S	Val(1S)	0.78830	0.104/3
605	H 108 S	Ryd(28)	0.00122	0.95662
606	H 109 S	Val(1S)	0.79279	0.09048
607	H 109 S	Ryd(2S)	0.00141	1.02411
608	C 110 S	Cor(1S)	1.99887	-11.28149
609	C 110 S	Val(2S)	0.84263	-0.22916
610	C 110 S	Rvd(3S)	0.00213	1.25351
611	C 110 px	Val(2p)	1.03840	-0.21033
612	C 110 px	Rvd(3p)	0.00821	0.58846
613	C 110 pv	Val(2p)	1.00279	-0.15896
614	C 110 pv	Rvd(3n)	0.00739	0.70363
615	C 110 pz	Val(2p)	0.95167	-0.15270
616	C 110 pz	Ryd(3p)	0.01203	0.71385
617	C 111 S	Cor(18)	1 00008	11 24616
619	C 111 S	$V_{\rm el}(2S)$	0.90514	-11.24010
610	$C_{111}$	Val(2S)	0.09314	-0.23003
620	$C_{111}$ S	Kyu(35) Val(2n)	0.00107	1.52999
620	C 111 px	var(2p)	0.90000	-0.17974
621	$C_{111}$ px	Kyu(3p)	0.00808	0.01/27
022 (22	C 111 py	val(2p)	1.04115	-0.15562
023	C 111 py	Kyd(3p)	0.00723	0.00809
624	C III pz	val(2p)	1.04033	-0.16924
625	C III pz	Ryd(3p)	0.00962	0./1511
626	C 112 S	Cor(1S)	1.99902	-11.18373
627	C 112 S	Val(2S)	0.89516	-0.14274
628	C 112 S	Ryd(3S)	0.00081	1.17885
629	C 112 px	Val(2p)	1.01954	-0.15701
630	C 112 px	Ryd(3p)	0.00358	0.48234
631	C 112 py	Val(2p)	1.13783	-0.05264
632	C 112 py	Ryd(3p)	0.00844	0.38605
633	C 112 pz	Val(2p)	1.06339	-0.15366
634	C 112 pz	Ryd( 3p)	0.00402	0.60764
635	C 113 S	Cor(1S)	1.99930	-11.21030
636	C 113 S	Val(2S)	0.93307	-0.21585
637	C 113 S	Rvd(3S)	0.00092	1.09449
638	C 113 nx	Val(2n)	1.00370	-0.17062
639	C 113 px	Rvd(3n)	0.00445	0.43604
640	C 113 pv	Val(2n)	1.07645	-0.12845
641	C 113 pv	Rvd(3n)	0.00569	0.45157
642	C 113 pz	Val(2n)	1.11755	-0.07845
643	C 113 pz	Ryd(3p)	0.00613	0.47490
	1			

644	C 114 S	Cor(1S)	1.99915	-11.19675
615	C 114 S	Val	0.01260	0 16405
045	C 114 S	val(23)	0.91209	-0.10405
646	C 114 S	Rvd(3S)	0.00067	1.09091
617	C = 114 my	$V_{al}(2n)$	1 01510	0 15671
047	С 114 рх	v al( 2p)	1.01510	-0.13071
648	C 114 px	Ryd(3p)	0.00596	0.41394
6/19	C = 114  pv	Val(2n)	1 05685	-0.12015
0-72	С 114 ру	<b>v</b> al( 2p)	1.05005	-0.12015
650	C 114 py	Ryd(3p)	0.00459	0.49401
651	C 114 pz	Val(2n)	1 08854	-0.06471
651	C 111 p2	P = 1(2)	0.00000	0.001/1
652	C 114 pz	Ryd(3p)	0.00686	0.41810
652	C 115 S	$C_{or}(10)$	1 00010	11 21220
055	C 115 S	Col(15)	1.99910	-11.21239
654	C 115 S	Val(2S)	0.92220	-0.22089
655	C 115 S	$\mathbf{D}_{\mathbf{v}}d(\mathbf{3S})$	0.00108	1 22015
055	C 115 5	Kyu( 55)	0.00108	1.22015
656	C 115 px	Val(2p)	1.03967	-0.20264
657	C 115 nx	Rvd(3n)	0.00597	0 48330
657	C 115 pA	$V_1(2)$	1 15010	0.00007
658	C 115 py	Val(2p)	1.15010	-0.0869/
659	C 115 py	Rvd(3p)	0.00757	0.65134
660	C 115 pz	$V_{ol}(2n)$	1 06702	0 19070
000	C IIS pz	vai( 2p)	1.00702	-0.16070
661	C 115 pz	Ryd(3p)	0.00604	0.60482
	1	<b>3</b> × 17		
	0 116 0	G (10)	1 00000	11 01000
662	C 116 S	Cor(1S)	1.99922	-11.21823
663	C 116 S	Val(2S)	0.94693	-0.27350
660	C 116 S	$\mathbf{D}_{\mathrm{rel}}(2\mathbf{C})$	0.00050	1 (0200
004	C 110 S	Kya( 55)	0.00058	1.00309
665	C 116 px	Val(2p)	1.00581	-0.15472
666	C = 116 pv	Pvd(3n)	0.00377	0 48577
000	C 110 px	Kyu(Sp)	0.00377	0.46577
667	C 116 py	Val(2p)	1.08150	-0.14803
668	C 116 pv	Rvd(3n)	0.00895	0.63346
600	C 110 py	$\mathbf{K}$	1.00.471	0.05540
669	C 116 pz	Val(2p)	1.084/1	-0.1228/
670	C 116 pz	Rvd(3p)	0.00665	0.42958
0,0	0 110 pl	11) û( 0p)	0.000000	01.2/00
671	C 117 S	Cor(1S)	1.99931	-11.13742
672	C 117 S	$V_{2}(2S)$	1 01080	0 22/10
072	C 117 S	Val(25)	1.01009	-0.22419
673	$C \Pi 7 S$	Ryd(3S)	0.00059	1.23901
674	C 117 px	Val(2n)	1 20583	-0 12711
C75	C 117 pA	rad(2p)	0.00257	0.12711
6/5	C II/ px	Ryd(3p)	0.00357	0.32647
676	C 117 pv	Val(2p)	1.08912	-0.13173
677	C 117 m	$\operatorname{Pud}(2n)$	0.00212	0 21029
0//	C II/ py	Kyu(Sp)	0.00512	0.51058
678	C 117 pz	Val(2p)	1.19754	-0.12883
679	C 117 nz	Rvd(3n)	0.00314	0 30817
017	C 117 PZ	Rya( 5p)	0.00011	0.50017
680	H 118 S	Val(1S)	0.82608	0.12912
681	H 118 S	Pvd(2S)	0.00150	0 07008
001	11 110 5	Kyu( 25)	0.00139	0.97990
682	H 119 S	Val(1S)	0.81581	0.14495
692	U 110 S	$\mathbf{D}\mathbf{ud}(\mathbf{2S})$	0.00122	0.05222
005	п 119 5	Kyu(25)	0.00155	0.95552
684	H 120 S	Val(1S)	0 81492	0 14837
<00T	II 120 D	T (11)	0.011/2	0.11057
685	H 120 S	Ryd(28)	0.00141	0.94496
686	C 121 S	Cor(1S)	1 00033	11 15280
080	C 121 S	COI(15)	1.99933	-11.15269
687	C 121 S	Val(2S)	1.00867	-0.23423
688	C 121 S	Rvd(3S)	0.00076	1.24944
600	0 121 5		1 00 400	0.15052
089	C 121 px	v al( 2p)	1.08409	-0.15863
690	C 121 px	Ryd(3p)	0.00496	0.53596
601	C 121 m	$V_{\rm el}(2n)$	1 20276	0 12600
091	C 121 py	val(2p)	1.20370	-0.13008
692	C 121 py	Ryd(3p)	0.00374	0.36587
693	C 121 nz	Val(2n)	1 21021	-0 13996
CD 4	C 121 PZ	$\mathbf{p}_{m}(2\mathbf{p})$	0.00207	0.13770
694	C 121 pz	куа( Зр)	0.00295	0.46597
605	Н 122 С	Val(1S)	0 83655	0 10716
093	11 122 3	v al( 15)	0.03033	0.10/10
696	H 122 S	Ryd( 2S)	0.00170	1.10802

697	H 123 S	Val(1S)	0.81645	0.13028
698	H 123 S	Ryd(2S)	0.00148	0.98744
699	H 124 S	Val(1S)	0.82084	0.12649
700	H 124 S	Ryd(2S)	0.00161	1.00931
701 702 703 704 705 706 707 708 709	C 125 S C 125 S C 125 S C 125 px C 125 px C 125 py C 125 py C 125 py C 125 pz C 125 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	1.99909 0.85993 0.00600 0.74326 0.00859 0.98437 0.00754 0.87677 0.00847	-11.35531 -0.29986 1.14817 -0.19940 0.52768 -0.20561 0.67895 -0.12190 0.59996
710 711 712 713 714 715 716 717 718	C 126 S C 126 S C 126 S C 126 px C 126 px C 126 px C 126 py C 126 py C 126 pz C 126 pz C 126 pz	Cor( 1S) Val( 2S) Ryd( 3S) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p)	$\begin{array}{c} 1.99921 \\ 1.02120 \\ 0.00051 \\ 1.22624 \\ 0.00180 \\ 1.14572 \\ 0.00426 \\ 1.18569 \\ 0.00312 \end{array}$	-11.19050 -0.29815 1.28191 -0.19391 0.34355 -0.20374 0.30048 -0.20299 0.25620
719	H 127 S	Val(1S)	0.78621	0.11337
720	H 127 S	Ryd(2S)	0.00161	1.01202
721	H 128 S	Val(1S)	0.79044	0.10108
722	H 128 S	Ryd(2S)	0.00114	0.95450
723	H 129 S	Val(1S)	0.79143	0.09249
724	H 129 S	Ryd(2S)	0.00122	0.98891
725 726 727 728 729 730 731 732 733	C 130 S C 130 S C 130 S C 130 px C 130 px C 130 py C 130 py C 130 pz C 130 pz C 130 pz	Cor( 1S) Val( 2S) Ryd( 3S) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p)	$\begin{array}{c} 1.99888\\ 0.83986\\ 0.00221\\ 1.07673\\ 0.00627\\ 0.89842\\ 0.00816\\ 1.01022\\ 0.01302 \end{array}$	-11.29111 -0.23365 1.27262 -0.19922 0.60824 -0.13606 0.66729 -0.19726 0.75667
734 735 736 737 738 739 740 741 742	C 131 S C 131 S C 131 S C 131 px C 131 px C 131 py C 131 py C 131 pz C 131 pz C 131 pz	Cor( 1S) Val( 2S) Ryd( 3S) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p)	$\begin{array}{c} 1.99907\\ 0.89318\\ 0.00171\\ 1.04439\\ 0.00930\\ 1.04001\\ 0.00772\\ 1.01873\\ 0.00801 \end{array}$	-11.24747 -0.25020 1.32752 -0.17915 0.77326 -0.17593 0.62793 -0.17473 0.61589
743 744 745 746 747 748	C 132 S C 132 S C 132 S C 132 S C 132 px C 132 px C 132 py	Cor( 1S) Val( 2S) Ryd( 3S) Val( 2p) Ryd( 3p) Val( 2p)	$\begin{array}{c} 1.99918\\ 0.93155\\ 0.00095\\ 1.08425\\ 0.00531\\ 1.03979\end{array}$	-11.21134 -0.22969 1.18026 -0.14314 0.51344 -0.15705

749	С 132 ру	Ryd(3p)	0.00482	0.49495
750	C 132 pz	Val(2p)	1.08166	-0.13502
751	C 132 pz	Ryd(3p)	0.00645	0.42831
7.50	G 100 G	G (10)	1 00024	11 20220
752	C 133 S	Cor(1S)	1.99924	-11.20339
753	C 133 S	Val(2S)	0.92643	-0.20196
754	C 133 S	Ryd(3S)	0.00073	1.07605
755	C 133 px	Val(2p)	1.03246	-0.15120
756	C 133 px	Ryd(3p)	0.00441	0.46319
757	C 133 py	Val(2p)	1.08900	-0.11273
758	C 133 py	Ryd(3p)	0.00676	0.39878
759	C 133 pz	Val(2p)	1.06585	-0.11615
760	C 133 pz	Ryd(3p)	0.00537	0.42497
761	C 134 S	Cor(1S)	1 99931	-11 22262
762	C 134 S	Val(2S)	0.93790	-0.23607
763	C 134 S	$\operatorname{Rvd}(3S)$	0.00080	1 09229
764	C 134 D	Val(2n)	1 10707	0.12358
765	C 134 px	Val(2p) Pud(2p)	0.00752	-0.12358
765	C 134 px	$\operatorname{Kyu}(3p)$	1.06520	0.30932
700	C 134 py	var(2p)	1.00520	-0.13203
/0/	C 134 py	Kyd(3p)	0.00573	0.44097
/68	C 134 pz	Val(2p)	1.02500	-0.16863
769	C 134 pz	Ryd( 3p)	0.00495	0.45747
770	C 135 S	Cor(1S)	1.99917	-11.22050
771	C 135 S	Val(2S)	0.92170	-0.22799
772	C 135 S	Ryd(3S)	0.00119	1.22757
773	C 135 px	Val(2p)	1.10490	-0.14239
774	C 135 px	Rvd(3p)	0.00781	0.55885
775	C 135 pv	Val(2n)	1.05829	-0.19057
776	C 135 pv	Rvd(3n)	0.00536	0.55803
777	C 135 pz	Val(2n)	1 09554	-0 15512
778	C 135 pz	Ryd(3p)	0.00616	0.54943
	~	~		
779	C 136 S	Cor(1S)	1.99926	-11.22230
780	C 136 S	Val(2S)	0.95162	-0.28514
781	C 136 S	Ryd(3S)	0.00053	1.62843
782	C 136 px	Val(2p)	1.01768	-0.15429
783	C 136 px	Ryd(3p)	0.00480	0.53403
784	C 136 py	Val(2p)	1.12150	-0.12603
785	C 136 py	Ryd(3p)	0.00780	0.45924
786	C 136 pz	Val(2p)	1.02783	-0.15899
787	C 136 pz	Ryd(3p)	0.00615	0.61696
788	C 137 S	Cor(1S)	1.99931	-11.14179
789	C 137 S	Val(2S)	1.00940	-0.22738
790	C 137 S	Rvd(3S)	0.00071	1 26574
701	C 137 px	Val(2n)	1 1/385	-0.13775
702	C 137 px C 137 px	$P_{r}$ Rvd(3p)	0.00374	0 32208
703	C 137 px C 137 px	$V_{al}(2p)$	1 21/58	0.32298
704	C 137 py	Val(2p) Pvd(3p)	0.00254	-0.13447
705	C 137 py	$V_{el}(2p)$	1 12291	0.34312
795	C 137 pz C 137 pz	Val(2p) Pvd(3p)	0.00381	-0.13140
790	C 137 pz	Kyu( 5p)	0.00381	0.54195
797	H 138 S	Val(1S)	0.81327	0.14732
798	H 138 S	Ryd(2S)	0.00168	0.96454
799	H 139 S	Val( 18)	0.81514	0.13989
800	H 139 S	Rvd(2S)	0.00137	0.94512
000		1.50(20)	0.00107	0.71012
801	H 140 S	Val(1S)	0.83804	0.11309
802	H 140 S	Ryd(2S)	0.00200	1.09620
		-		

803	C 141 S	Cor(1S)	1.99931	-11.14032
804 805	C 141 S	Val(2S) Pvd(3S)	1.01028	-0.22726
805	C = 141 - 3 C = 141 - px	Val(2n)	1 19351	-0 12944
807	C 141 px	Ryd(3p)	0.00370	0.34021
808	C 141 py	Val(2p)	1.22378	-0.12977
809	C 141 py	Ryd(3p)	0.00266	0.32923
810	C 141 pz	Val(2p)	1.08679	-0.13839
811	C 141 pz	Ryd(3p)	0.00364	0.31967
812	H 142 S	Val(1S)	0.82478	0.12808
813	H 142 S	Ryd(2S)	0.00151	1.00358
814	H 143 S	Val(1S)	0.81056	0 14990
815	H 143 S	Ryd(2S)	0.00124	0.97989
816	H 144 S	Val(1S)	0.81772	0.13987
817	H 144 S	Ryd(28)	0.00177	0.94216
818	H 145 S	Val(1S)	0.81640	0.16564
819	H 145 S	Ryd(2S)	0.00161	1.09128
820	H 146 S	Val(1S)	0.82583	0.18862
821	H 146 S	Ryd(2S)	0.00184	1.03696
		TT 1/ 10	0.01001	0.01005
822	H 147 S	Val(1S)	0.91394	0.31887
823	п 14/ 5	Kyu( 25)	0.00235	0.94540
824	H 148 S	Val(1S)	0.82797	0.16991
825	H 148 S	Ryd(2S)	0.00223	1.13799
826	H 149 S	Val(1S)	0 84971	0 19415
827	H 149 S	Ryd(2S)	0.00348	1.04746
828	H 150 S	Val(1S)	0.86148	0.26369
829	H 150 S	Ryd(25)	0.00244	1.02296
830	H 151 S	Val(1S)	0.81683	0.20100
831	H 151 S	Ryd(2S)	0.00185	1.00930
832	H 152 S	Val(1S)	0 87314	0 26710
833	H 152 S	Ryd(2S)	0.00167	0.95303
		• • •		
834	H 153 S	Val(1S)	0.84252	0.18418
835	H 153 S	Ryd( 2S)	0.00196	1.17020
836	H 154 S	Val(1S)	0.82968	0.15270
837	H 154 S	Ryd(2S)	0.00297	1.04581
020	U 155 S	$\mathbf{V}_{0}$ (1 <b>S</b> )	0.82101	0 19600
839	н 155 S	Val(1S) Rvd(2S)	0.02101	1.03790
027	11 100 0	1194(25)	0.00177	1.05770
840	H 156 S	Val(1S)	0.83755	0.23471
841	H 156 S	Ryd(2S)	0.00193	0.97432
842	H 157 S	Val(1S)	0.82229	0.17970
843	H 157 S	Ryd(2S)	0.00166	1.03297
- <i>(</i> -				
844	H 158 S	Val(1S)	0.83391	0.18066
843	н 158 S	куа(28)	0.00185	1.1044/

846	Η	159	S	Val(1S)	0.83294	0.11519
847	Η	159	S	Ryd(2S)	0.00288	1.13083
				• • •		
848	Ν	160	S	Cor(1S)	1.99942	-15.54851
849	Ν	160	S	Val(2S)	1.35721	-0.82817
850	Ν	160	S	Ryd(3S)	0.00225	1.87186
851	Ν	160	рх	Val(2p)	1.27968	-0.41187
852	Ν	160	px	Ryd(3p)	0.00618	1.05618
853	Ν	160	ру	Val(2p)	1.39898	-0.43518
854	Ν	160	ру	Ryd(3p)	0.00648	0.86973
855	Ν	160	pz	Val(2p)	1.60890	-0.51920
856	Ν	160	pz	Ryd(3p)	0.01135	0.83387
857	Ν	161	S	Cor(1S)	1.99943	-15.54535
858	Ν	161	S	Val(2S)	1.36558	-0.83292
859	Ν	161	S	Ryd(3S)	0.00235	1.87891
860	Ν	161	рх	Val(2p)	1.71081	-0.55270
861	Ν	161	рх	Ryd(3p)	0.01103	0.81737
862	Ν	161	ру	Val(2p)	1.30279	-0.40637
863	Ν	161	ру	Ryd(3p)	0.00815	1.01922
864	Ν	161	pz	Val(2p)	1.29177	-0.40673
865	Ν	161	pz	Ryd(3p)	0.00462	0.94985
866	Ν	162	S	Cor(1S)	1.99940	-15.54887
867	Ν	162	S	Val(2S)	1.35514	-0.83035
868	Ν	162	S	Ryd(3S)	0.00248	1.86869
869	Ν	162	рх	Val(2p)	1.31359	-0.41126
870	Ν	162	рх	Ryd(3p)	0.00635	0.90977
871	Ν	162	ру	Val(2p)	1.58465	-0.49606
872	Ν	162	ру	Ryd(3p)	0.01192	1.03311
873	Ν	162	pz	Val(2p)	1.41781	-0.47975
874	Ν	162	pz	Ryd(3p)	0.00703	0.86500

[136 electrons found in the effective core potential]

WARNING: 1 low occupancy (<1.9990e) core orbital found on C 1</li>
1 low occupancy (<1.9990e) core orbital found on C 8</li>
1 low occupancy (<1.9990e) core orbital found on C 12</li>
1 low occupancy (<1.9990e) core orbital found on C 28</li>
1 low occupancy (<1.9990e) core orbital found on C 48</li>
5 low occupancy (<1.9990e) core orbitals found on T1 81</li>
5 low occupancy (<1.9990e) core orbitals found on T1 82</li>
1 low occupancy (<1.9990e) core orbital found on C 83</li>
1 low occupancy (<1.9990e) core orbital found on C 87</li>
1 low occupancy (<1.9990e) core orbital found on C 87</li>
1 low occupancy (<1.9990e) core orbital found on C 89</li>
1 low occupancy (<1.9990e) core orbital found on C 110</li>
1 low occupancy (<1.9990e) core orbital found on C 130</li>

Summary of Natural Population Analysis:

	Natural Population								
Ator	m Ì	Nat No	ural Charge	Core	e	Valence	Rydberg	 Total	
С	1	-0.	33170	1.99893		4.29501	0.03776	6.33170	
Η	2	0.	20671	0.00000		0.79141	0.00188	0.79329	
С	3	0.	49899	1.99910		3.47176	0.03016	5.50101	
С	4	-0.	58574	1.99921		4.57684	0.00969	6.58574	
Н	5	0.	20917	0.00000		0.78906	0.00177	0.79083	
Η	6	0.	20905	0.00000		0.78977	0.00118	0.79095	
Н	7	0.	20729	0.00000		0.79152	0.00119	0.79271	

С	8	0.14692	1.99883	3.82105	0.03320	5.85308
С	9	-0.02507	1.99901	3.99733	0.02873	6.02507
С	10	-0.16196	1.99917	4.14374	0.01905	6.16196
С	11	-0.15445	1.99927	4.13555	0.01964	6.15445
С	12	-0.05493	1.99869	4.03560	0.02065	6.05493
С	13	-0.18677	1.99915	4.16649	0.02113	6.18677
С	14	-0.11619	1.99908	4.09680	0.02031	6.11619
С	15	-0.51416	1.99932	4.50431	0.01053	6.51416
Η	16	0.17977	0.00000	0.81864	0.00159	0.82023
Η	17	0.18313	0.00000	0.81555	0.00132	0.81687
Η	18	0.17331	0.00000	0.82517	0.00153	0.82669
С	19	-0.51206	1.99936	4.50111	0.01159	6.51206
Η	20	0.16661	0.00000	0.83176	0.00163	0.83339
Η	21	0.18439	0.00000	0.81431	0.00130	0.81561
Η	22	0.17443	0.00000	0.82356	0.00200	0.82557
С	23	0.50268	1.99910	3.46742	0.03080	5.49732
С	24	-0.58859	1.99921	4.57927	0.01010	6.58859
Η	25	0.21308	0.00000	0.78528	0.00164	0.78692
Η	26	0.21040	0.00000	0.78838	0.00122	0.78960
Η	27	0.20550	0.00000	0.79309	0.00141	0.79450
С	28	0.13597	1.99887	3.83539	0.02977	5.86403
С	29	0.00865	1.99909	3.96508	0.02719	5.99135
С	30	-0.13247	1.99902	4.11660	0.01685	6.13247
С	31	-0.14719	1.99930	4.13069	0.01719	6.14719
С	32	-0.08984	1.99915	4.07261	0.01809	6.08984
С	33	-0.19912	1.99918	4.17929	0.02065	6.19912
С	34	-0.13845	1.99922	4.11927	0.01996	6.13845
С	35	-0.51323	1.99931	4.50350	0.01043	6.51323
Η	36	0.17239	0.00000	0.82602	0.00159	0.82761
Η	37	0.18286	0.00000	0.81581	0.00133	0.81714
Η	38	0.18376	0.00000	0.81484	0.00140	0.81624
С	39	-0.51840	1.99933	4.50665	0.01242	6.51840
Η	40	0.16176	0.00000	0.83655	0.00170	0.83824
Η	41	0.18208	0.00000	0.81644	0.00148	0.81792
Η	42	0.17759	0.00000	0.82081	0.00161	0.82241
С	43	0.50615	1.99909	3.46414	0.03062	5.49385
С	44	-0.58765	1.99921	4.57875	0.00969	6.58765
Η	45	0.21220	0.00000	0.78619	0.00161	0.78780
Η	46	0.20840	0.00000	0.79046	0.00114	0.79160
Η	47	0.20723	0.00000	0.79155	0.00122	0.79277
С	48	0.14657	1.99888	3.82488	0.02968	5.85343
С	49	-0.02221	1.99907	3.99642	0.02672	6.02221
С	50	-0.15409	1.99918	4.13739	0.01752	6.15409
С	51	-0.12997	1.99924	4.11345	0.01727	6.12997
С	52	-0.15375	1.99931	4.13543	0.01901	6.15375
С	53	-0.20014	1.99917	4.18046	0.02051	6.20014
С	54	-0.13718	1.99926	4.11864	0.01928	6.13718
С	55	-0.51158	1.99931	4.50148	0.01080	6.51158
Η	56	0.18496	0.00000	0.81336	0.00168	0.81504
Η	57	0.18339	0.00000	0.81524	0.00138	0.81661
Η	58	0.16002	0.00000	0.83798	0.00199	0.83998
С	59	-0.52448	1.99932	4.51455	0.01062	6.52448
Η	60	0.17375	0.00000	0.82474	0.00151	0.82625
Η	61	0.18831	0.00000	0.81045	0.00124	0.81169
Η	62	0.18052	0.00000	0.81770	0.00177	0.81948
Η	63	0.18201	0.00000	0.81638	0.00161	0.81799
Η	64	0.17234	0.00000	0.82582	0.00184	0.82766
Η	65	0.08353	0.00000	0.91394	0.00253	0.91647
Η	66	0.16979	0.00000	0.82798	0.00223	0.83021
Η	67	0.14693	0.00000	0.84958	0.00349	0.85307
Η	68	0.13648	0.00000	0.86108	0.00244	0.86352
Η	69	0.18131	0.00000	0.81684	0.00185	0.81869

Н	70	0.12476	0.00000	0.87358	0.00166	0.87524
Η	71	0.15557	0.00000	0.84246	0.00196	0.84443
Η	72	0.16745	0.00000	0.82959	0.00297	0.83255
Η	73	0.17708	0.00000	0.82115	0.00177	0.82292
Η	74	0.16053	0.00000	0.83755	0.00193	0.83947
Η	75	0.17607	0.00000	0.82226	0.00167	0.82393
Η	76	0.16426	0.00000	0.83390	0.00185	0.83574
Η	77	0.16424	0.00000	0.83288	0.00288	0.83576
Ν	78	-0.67081	1.99942	5.64517	0.02622	7.67081
Ν	79	-0.69679	1.99943	5.67122	0.02614	7.69679
Ν	80	-0.69850	1.99940	5.67131	0.02779	7.69850
Tl	81	0.86717	77.98277	2.13444	0.01562	80.13283
Tl	82	0.86705	77.98278	2.13455	0.01562	80.13295
С	83	0.14694	1.99883	3.82104	0.03320	5.85306
С	84	-0.02517	1.99901	3.99745	0.02872	6.02517
С	85	-0.16197	1.99917	4.14376	0.01905	6.16197
C	86	-0.15446	1.99927	4.13555	0.01963	6.15446
C	87	-0.05491	1.99869	4.03557	0.02064	6.05491
C	88	-0.18673	1.99915	4.16646	0.02113	6.18673
C	89	-0.33183	1.99893	4.29512	0.03778	6.33183
H	90	0.20688	0.00000	0.79125	0.00188	0.79312
C	91	0.498/3	1.99910	3.4/198 4 57714	0.05018	5.50127
с ц	92	-0.38003	1.99921	4.37714	0.00970	0.38003
и П	93	0.20919	0.00000	0.78904	0.00177	0.79001
н	94	0.20907	0.00000	0.70136	0.00118	0.79095
C	96	-0 11599	1 99908	4 09660	0.02031	6 11599
č	97	-0.51410	1.99932	4.50425	0.01053	6.51410
Н	98	0.17977	0.00000	0.81865	0.00159	0.82023
Н	99	0.18312	0.00000	0.81555	0.00132	0.81688
Η	100	0.17321	0.00000	0.82526	0.00153	0.82679
С	101	-0.51181	1.99936	4.50087	0.01158	6.51181
Η	102	0.16652	0.00000	0.83185	0.00163	0.83348
Η	103	0.18441	0.00000	0.81428	0.00131	0.81559
Η	104	0.17431	0.00000	0.82369	0.00200	0.82569
C	105	0.50277	1.99910	3.46734	0.03079	5.49723
C	106	-0.58926	1.99921	4.57994	0.01011	6.58926
H	107	0.21319	0.00000	0.78517	0.00164	0.78081
н ц	108	0.21048	0.00000	0.78830	0.00122	0.78952
C	109	0.20380	1 00887	3 835/10	0.00141	0.79420 5 86412
C	111	0.15588	1 99908	3 96550	0.02770	5 99180
C	112	-0 13178	1 99902	4 11591	0.02721	6 13178
Č	113	-0.14726	1.99930	4.13077	0.01719	6.14726
С	114	-0.09041	1.99915	4.07318	0.01808	6.09041
С	115	-0.19882	1.99918	4.17899	0.02065	6.19882
С	116	-0.13812	1.99922	4.11895	0.01995	6.13812
С	117	-0.51311	1.99931	4.50338	0.01042	6.51311
Η	118	0.17233	0.00000	0.82608	0.00159	0.82767
Η	119	0.18286	0.00000	0.81581	0.00133	0.81714
Η	120	0.18367	0.00000	0.81492	0.00141	0.81633
С	121	-0.51849	1.99933	4.50674	0.01242	6.51849
H	122	0.16175	0.00000	0.83655	0.00170	0.83825
H	123	0.18207	0.00000	0.81645	0.00148	0.81793
H	124	0.17/55	0.00000	0.82084	0.00161	0.82245
C	123	0.50598	1.99909	5.40455 1 57001	0.03060	5.49402
с и	120 127	-0.38//4	1.99921	4.3/884	0.00909	0.38//4
н	127	0.21218	0.00000	0.70021	0.00101	0.70702
Н	120	0.20042	0.00000	0 79143	0.00122	0 79265
C	130	0.14623	1.99888	3.82523	0.02966	5.85377
Č	131	-0.02211	1.99907	3.99631	0.02673	6.02211

С	132	-0.15395	1.99918	4.13725	0.01752	6.15395
С	133	-0.13025	1.99924	4.11375	0.01727	6.13025
С	134	-0.15348	1.99931	4.13516	0.01901	6.15348
С	135	-0.20012	1.99917	4.18044	0.02052	6.20012
С	136	-0.13718	1.99926	4.11863	0.01929	6.13718
С	137	-0.51175	1.99931	4.50164	0.01080	6.51175
Η	138	0.18505	0.00000	0.81327	0.00168	0.81495
Η	139	0.18349	0.00000	0.81514	0.00137	0.81651
Η	140	0.15996	0.00000	0.83804	0.00200	0.84004
С	141	-0.52429	1.99931	4.51436	0.01061	6.52429
Η	142	0.17372	0.00000	0.82478	0.00151	0.82628
Η	143	0.18820	0.00000	0.81056	0.00124	0.81180
Η	144	0.18052	0.00000	0.81772	0.00177	0.81948
Η	145	0.18199	0.00000	0.81640	0.00161	0.81801
Η	146	0.17233	0.00000	0.82583	0.00184	0.82767
Η	147	0.08353	0.00000	0.91394	0.00253	0.91647
Η	148	0.16980	0.00000	0.82797	0.00223	0.83020
Η	149	0.14681	0.00000	0.84971	0.00348	0.85319
Η	150	0.13608	0.00000	0.86148	0.00244	0.86392
Η	151	0.18132	0.00000	0.81683	0.00185	0.81868
Η	152	0.12520	0.00000	0.87314	0.00167	0.87480
Η	153	0.15552	0.00000	0.84252	0.00196	0.84448
Η	154	0.16735	0.00000	0.82968	0.00297	0.83265
Η	155	0.17722	0.00000	0.82101	0.00177	0.82278
Η	156	0.16052	0.00000	0.83755	0.00193	0.83948
Η	157	0.17605	0.00000	0.82229	0.00166	0.82395
Η	158	0.16424	0.00000	0.83391	0.00185	0.83576
Η	159	0.16418	0.00000	0.83294	0.00288	0.83582
Ν	160	-0.67044	1.99942	5.64477	0.02626	7.67044
Ν	161	-0.69654	1.99943	5.67096	0.02614	7.69654
Ν	162	-0.69839	1.99940	5.67120	0.02779	7.69839

* Total * 2.00000 303.90385 390.37947 1.71668 696.00000

_____

_____

Natural Population

=

_.

Effective Core	13	6.00000
Core	167.90	)385 ( 99.9428% of 168)
Valence	390.3	37947 ( 99.5866% of 392)
Natural Minimal	Basis	694.28332 (99.7534% of 696)
Natural Rydberg	Basis	1.71668 ( 0.2466% of 696)

Atom No Natural Electron Configuration

С	1	[core]2S( 0.96)2p( 3.33)3p( 0.04)
Η	2	1S( 0.79)
С	3	[core]2S( 0.86)2p( 2.61)3S( 0.01)3p( 0.02)
С	4	[core]2S( 1.02)2p( 3.56)3p( 0.01)
Η	5	1S( 0.79)
Η	6	1S( 0.79)
Η	7	1S( 0.79)
С	8	[core]2S( 0.84)2p( 2.98)3p( 0.03)
С	9	[core]2S( 0.89)2p( 3.10)3p( 0.03)
С	10	[core]2S( 0.94)2p( 3.21)3p( 0.02)
С	11	[core]2S( 0.94)2p( 3.20)3p( 0.02)
С	12	[core]2S( 0.87)2p( 3.16)3p( 0.02)
С	13	[core]2S( 0.93)2p( 3.24)3p( 0.02)
С	14	[core]2S( 0.92)2p( 3.18)3p( 0.02)
С	15	[core]2S( 1.01)2p( 3.49)3p( 0.01)
Η	16	1S( 0.82)
Η	17	1S( 0.82)

Η	18	1S( 0.83)
С	19	[core]2S( 1.00)2p( 3.50)3p( 0.01)
Η	20	1S( 0.83)
Η	21	1S( 0.81)
Н	22	1S(0.82)
C	23	[core]2S(0.86)2p(2.61)3S(0.01)3p(0.02)
C	24	[core]2S(1.02)2p(3.56)3p(0.01)
Н	25	IS( 0.79)
H	26	1S(0.79)
H C	27	15(0.79)
C	28	[core] 2S(0.84) 2p(2.99) 3p(0.03)
C	29	[core]2S(0.90)2p(3.07)3p(0.03)
C	31	[core]2S(0.90)2p(3.22)3p(0.02)
C	32	[core]2S(0.93)2p(3.20)3p(0.02)
c	32	[core]2S(0.91)2p(3.10)3p(0.02)
C	34	[core]2S(0.92)2p(3.12)3p(0.02)
č	35	[core]2S(1.01)2p(3.49)3p(0.01)
H	36	1S( 0.83)
Н	37	1S( 0.82)
Н	38	1S(0.81)
С	39	[core]2S( 1.01)2p( 3.50)3p( 0.01)
Н	40	1S( 0.84)
Η	41	1S( 0.82)
Η	42	1S( 0.82)
С	43	[core]2S( 0.86)2p( 2.60)3S( 0.01)3p( 0.02)
С	44	[core]2S( 1.02)2p( 3.56)3p( 0.01)
Η	45	1S( 0.79)
Η	46	1S( 0.79)
Η	47	1S( 0.79)
С	48	[core]2S( 0.84)2p( 2.98)3p( 0.03)
С	49	[core]2S(0.89)2p(3.10)3p(0.03)
C	50	[core]2S(0.93)2p(3.21)3p(0.02)
C	51	[core] 2S(0.93) 2p(3.19) 3p(0.02)
C	52	[core] 2S(0.94) 2p(3.20) 3p(0.02)
C	53 54	[core] 2S(0.92) 2p(3.26) 3p(0.02)
C	54 55	[core] 2S(1,01) 2p(3,17) 5p(0,02)
ч	55	1S(0.81)
н	57	15(0.81) 15(0.82)
н	58	1S(0.82)
C	59	[core] 2S(101) 2p(350) 3p(001)
Н	60	1S( 0.82)
Н	61	1S( 0.81)
Н	62	1S(0.82)
Н	63	1S(0.82)
Η	64	1S( 0.83)
Η	65	1S( 0.91)
Η	66	1S( 0.83)
Η	67	1S( 0.85)
Η	68	1S( 0.86)
Η	69	1S( 0.82)
Η	70	1S( 0.87)
H	71	1S( 0.84)
H	72	1S( 0.83)
H	73	IS( 0.82)
H	74	1S(0.84) 1S(0.82)
H	75	1S(0.82) 1S(0.82)
H	/0 77	1S(0.83) 1S(0.82)
H N	// 70	13(0.83) [core]28(1.26)2 $\pi$ (4.20)2 $\pi$ (0.02)
IN N	/8 70	[core] 25(1.50) 2p(4.29) 3p(0.02)
IN	19	[0010]20(1.37)2p(4.31)3p(0.02)

Ν	80	[core]2S( 1.36)2p( 4.32)3p( 0.03)
Tl	81	[core]6S( 1.86)6p( 0.27)7p( 0.02)
T1	82	[core]6S( 1.86)6p( 0.27)7p( 0.02)
С	83	[core]2S( 0.84)2p( 2.98)3p( 0.03)
С	84	[core]2S( 0.89)2p( 3.10)3p( 0.03)
С	85	[core]2S( 0.94)2p( 3.21)3p( 0.02)
С	86	[core]2S( 0.94)2p( 3.20)3p( 0.02)
С	87	[core]2S( 0.87)2p( 3.16)3p( 0.02)
С	88	[core]2S( 0.93)2p( 3.24)3p( 0.02)
C	89	[core]2S(0.96)2p(3.33)3p(0.04)
Н	90	1S( 0.79)
C	91	[core]2S(0.86)2p(2.61)3S(0.01)3p(0.02)
C	92	[core]2S(1.02)2p(3.56)3p(0.01)
H	93	IS( 0.79)
H	94	1S(0.79) 1S(0.70)
П	95	IS(0.79)
C	90 07	[core]2S(1.01)2p(3.18)3p(0.02)
с ц	97	15(0.82)
п ц	90 00	1S(0.82) 1S(0.82)
п ц	99 100	1S(0.82) 1S(0.83)
П	100	13(0.03) [core]2S(1.00)2p(3.50)3p(0.01)
н	101	1S(0.83)
н	102	1S(0.83)
н	103	1S(0.81)
C	104	[core] 2S(0.86) 2n(2.61) 3S(0.01) 3n(0.02)
C	105	[core]2S(102)2p(2.01)3b(0.01)3p(0.02)
н	107	1S(0.79)
н	108	1S(0.79) 1S(0.79)
н	100	1S(0.79)
C	110	[core] 2S(0.84) 2p(2.99) 3p(0.03)
Č	111	$[core]_{2S}(0.90)_{2p}(3.07)_{3p}(0.03)$
Ĉ	112	[core]2S(0.90)2p(3.22)3p(0.02)
Ĉ	113	[core]2S(0.93)2p(3.20)3p(0.02)
Ċ	114	[core]2S(0.91)2p(3.16)3p(0.02)
С	115	[core]2S(0.92)2p(3.26)3p(0.02)
С	116	[core]2S(0.95)2p(3.17)3p(0.02)
С	117	[core]2S(1.01)2p(3.49)3p(0.01)
Н	118	1S( 0.83)
Η	119	1S( 0.82)
Η	120	1S( 0.81)
С	121	[core]2S( 1.01)2p( 3.50)3p( 0.01)
Η	122	1S( 0.84)
Η	123	1S( 0.82)
Η	124	1S( 0.82)
С	125	[core]2S( 0.86)2p( 2.60)3S( 0.01)3p( 0.02)
С	126	[core]2S( 1.02)2p( 3.56)3p( 0.01)
Η	127	1S( 0.79)
Η	128	1S( 0.79)
Η	129	1S( 0.79)
С	130	[core]2S( 0.84)2p( 2.99)3p( 0.03)
С	131	[core]2S( 0.89)2p( 3.10)3p( 0.03)
C	132	[core]2S( 0.93)2p( 3.21)3p( 0.02)
C	133	[core]2S( 0.93)2p( 3.19)3p( 0.02)
С	134	[core]2S( 0.94)2p( 3.20)3p( 0.02)
C	135	[core]2S( 0.92)2p( 3.26)3p( 0.02)
C	136	[core]2S( 0.95)2p( 3.17)3p( 0.02)
C	137	[core]2S(1.01)2p(3.49)3p(0.01)
Н	138	1S( 0.81)
Н	139	1S( 0.82)
Η	140	1S( 0.84)
С	141	[core]2S( 1.01)2p( 3.50)3p( 0.01)

Н	142	1S( 0.82)
Η	143	1S(0.81)
Н	144	1S(0.82)
Η	145	1S(0.82)
Η	146	1S(0.83)
Η	147	1S(0.91)
Η	148	1S(0.83)
Η	149	1S( 0.85)
Н	150	1S( 0.86)
Н	151	1S(0.82)
Н	152	1S(0.87)
Η	153	1S( 0.84)
Η	154	1S( 0.83)
Η	155	1S( 0.82)
Н	156	1S( 0.84)
Η	157	1S( 0.82)
Η	158	1S( 0.83)
Η	159	1S( 0.83)
Ν	160	[core]2S( 1.36)2p( 4.29)3p( 0.02)
Ν	161	[core]2S( 1.37)2p( 4.31)3p( 0.02)
• •	1 - 0	

N 162 [core]2S(1.36)2p(4.32)3p(0.03)

NBO analysis skipped by request.

1|1|UNPC-E-C07CYG43054|SP|RHF|LANL2DZ|C68H86N6T12(2+)|MCDSTFM|28-Mar-2 013|0||# hf/lanl2dz guess=local pop=npa geom=connectivity||CSD ENTRY o fm27p-1||2,1|C,0,-0.621,11.017,13.349|H,0,-1.177,10.346,12.9|C,0,-0.73 9,10.785,14.852|C,0,-2.015,10.148,15.295|H,0,-2.016,10.067,16.252|H,0, -2.09,9.275,14.9|H,0,-2.757,10.69,15.018|C,0,0.148,11.089,17.013|C,0,0 .985,10.208,17.693|C,0,0.971,10.268,19.087|C,0,0.176,11.185,19.77|C,0, -0.627,12.047,19.077|C,0,-0.643,11.998,17.693|C,0,1.819,9.184,16.967|C ,0,1.205,7.812,17.086|H,0,1.219,7.534,18.005|H,0,1.706,7.189,16.556|H, 0,0.296,7.84,16.775|C,0,3.252,9.155,17.411|H,0,3.644,10.023,17.287|H,0 ,3.736,8.508,16.894|H,0,3.294,8.916,18.342|C,0,-1.123,12.389,12.928|C, 0,-1.683,12.464,11.553|H,0,-1.952,13.366,11.366|H,0,-2.443,11.882,11.4 85|H,0,-1.013,12.193,10.92|C,0,-1.289,14.701,13.374|C,0,-2.299,15.389, 14.053|C,0,-2.443,16.734,13.698|C,0,-1.672,17.353,12.804|C,0,-0.656,16 .666,12.16|C,0,-0.475,15.328,12.454|C,0,-3.102,14.741,15.141|C,0,-4.59 7,15.06,15.071|H,0,-4.721,16.012,15.051|H,0,-5.038,14.696,15.841|H,0,-4.969,14.672,14.275|C,0,-2.556,15.167,16.506|H,0,-1.629,14.924,16.571| H,0,-3.051,14.724,17.201|H,0,-2.647,16.117,16.605|C,0,0.815,10.804,12. 893|C,0,1.185,9.393,12.567|H,0,2.083,9.368,12.227|H,0,0.582,9.048,11.9 05|H,0,1.129,8.856,13.361|C,0,2.969,11.72,12.532|C,0,3.431,12.293,11.3 44|C,0,4.804,12.3,11.145|C,0,5.677,11.78,12.074|C,0,5.203,11.206,13.22 4|C,0,3.845,11.176,13.461|C,0,2.448,12.825,10.329|C,0,1.935,11.697,9.4 45|H,0,2.663,11.335,8.935|H,0,1.264,12.038,8.848|H,0,1.555,11.008,9.99 4|C,0,3.008,13.957,9.46|H,0,3.415,14.62,10.024|H,0,2.294,14.36,8.959|H ,0,3.663,13.603,8.857|H,0,1.538,9.696,19.606|H,0,0.278,11.174,20.699|H ,0,-1.078,12.575,19.405|H,0,-1.108,12.636,17.199|H,0,1.915,9.405,16.08 8|H,0,-3.034,17.078,14.214|H,0,-1.668,18.26,12.539|H,0,-0.128,17.012,1 1.593|H,0,0.176,14.842,12.038|H,0,-3.047,13.778,15.075|H,0,5.205,12.70 8,10.391|H,0,6.536,11.897,11.825|H,0,5.812,10.806,13.832|H,0,3.561,10. 76,14.23|H,0,1.65,13.154,10.819|N,0,0.214,11.175,15.584|N,0,-0.994,13. 352,13.751|N,0,1.576,11.81,12.849|T1,0,1.393,13.539,14.838|T1,0,2.419, 13.341,18.333 C,0,3.665,15.791,16.158 C,0,2.828,16.672,15.478 C,0,2.84 2,16.612,14.084|C,0,3.637,15.695,13.401|C,0,4.44,14.833,14.094|C,0,4.4 56,14.882,15.478|C,0,4.433,15.863,19.822|H,0,4.99,16.534,20.271|C,0,4. 551,16.095,18.319|C,0,5.827,16.732,17.876|H,0,5.829,16.813,16.919|H,0, 5.903,17.605,18.271|H,0,6.57,16.19,18.153|C,0,1.994,17.696,16.204|C,0, 2.608,19.068,16.085|H,0,2.594,19.346,15.166|H,0,2.107,19.691,16.615|H, 0,3.516,19.04,16.396|C,0,0.56,17.725,15.759|H,0,0.169,16.857,15.884|H, 0,0.077,18.373,16.277|H,0,0.519,17.964,14.829|C,0,4.936,14.491,20.243|

C,0,5.496,14.416,21.617|H,0,5.765,13.514,21.805|H,0,6.256,14.998,21.68 5|H,0,4.825,14.687,22.251|C,0,5.102,12.179,19.796|C,0,6.111,11.491,19. 118|C,0,6.256,10.146,19.473|C,0,5.485,9.527,20.367|C,0,4.469,10.214,21 .01|C,0,4.288,11.552,20.717|C,0,6.915,12.139,18.03|C,0,8.41,11.82,18.1 |H,0,8.533,10.868,18.12|H,0,8.851,12.184,17.33|H,0,8.781,12.208,18.896 |C,0,6.369,11.713,16.665|H,0,5.442,11.956,16.6|H,0,6.864,12.156,15.97| H,0,6.46,10.763,16.566|C,0,2.998,16.076,20.278|C,0,2.628,17.487,20.604 |H,0,1.73,17.512,20.944|H,0,3.231,17.832,21.266|H,0,2.684,18.025,19.81 |C,0,0.844,15.16,20.639|C,0,0.382,14.587,21.826|C,0,-0.992,14.58,22.02 5|C,0,-1.864,15.1,21.097|C,0,-1.39,15.674,19.947|C,0,-0.032,15.704,19. 71|C,0,1.365,14.055,22.841|C,0,1.878,15.183,23.725|H,0,1.15,15.545,24. 236|H,0,2.549,14.842,24.323|H,0,2.257,15.872,23.176|C,0,0.805,12.923,2 3.711|H,0,0.398,12.26,23.147|H,0,1.519,12.52,24.211|H,0,0.15,13.277,24 .314|H,0,2.275,17.184,13.565|H,0,3.535,15.706,12.472|H,0,4.891,14.305, 13.766|H,0,4.921,14.244,15.972|H,0,1.898,17.475,17.083|H,0,6.846,9.802 ,18.957|H,0,5.481,8.62,20.632|H,0,3.941,9.868,21.578|H,0,3.637,12.038, 21.133|H,0,6.86,13.102,18.096|H,0,-1.392,14.172,22.78|H,0,-2.723,14.98 3,21.345|H,0,-1.999,16.074,19.339|H,0,0.252,16.12,18.941|H,0,2.163,13. 726,22.352|N,0,3.599,15.705,17.587|N,0,4.807,13.528,19.42|N,0,2.237,15 .07,20.322||Version=IA32W-G09RevB.01|State=1-A|HF=-3049.1821674|RMSD=8 .302e-009|Dipole=-0.001815,-0.0012772,-0.0006786|Quadrupole=-12.769624 6,-18.9043313,31.6739558,9.3717472,25.6909605,22.5116277|PG=C01 [X(C68 H86N6T12)]||@

## IT IS THE BEHAVIOR AND DISTRIBUTION OF THE ELECTRONS AROUND THE NUCLEUS THAT GIVES THE FUNDAMENTAL CHARACTER OF AN ATOM: IT MUST BE THE SAME FOR MOLECULES.

-- C. A. COULSON, 1951

Job cpu time: 0 days 8 hours 52 minutes 45.0 seconds. File lengths (MBytes): RWF= 410 Int= 0 D2E= 0 Chk= 28 Scr= 1 Normal termination of Gaussian 09 at Thu Mar 28 20:58:12 2013.

## Appendix 4. Gaussian output for dication dimer, LANL2-DZ, DF-B3LYP.

******

Gaussian 09: IA32W-G09RevB.01 12-Aug-2010

03-Apr-2013

_____

_____

%chk=\\vdm09-g1.ds.man.ac.uk\HOME\Desktop\cation_only_edited.chk

# b3lyp/lanl2dz guess=local pop=npa geom=connectivity

Symbolic Z-matrix: Charge = 2 Multiplicity = 1 C(PDBName=C1,ResName=UNK,ResNum=1) -3.90302 0.0513 -2.73798 H(PDBName=H1,ResName=UNK,ResNum=1) -4.51453 0.0856 -3.50339 C(PDBName=C2,ResName=UNK,ResNum=1) -2.50325 -0.22743 -3.27621 C(PDBName=C3,ResName=UNK,ResNum=1) -2.46016 -0.97293 -4.56949

H(PDBName=H3A,ResName=UNK,ResNum=1) -1.54561 -1.12942 -4.81752 H(PDBName=H3B,ResName=UNK,ResNum=1) -2.8923 -0.45272 -5.25244 H(PDBName=H3C,ResName=UNK,ResNum=1) -2.91413 -1.81271 -4.47078 C(PDBName=C4,ResName=UNK,ResNum=1) -0.17044 -0.15078 -2.95803 C(PDBName=C5,ResName=UNK,ResNum=1) 0.68419 0.87238 -3.3604 C(PDBName=C6,ResName=UNK,ResNum=1) 2.01941 0.53322 -3.58217 C(PDBName=C7,ResName=UNK,ResNum=1) 2.48511 -0.76438 -3.38534 C(PDBName=C8,ResName=UNK,ResNum=1) 1.62687 -1.74696 -2.97785 C(PDBName=C9,ResName=UNK,ResNum=1) 0.29322 -1.44002 -2.76505 C(PDBName=C10,ResName=UNK,ResNum=1) 0.18424 2.27091 -3.61605 C(PDBName=C11,ResName=UNK,ResNum=1) 0.0753 2.53808 -5.09601 H(PDBName=H11A,ResName=UNK,ResNum=1) 0.95035 2.51358 -5.49065 H(PDBName=H11B,ResName=UNK,ResNum=1) -0.31535 3.40247 -5.2383 H(PDBName=H11C,ResName=UNK,ResNum=1) -0.47715 1.86506 -5.503 C(PDBName=C12,ResName=UNK,ResNum=1) 1.01133 3.33304 -2.95326 H(PDBName=H12A,ResName=UNK,ResNum=1) 1.03452 3.17711 -2.00584 H(PDBName=H12B,ResName=UNK,ResNum=1) 0.62748 4.19482 -3.12687 H(PDBName=H12C,ResName=UNK,ResNum=1) 1.90718 3.30608 -3.30307 C(PDBName=C13,ResName=UNK,ResNum=1) -4.39706 -1.03942 -1.80102 C(PDBName=C14,ResName=UNK,ResNum=1) -5.87023 -1.23739 -1.78056 H(PDBName=H14A,ResName=UNK,ResNum=1) -6.09179 -1.92487 -1.14872 H(PDBName=H14B,ResName=UNK,ResNum=1) -6.17033 -1.49622 -2.65457 H(PDBName=H14C,ResName=UNK,ResNum=1) -6.29922 -0.41714 -1.52328 C(PDBName=C15,ResName=UNK,ResNum=1) -3.93053 -2.58047 -0.07494 C(PDBName=C16,ResName=UNK,ResNum=1) -3.53748 -3.9179 -0.18112 C(PDBName=C17,ResName=UNK,ResNum=1) -3.8687 -4.72256 0.91369 C(PDBName=C18,ResName=UNK,ResNum=1) -4.48677 -4.27322 2.0059 C(PDBName=C19,ResName=UNK,ResNum=1) -4.84453 -2.93896 2.1095 C(PDBName=C20,ResName=UNK,ResNum=1) -4.56116 -2.09601 1.05188 C(PDBName=C21,ResName=UNK,ResNum=1) -2.74341 -4.41709 -1.35104 C(PDBName=C22,ResName=UNK,ResNum=1) -3.2185 -5.7723 -1.87959 H(PDBName=H22A,ResName=UNK,ResNum=1) -3.23733 -6.40816 -1.16027 H(PDBName=H22B,ResName=UNK,ResNum=1) -2.61728 -6.0782 -2.56138 H(PDBName=H22C,ResName=UNK,ResNum=1) -4.10069 -5.67953 -2.24793 C(PDBName=C23,ResName=UNK,ResNum=1) -1.26525 -4.51311 -0.96548 H(PDBName=H23A,ResName=UNK,ResNum=1) -0.95162 -3.65163 -0.67897 H(PDBName=H23B,ResName=UNK,ResNum=1) -0.75404 -4.80119 -1.72705 H(PDBName=H23C,ResName=UNK,ResNum=1) -1.16076 -5.14668 -0.25256 C(PDBName=C24,ResName=UNK,ResNum=1) -3.94505 1.41021 -2.05461 C(PDBName=C25,ResName=UNK,ResNum=1) -4.20594 2.57565 -2.95337 H(PDBName=H25A,ResName=UNK,ResNum=1) -4.28081 3.37547 -2.42676 H(PDBName=H25B,ResName=UNK,ResNum=1) -5.02288 2.43207 -3.43593 H(PDBName=H25C,ResName=UNK,ResNum=1) -3.47999 2.66918 -3.57483 C(PDBName=C26,ResName=UNK,ResNum=1) -3.65267 2.67773 -0.07548 C(PDBName=C27,ResName=UNK,ResNum=1) -4.64116 2.96957 0.86836 C(PDBName=C28,ResName=UNK,ResNum=1) -4.44627 4.09908 1.65003 C(PDBName=C29,ResName=UNK,ResNum=1) -3.3294 4.89303 1.51657 C(PDBName=C30,ResName=UNK,ResNum=1) -2.38075 4.60023 0.57264 C(PDBName=C31,ResName=UNK,ResNum=1) -2.53584 3.48772 -0.22705 C(PDBName=C32,ResName=UNK,ResNum=1) -5.87096 2.09948 0.9688 C(PDBName=C33,ResName=UNK,ResNum=1) -6.90447 2.51962 -0.06675 H(PDBName=H33A,ResName=UNK,ResNum=1) -7.20256 3.4118 0.1237 H(PDBName=H33B,ResName=UNK,ResNum=1) -7.65283 1.91808 -0.03451 H(PDBName=H33C,ResName=UNK,ResNum=1) -6.51008 2.49367 -0.94099 C(PDBName=C34,ResName=UNK,ResNum=1) -6.50534 2.08402 2.36433 H(PDBName=H34A,ResName=UNK,ResNum=1) -5.82567 1.91157 3.0213 H(PDBName=H34B,ResName=UNK,ResNum=1) -7.17142 1.39279 2.40624 H(PDBName=H34C,ResName=UNK,ResNum=1) -6.91284 2.93323 2.53967 H(PDBName=H6,ResName=UNK,ResNum=1) 2.65523 1.19992 -3.84539 H(PDBName=H7,ResName=UNK,ResNum=1) 3.40432 -0.8729 -3.51517 H(PDBName=H8,ResName=UNK,ResNum=1) 1.83432 -2.47498 -2.84854 H(PDBName=H9,ResName=UNK,ResNum=1) -0.28755 -2.06844 -2.39748

H(PDBName=H10,ResName=UNK,ResNum=1) -0.62366 2.40685 -3.21666 H(PDBName=H17,ResName=UNK,ResNum=1) -3.52705 -5.49686 0.78099 H(PDBName=H18,ResName=UNK,ResNum=1) -4.7063 -4.73006 2.80339 H(PDBName=H19,ResName=UNK,ResNum=1) -5.2273 -2.59646 2.78491 H(PDBName=H20,ResName=UNK,ResNum=1) -4.79531 -1.21432 1.08126 H(PDBName=H21,ResName=UNK,ResNum=1) -2.82683 -3.81171 -2.10023 H(PDBName=H28,ResName=UNK,ResNum=1) -5.04175 4.34478 2.34344 H(PDBName=H29,ResName=UNK,ResNum=1) -3.3227 5.56188 2.12168 H(PDBName=H30,ResName=UNK,ResNum=1) -1.64143 5.18372 0.4565 H(PDBName=H31,ResName=UNK,ResNum=1) -1.89342 3.33643 -0.86695 H(PDBName=H32,ResName=UNK,ResNum=1) -5.61291 1.17463 0.71738 N(PDBName=N1,ResName=UNK,ResNum=1) -1.51924 0.15405 -2.58171 N(PDBName=N2,ResName=UNK,ResNum=1) -3.53596 -1.65812 -1.096 N(PDBName=N3,ResName=UNK,ResNum=1) -3.73643 1.45227 -0.81051 Tl(PDBName=Tl1,ResName=UNK,ResNum=1) -1.81636 -0.09599 0.13569 Tl(PDBName=Tl1,ResName=UNK,ResNum=1) 1.81632 0.09545 -0.13607 C(PDBName=C4,ResName=UNK,ResNum=1) 0.17068 0.15103 2.95819 C(PDBName=C5,ResName=UNK,ResNum=1) -0.68394 -0.87212 3.36055 C(PDBName=C6,ResName=UNK,ResNum=1) -2.01917 -0.53297 3.58233 C(PDBName=C7,ResName=UNK,ResNum=1) -2.48487 0.76464 3.38549 C(PDBName=C8,ResName=UNK,ResNum=1) -1.62662 1.74722 2.978 C(PDBName=C9,ResName=UNK,ResNum=1) -0.29297 1.44028 2.76521 C(PDBName=C1,ResName=UNK,ResNum=1) 3.90298 -0.05184 2.7376 H(PDBName=H1,ResName=UNK,ResNum=1) 4.51477 -0.08534 3.50355 C(PDBName=C2,ResName=UNK,ResNum=1) 2.50321 0.22689 3.27583 C(PDBName=C3,ResName=UNK,ResNum=1) 2.46013 0.97239 4.56911 H(PDBName=H3A,ResName=UNK,ResNum=1) 1.54585 1.12967 4.81767 H(PDBName=H3B,ResName=UNK,ResNum=1) 2.89254 0.45297 5.2526 H(PDBName=H3C,ResName=UNK,ResNum=1) 2.91438 1.81296 4.47093 C(PDBName=C10,ResName=UNK,ResNum=1) -0.184 -2.27066 3.6162 C(PDBName=C11,ResName=UNK,ResNum=1) -0.07506 -2.53782 5.09617 H(PDBName=H11A,ResName=UNK,ResNum=1) -0.95011 -2.51333 5.49081 H(PDBName=H11B,ResName=UNK,ResNum=1) 0.31559 -3.40222 5.23846 H(PDBName=H11C,ResName=UNK,ResNum=1) 0.47711 -1.86561 5.50262 C(PDBName=C12,ResName=UNK,ResNum=1) -1.01233 -3.33337 2.95307 H(PDBName=H12A,ResName=UNK,ResNum=1) -1.03428 -3.17685 2.006 H(PDBName=H12B,ResName=UNK,ResNum=1) -0.62721 -4.19514 3.12785 H(PDBName=H12C,ResName=UNK,ResNum=1) -1.90694 -3.30583 3.30323 C(PDBName=C13,ResName=UNK,ResNum=1) 4.3973 1.03967 1.80117 C(PDBName=C14.ResName=UNK,ResNum=1) 5.86951 1.23785 1.78091 H(PDBName=H14A,ResName=UNK,ResNum=1) 6.09203 1.92512 1.14888 H(PDBName=H14B,ResName=UNK,ResNum=1) 6.16961 1.49668 2.65492 H(PDBName=H14C,ResName=UNK,ResNum=1) 6.29918 0.4166 1.5229 C(PDBName=C15,ResName=UNK,ResNum=1) 3.92981 2.58093 0.07529 C(PDBName=C16,ResName=UNK,ResNum=1) 3.53744 3.91736 0.18074 C(PDBName=C17,ResName=UNK,ResNum=1) 3.86894 4.72281 -0.91353 C(PDBName=C18,ResName=UNK,ResNum=1) 4.48701 4.27347 -2.00574 C(PDBName=C19,ResName=UNK,ResNum=1) 4.84381 2.93943 -2.10916 C(PDBName=C20,ResName=UNK,ResNum=1) 4.56141 2.09626 -1.05172 C(PDBName=C21,ResName=UNK,ResNum=1) 2.74365 4.41734 1.35119 C(PDBName=C22,ResName=UNK,ResNum=1) 3.21874 5.77256 1.87975 H(PDBName=H22A,ResName=UNK,ResNum=1) 3.2373 6.40761 1.15989 H(PDBName=H22B,ResName=UNK,ResNum=1) 2.61752 6.07845 2.56154 H(PDBName=H22C,ResName=UNK,ResNum=1) 4.10065 5.67899 2.24755 C(PDBName=C23,ResName=UNK,ResNum=1) 1.26549 4.51336 0.96564 H(PDBName=H23A,ResName=UNK,ResNum=1) 0.95186 3.65188 0.67912 H(PDBName=H23B,ResName=UNK,ResNum=1) 0.75428 4.80144 1.7272 H(PDBName=H23C,ResName=UNK,ResNum=1) 1.161 5.14693 0.25272 C(PDBName=C24,ResName=UNK,ResNum=1) 3.94529 -1.40996 2.05477 C(PDBName=C25,ResName=UNK,ResNum=1) 4.20618 -2.5754 2.95353 H(PDBName=H25A,ResName=UNK,ResNum=1) 4.28106 -3.37521 2.42691 H(PDBName=H25B,ResName=UNK,ResNum=1) 5.02312 -2.43182 3.43609

H(PDBName=H25C,ResName=UNK,ResNum=1) 3.48027 -2.66949 3.5758 C(PDBName=C26,ResName=UNK,ResNum=1) 3.65291 -2.67748 0.07563 C(PDBName=C27,ResName=UNK,ResNum=1) 4.64044 -2.96911 -0.86802 C(PDBName=C28,ResName=UNK,ResNum=1) 4.44527 -4.09941 -1.65022 C(PDBName=C29,ResName=UNK,ResNum=1) 3.32964 -4.89278 -1.51641 C(PDBName=C30,ResName=UNK,ResNum=1) 2.38099 -4.59998 -0.57248 C(PDBName=C31,ResName=UNK,ResNum=1) 2.53608 -3.48747 0.2272 C(PDBName=C32,ResName=UNK,ResNum=1) 5.87024 -2.09902 -0.96845 C(PDBName=C33,ResName=UNK,ResNum=1) 6.90375 -2.51915 0.06709 H(PDBName=H33A,ResName=UNK,ResNum=1) 7.2028 -3.41155 -0.12354 H(PDBName=H33B,ResName=UNK,ResNum=1) 7.65307 -1.91783 0.03466 H(PDBName=H33C,ResName=UNK,ResNum=1) 6.50908 -2.494 0.9408 C(PDBName=C34,ResName=UNK,ResNum=1) 6.50559 -2.08377 -2.36417 H(PDBName=H34A,ResName=UNK,ResNum=1) 5.82591 -1.91132 -3.02115 H(PDBName=H34B,ResName=UNK,ResNum=1) 7.1707 -1.39233 -2.40589 H(PDBName=H34C,ResName=UNK,ResNum=1) 6.91308 -2.93298 -2.53952 H(PDBName=H6,ResName=UNK,ResNum=1) -2.65499 -1.19966 3.84555 H(PDBName=H7,ResName=UNK,ResNum=1) -3.40407 0.87315 3.51532 H(PDBName=H8,ResName=UNK,ResNum=1) -1.83407 2.47523 2.8487 H(PDBName=H9.ResName=UNK.ResNum=1) 0.2878 2.06869 2.39764 H(PDBName=H10,ResName=UNK,ResNum=1) 0.62391 -2.4066 3.21681 H(PDBName=H17,ResName=UNK,ResNum=1) 3.52701 5.49632 -0.78137 H(PDBName=H18,ResName=UNK,ResNum=1) 4.70654 4.73031 -2.80323 H(PDBName=H19,ResName=UNK,ResNum=1) 5.22754 2.59672 -2.78475 H(PDBName=H20,ResName=UNK,ResNum=1) 4.79555 1.21458 -1.0811 H(PDBName=H21,ResName=UNK,ResNum=1) 2.82707 3.81196 2.10039 H(PDBName=H28,ResName=UNK,ResNum=1) 5.04199 -4.34452 -2.34329 H(PDBName=H29,ResName=UNK,ResNum=1) 3.32199 -5.56142 -2.12133 H(PDBName=H30,ResName=UNK,ResNum=1) 1.64167 -5.18347 -0.45634 H(PDBName=H31,ResName=UNK,ResNum=1) 1.89366 -3.33618 0.86711 H(PDBName=H32,ResName=UNK,ResNum=1) 5.61315 -1.17438 -0.71722 N(PDBName=N1,ResName=UNK,ResNum=1) 1.51948 -0.1538 2.58187 N(PDBName=N2,ResName=UNK,ResNum=1) 3.5362 1.65838 1.09615 N(PDBName=N3,ResName=UNK,ResNum=1) 3.73667 -1.45202 0.81066

Residue 1 PDB Number 1_0 UNK charge 0.00000000 ave dist 0.000 Stoichiometry C68H86N6Tl2(2+) Framework group C1[X(C68H86N6Tl2)] Deg. of freedom 480 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation:

Center	Atomi	c A	Atomic	Coordinate	s (Angstroms)
Number	Num	lber	Туре	X Y	Z
1	6	0	-3.903023	0.051295	-2.737981
2	1	0	-4.514533	0.085596	-3.503394
3	6	0	-2.503247	-0.227432	-3.276213
4	6	0	-2.460164	-0.972930	-4.569492
5	1	0	-1.545611	-1.129417	-4.817515
6	1	0	-2.892297	-0.452722	-5.252444
7	1	0	-2.914133	-1.812707	-4.470777
8	6	0	-0.170439	-0.150782	-2.958032
9	6	0	0.684185	0.872376	-3.360395
10	6	0	2.019408	0.533222	-3.582174
11	6	0	2.485112	-0.764383	-3.385337
12	6	0	1.626865	-1.746963	-2.977845
13	6	0	0.293215	-1.440024	-2.765050
14	6	0	0.184239	2.270912	-3.616048
15	6	0	0.075302	2.538076	-5.096013

16	1	0	0.950346	2.513578	-5.490651
17	1	0	-0.315350	3.402468	-5.238301
18	1	0	-0.477148	1.865062	-5.502998
19	6	0	1.011329	3.333035	-2.953263
20	1	0	1.034524	3.177106	-2.005839
21	1	0	0.627484	4.194823	-3.126870
22	1	0	1.907183	3.306084	-3.303069
23	6	0	-4.397058	-1.039420	-1.801017
24	6	0	-5.870231	-1.237389	-1.780559
25	1	0	-6.091786	-1.924870	-1.148722
26	1	0	-6.170325	-1.496216	-2.654573
27	1	0	-6.299217	-0.417141	-1.523277
28	6	0	-3.930526	-2.580467	-0.074942
29	6	0	-3.537481	-3.917900	-0.181117
30	6	0	-3.868700	-4.722562	0.913689
31	6	0	-4.486773	-4.273217	2.005895
32	6	0	-4.844529	-2.938962	2.109501
33	6	0	-4.561165	-2.096006	1.051875
34	6	0	-2.743405	-4.417091	-1.351036
35	6	0	-3.218501	-5.772304	-1.879589
36	1	0	-3.237334	-6.408158	-1.160273
37	1	0	-2.617282	-6.078198	-2.561382
38	1	0	-4.100692	-5.679533	-2.247930
39	6	0	-1.265249	-4.513108	-0.965484
40	1	0	-0.951616	-3.651630	-0.678966
41	1	0	-0.754039	-4.801185	-1.727045
42	1	0	-1.160762	-5.146678	-0.252564
43	6	0	-3.945046	1.410207	-2.054612
44	6	0	-4.205935	2.575653	-2.953371
45	1	0	-4.280814	3.375466	-2.426758
46	1	0	-5.022881	2.432070	-3.435929
47	1	0	-3.479994	2.669176	-3.574825
48	6	0	-3.652669	2.677734	-0.075475
49	6	0	-4.641162	2.969572	0.868363
50	6	0	-4.446268	4.099082	1.650030
51	6	0	-3.329395	4.893029	1.516565
52	6	0	-2.380753	4.600231	0.572637
53	6	0	-2.535840	3.487717	-0.227047
54	6	0	-5.870955	2.099481	0.968797
55	6	0	-6.904465	2.519616	-0.066748
56	1	0	-7.202563	3.411803	0.123697
57	1	0	-7.652825	1.918078	-0.034507
58	1	0	-6.510077	2.493668	-0.940994
59	6	0	-6.505344	2.084019	2.364325
60	1	0	-5.825671	1.911567	3.021302
61	1	0	-7.171417	1.392791	2.406236
62	1	0	-6.912835	2.933227	2.539671
63	1	0	2.655230	1.199916	-3.845393
64	1	0	3.404316	-0.872897	-3.515165
65	1	0	1.834315	-2.474982	-2.848538
66	1	0	-0.287553	-2.068439	-2.397481
67	1	0	-0.623664	2.406848	-3.216657
68	1	0	-3.527049	-5.496860	0.780988
69	1	0	-4.706301	-4.730062	2.803385
70	1	0	-5.227296	-2.596463	2.784907
71	1	0	-4.795310	-1.214323	1.081259
72	1	0	-2.826831	-3.811705	-2.100233
73	1	0	-5.041747	4.344775	2.343442
74	1	0	-3.322704	5.561882	2.121677
75	1	0	-1.641429	5.183719	0.456500
76	1	0	-1.893421	3.336427	-0.866954
17	1	0	-5.612911	1.174631	0.717379

78	7	0	-1.519237	0.154047	-2.581712
79	7	0	-3.535959	-1.658124	-1.095997
80	7	0	-3.736426	1.452274	-0.810506
81	81	0	-1.816362	-0.095993	0.135685
82	81	0	1.816323	0.095450	-0.136066
83	6	0	0.170681	0.151034	2.958188
84	6	0	-0.683944	-0.872124	3.360551
85	6	0	-2.019167	-0.532970	3.582331
86	6	0	-2.484871	0.764635	3.385494
87	6	0	-1.626623	1.747215	2.978002
88	6	0	-0.292974	1.440276	2.765207
89	6	0	3.902984	-0.051837	2.737600
90	1	0	4.514774	-0.085344	3.503551
91	6	0	2.503207	0.226889	3.275832
92	6	0	2.460125	0.972387	4.569111
93	1	0	1.545852	1.129669	4.817671
94	1	0	2.892539	0.452974	5.252601
95	1	0	2.914375	1.812959	4.470934
96	6	0	-0.183997	-2.270660	3.616204
97	6	0	-0.075061	-2.537824	5.096170
98	1	0	-0.950105	-2.513326	5,490807
99	1	Õ	0.315592	-3.402216	5.238458
100	1	0	0.477109	-1.865605	5.502617
101	6	Ő	-1.012327	-3.333367	2.953071
102	1	Ő	-1 034283	-3 176854	2.005995
102	1	0	-0.627206	-4 195139	3 127848
103	1	0	-1 906942	-3 305832	3 303225
104	6	0	4 397299	1.039672	1 801173
105	6	0	5 869514	1.037852	1 780905
107	1	0	6 092028	1.237032	1 1/8879
107	1	0	6 169608	1.925122	2 65/1918
100	1	0	6 299178	0.416598	1 522896
110	6	0	3 020808	2 580030	0.075287
111	6	0	3 537442	2.380950	0.180736
112	6	0	3 868942	A 722814	-0.913532
112	6	0	J.808942	4.722014	2 005730
117	6	0	4.407014	2 030425	2 100156
115	6	0	4.561407	2.939423	1 051710
115	6	0	4.301407	2.090238	1 351102
117	6	0	2.745047	4.417343	1.331192
110	1	0	3.210742	5.772550 6.407615	1.079740
110	1	0	2.237293	6.078450	2 561520
119	1	0	4 100652	0.078430 5 678000	2.301339
120	1	0	4.100033	J.076990 4 512261	2.247349
121	0	0	1.203490	4.313301	0.903040
122	1	0	0.931838	3.031002	0.079122
123	1	0	1 161002	4.001437 5.146020	1.727201
124	1	0	2.045299	1 400055	0.232721
125	0	0	5.945266	-1.409933	2.034709
120	0	0	4.200177	-2.575401	2.955528
127	1	0	4.281050	-3.3/5214	2.420914
128	1	0	5.023122	-2.431818	3.436086
129	l	0	3.480273	-2.669493	3.5/5803
130	0	0	3.052911	-2.077482	0.075052
131	0	0	4.040444	-2.969109	-0.808017
152	6	0	4.445269	-4.099414	-1.650222
155	6	0	3.329636	-4.892777	-1.516408
134	6	U	2.380994	-4.59997/9	-0.5/2480
135	6	0	2.536082	-3.48/465	0.227203
130	6	U	5.8/0238	-2.099018	-0.968451
137	6	0	6.903748	-2.519153	0.067093
138	1	0	7.202804	-3.411550	-0.123541
139	1	0	7.653067	-1.917826	0.034663

140	1	0	6.509079	-2.494000	0.940802		
141	6	0	6.505586	-2.083767	-2.364168		
142	1	0	5.825913	-1.911315	-3.021146		
143	1	0	7.170699	-1.392328	-2.405890		
144	1	0	0.913077	-2.932975	-2.559515		
146	1	0	-3.404074	0.873149	3.515322		
147	1	Ő	-1.834074	2.475234	2.848695		
148	1	0	0.287795	2.068691	2.397638		
149	1	0	0.623905	-2.406596	3.216814		
150	1	0	3.527009	5.496317	-0.781369		
151	1	0	4.706543	4.730314	-2.803228		
152	1	0	5.22/53/	2.396/13	-2./84/51		
153	1	0	2 827073	3 811957	2 100390		
155	1	0	5.041988	-4.344523	-2.343285		
156	1	0	3.321986	-5.561420	-2.121332		
157	1	0	1.641671	-5.183467	-0.456343		
158	1	0	1.893663	-3.336175	0.867111		
159	1	0	5.613153	-1.174379	-0.717222		
160	7	0	1.519479	-0.153795	2.581869		
101	7	0	3.330200	1.038370	1.090154		
	, 						
Rotationa	l consta	ants (Gl	HZ): 0.03	63398 0.	0248776 0.	.0221224	
Standard	basis: L	LANL2	DZ (5D, 7F)				
There are	e 874 s	ymmeti	y adapted ba	sis function	s of A symm	etry.	
Integral b	$\frac{1}{2}$ into	VIII be	262144 W0	ras long.			
Two-elec	tron int	eoral si	metry is tr	irned on			
874 basi	is functi	lons. $2$	254 primitive	e gaussians.	878 cartesiar	basis functions	
280 alph	na electi	ons	280 beta ele	ctrons			
nucle	ar repul	sion en	ergy 1483	8.12916044	58 Hartrees.		
NAtoms=	= 162 N	Active	= 162 NUni	q= 162 SFa	c = 1.00D + 00	NAtFMM= 50 NAO	KFM=T Big=T
One-elect	tron inte	egrals c	omputed usin	ng PRISM.			
I Symm	etry op	-1527	3 used in ECH	21nt. 1086464 I o	$nC_{2} = 12222$	$1 I_{op} D D = 411960$	
ECFIIII. I DataN·	DoStor	– 1337 – T Ma	vTD1 - 6 Le	1000404 Le n- 172	$IIC_{2} = 125554$	120 - 411000.	
NBasis=	874 R	edAO =	T NBF= $8$	74			
NBsUse=	= 874 1	.00D-0	6  NBFU = 8	374			
Defaultin	g to unj	oruned	grid for atom	ic number	31.		
Initial gue	ess orbi	tals wil	l be localized	l using meth	od 0.		
Harris fu	nctional	with I	ExCor=402	diagonalize	d for initial gu	less.	
ExpMin=	4.44D	-02 Exp	Max = 5.91D	0+03  ExpM	C = 2.05D + 02	! IAcc=2 IRadAn=	0  Acc Des = 0.00  D + 00
Harrok: ScaDEX-	-1000	= 402	AccDes = 0.0	000+00 1 000	1An = 0.11	Dov = 1	
Defaultin	$rac{1}{2}$ g to uni	oruned	grid for atom	ic number	81.		
FoFCou:	FMM=	F IPFla	g = 0 F	MFlag=	100000 FMFI	g1= 2001	
NFx	Flg=	0 E	oJE=T BraĽ	DBF=F KetE	BF=T FulRa	n=T	
Ome	ega= 0.	000000	0.000000 1	1.000000 0.	00000 0.000	0000 ICntrl= 500 IC	DpCl= 0
NM	at0= 1	NMat	S0= 1 NMa	atT0 = 0 N	MatD0 = 1 N	MtDS0 = 0 NMtDT	0= 0
IICe	ent=	4 N	Grid=	0.			
Petite list	used in	FOFC	)U.				
LOCIMO. Initial Tr	Using r	225225	05D_01 Initie	al Trace $\Delta - ($		∟0/1	
RMSG=0	0.21473	8963D-0	)6			04	
LocMO:	Using E	Boys me	ethod				
Initial Tra	ace = 0.6	513309	06D-01 Initia	al TraceA= (	).72931985D+	+02	
Initial Tra	ace=0.6	513309	06D-01 Initia	al TraceA= (	).72931985D+	-02	
Initial Tra	ace = 0.6	513309	)6D-01 Initia	al TraceA= (	).72931985D+	-02	
Localizat	10n faile	ed after	3  tries of  1	000 iteratio	ns each. Last	change = 0.10625022	D-05
	0.12345	'J20D-0	,,				

Initial guess orbital symmetries: (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A)The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Defaulting to unpruned grid for atomic number 81. SCF Done: E(RB3LYP) = -3072.05797944 A.U. after 14 cycles Convg = 0.5507D-08-V/T = 2.0090Population analysis using the SCF density. Orbital symmetries: (A)(A)(A)(A)

(A)	
(A)	
(A) $(A)$	
(A)	
(A)	
$(\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) $	
(A)	
$(\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) $	
$(\mathbf{A}) (\mathbf{A}) $	
(A)	
$(\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) (\Lambda) $	
(A)	
$(\mathbf{A}) (\mathbf{A}) $	
(A)	
(A)	
(A)	
(A) (A) (A) (A) (A) (A)	
The electronic state is 1-A.	
Alpha occ. eigenvalues14.51809 -14.51802 -14.51734 -14.51730 -14.512	294
Alpha occ. eigenvalues14.51287 -10.43823 -10.43815 -10.43781 -10.437	174
Alpha occ. eigenvalues10.43537 -10.43533 -10.39489 -10.39488 -10.386	560
Alpha occ. eigenvalues10.38651 -10.37996 -10.37992 -10.37832 -10.378	328
Alpha occ. eigenvalues10.36166 -10.36164 -10.34992 -10.34991 -10.346	564
Alpha occ. eigenvalues10.34655 -10.34594 -10.34591 -10.34257 -10.342	254
Alpha occ. eigenvalues10.34158 -10.34155 -10.33689 -10.33687 -10.334	461
Alpha occ. eigenvalues10.33457 -10.33256 -10.33256 -10.33056 -10.330	)55
Alpha occ. eigenvalues10.32482 -10.32481 -10.32466 -10.32461 -10.324	147
Alpha occ. eigenvalues10.32444 -10.32440 -10.32435 -10.32318 -10.323	317
Alpha occ. eigenvalues10.32264 -10.32262 -10.32147 -10.32147 -10.32147	44
Alpha occ eigenvalues10 32144 -10 32117 -10 32107 -10 31906 -10 319	297
Alpha occ. eigenvalues $= 10.32177 - 10.32107 - 10.31700 - 10.316$	221
Alpha occ. eigenvalues = 10.21042 -10.21040 -10.20020 -10.20013 -10.276 Alpha occ. eigenvalues = 10.27892 10.27828 10.27920 10.27519 10.275	504
$\frac{10.27005 - 10.27005 - 10.27005 - 10.27005 - 10.27027 - 10.27011 - 10.2701}{10.2004 - 1.157}$	713 76
Alpha occ. eigenvalues10.2/245 -10.2/245 -10.2/001 -10.26994 -1.157.	20
Aipna occ. eigenvalues $-1.15/16 - 1.13/51 - 1.13/39 - 1.132/8 - 1.132/6$	
Aipna occ. eigenvalues1.04561 -1.04488 -1.03414 -1.03321 -1.02859	
Alpha occ. eigenvalues1.02847 -0.99370 -0.99337 -0.99029 -0.99018	
Alpha occ. eigenvalues0.97657 -0.97651 -0.97223 -0.97218 -0.95595	
Alpha occ. eigenvalues0.95576 -0.95367 -0.95366 -0.93149 -0.93135	

Alpha	occ. eigenvalues	-0.92744	-0.92732	-0.92341	-0.92331	-0.92287
Alpha	occ. eigenvalues	-0.92278	-0.91463	-0.91429	-0.90795	-0.90737
Alpha	occ. eigenvalues	-0.90155	-0.90144	-0.89108	-0.89064	-0.88944
Alpha	occ. eigenvalues	-0.88941	-0.88807	-0.88704	-0.88696	-0.88663
Alpha	occ. eigenvalues	-0.88573	-0.88567	-0.87391	-0.87387	-0.86948
Alpha	occ. eigenvalues	-0.86944	-0.86602	-0.86598	-0.82440	-0.82439
Alpha	occ eigenvalues	-0.81670	-0.81648	-0.81542	-0.81505	-0.81034
Alpha	occ eigenvalues	-0.81008	-0.80503	-0.80/92	-0.80079	-0.80072
Alpha	occ. eigenvalues	0.76676	0.76646	0.76070	0.00075	0.75826
Alpha	occ. cigenvalues	0.75760	0.75202	0.75200	0.74504	0.73020
Alpha	occ. eigenvalues	-0.73709	-0.73303	-0.73299	-0.74304	-0.74483
Alpha	occ. eigenvalues	-0./3110	-0./3092	-0./0433	-0./0399	-0.69621
Alpha	occ. eigenvalues	-0.69591	-0.68097	-0.6/9//	-0.6//12	-0.67651
Alpha	occ. eigenvalues	-0.67024	-0.67012	-0.66699	-0.66682	-0.65952
Alpha	occ. eigenvalues	-0.65932	-0.65657	-0.65625	-0.64790	-0.64746
Alpha	occ. eigenvalues	-0.64563	-0.64550	-0.64247	-0.64206	-0.63954
Alpha	occ. eigenvalues	-0.63944	-0.63257	-0.63231	-0.63120	-0.63101
Alpha	occ. eigenvalues	-0.62743	-0.62721	-0.62596	-0.62548	-0.62076
Alpha	occ. eigenvalues	-0.62068	-0.61856	-0.61824	-0.61299	-0.61248
Alpha	occ. eigenvalues	-0.61145	-0.61113	-0.61051	-0.60979	-0.60731
Alpha	occ eigenvalues	-0 60706	-0 60400	-0 60375	-0 59966	-0 59962
Alpha	occ eigenvalues	-0 59702	-0 59467	-0 58807	-0 58760	-0 58115
Alpha	occ eigenvalues	-0 58090	-0 57680	-0 57659	-0 57377	-0 57317
Alpha	occ. cigenvalues	0.57173	0.57146	0.57060	0.57031	0.56826
Alpha	occ. eigenvalues	-0.57173	-0.57140	-0.57000	0.57031	-0.50820
Alpha	occ. eigenvalues	-0.30744	-0.30303	-0.30330	0 55594	-0.50105
Alpha	occ. eigenvalues	-0.56025	-0.55/95	-0.55/85	-0.55584	-0.55142
Alpha	occ. eigenvalues	-0.54786	-0.54428	-0.54408	-0.54184	-0.54056
Alpha	occ. eigenvalues	-0.53784	-0.53727	-0.53079	-0.52880	-0.52169
Alpha	occ. eigenvalues	-0.51965	-0.51805	-0.51765	-0.51116	-0.51022
Alpha	occ. eigenvalues	-0.50606	-0.50554	-0.50412	-0.50373	-0.50224
Alpha	occ. eigenvalues	-0.50065	-0.49592	-0.49523	-0.49371	-0.49171
Alpha	occ. eigenvalues	-0.49045	-0.48975	-0.48783	-0.48771	-0.48640
Alpha	occ. eigenvalues	-0.48514	-0.48139	-0.48105	-0.47900	-0.47821
Alpha	occ. eigenvalues	-0.46926	-0.46858	-0.46439	-0.46081	-0.45857
Alpha	occ. eigenvalues	-0.45814	-0.43850	-0.42198	-0.42106	-0.41993
Alpha	occ. eigenvalues	-0.40857	-0.40854	-0.40701	-0.40633	-0.40384
Alpha	occ. eigenvalues	-0.39574	-0.39191	-0.38793	-0.38724	-0.38377
Alpha	virt. eigenvalues	-0.20936	-0.20915	-0.20462	-0.20342	-0.19216
Alpha	virt eigenvalues	-0 18772	-0 18666	-0.18090	-0 17601	-0 17303
Alpha	virt eigenvalues	0.16757	0.16060	0.16102	0.15861	0.17303
Alpha	virt. eigenvalues	0.15467	0.15111	0.14017	0.14525	0.17234
Alpha	viit. eigenvalues	0.10717	0.12069	-0.14917	-0.14323	-0.14234
Alpha	viit. eigenvalues	-0.12/1/	-0.12008	-0.09140	-0.07700	-0.07369
Alpha	virt. eigenvalues	-0.00094	-0.00019	-0.05954	-0.05891	-0.0558/
Alpha	virt. eigenvalues	-0.05233	-0.04810	-0.046/6	-0.0414/	-0.03/1/
Alpha	virt. eigenvalues	-0.03411	-0.02844	-0.02623	-0.02181	-0.02158
Alpha	virt. eigenvalues	-0.018/3	-0.01836	-0.01791	-0.01698	-0.01402
Alpha	virt. eigenvalues	-0.01319	-0.00945	-0.00712	-0.00681	-0.00536
Alpha	virt. eigenvalues	-0.00287	-0.00256	-0.00078	0.00141	0.00144
Alpha	virt. eigenvalues	0.00457	0.00538	0.00647	0.00649	0.00675
Alpha	virt. eigenvalues	0.00847	0.01025	0.01224	0.01399	0.01890
Alpha	virt. eigenvalues	0.01902	0.01967	0.02221	0.02299	0.02507
Alpha	virt. eigenvalues	0.02648	0.02690	0.02772	0.03045	0.03148
Alpha	virt. eigenvalues	0.03302	0.03446	0.03523	0.03823	0.04042
Alpha	virt. eigenvalues	0.04317	0.04563	0.04716	0.04735	0.04788
Alpha	virt. eigenvalues	0.04861	0.05207	0.05296	0.05417	0.05529
Alnha	virt eigenvalues	0.05818	0.05949	0.06271	0.06278	0.06623
Alpha	virt eigenvalues	0.06676	0.06600	0.06006	0.07007	0.07036
Alaba	virt aigonvalues	0.00070	0.00099	0.00700	0.07751	0.07022
Alm	viit. eigenvalues	0.07111	0.07449	0.07341	0.07731	0.07700
Alpha	virt. eigenvalues	0.08001	0.08128	0.00110	0.00010	0.00460
Alpha	virt. eigenvalues	0.08861	0.0898/	0.09112	0.09218	0.09460
Alpha	virt. eigenvalues	0.09595	0.09943	0.09952	0.10013	0.10085
Alpha	virt. eigenvalues	0.10650	0.10699	0.10740	0.10869	0.10930
Alpha	virt. eigenvalues	0.11034	0.11147	0.11279	0.11529	0.11649

Alpha virt. eigenvalues	0.11659	0.11794	0.11855	0.12050	0.12117
Alpha virt. eigenvalues	0.12528	0.12656	0.12760	0.12922	0.12989
Alpha virt. eigenvalues	0.13170	0.13338	0.13517	0.13722	0.13802
Alpha virt. eigenvalues	0.13996	0.14226	0.14404	0.14470	0.14645
Alpha virt. eigenvalues	0.14916	0.15166	0.15267	0.15705	0.15770
Alpha virt. eigenvalues	0.16001	0.16081	0.16271	0.16387	0.16554
Alpha virt. eigenvalues	0.16602	0.16656	0.16860	0.16865	0.17101
Alpha virt. eigenvalues	0.17198	0.17475	0.17555	0.17750	0.17926
Alpha virt. eigenvalues	0.17993	0.18029	0.18324	0.18489	0.18682
Alpha virt. eigenvalues	0.18741	0.18857	0.18954	0.19036	0.19171
Alpha virt. eigenvalues	0.19327	0.19355	0.19726	0.19798	0.20036
Alpha virt. eigenvalues	0.20193	0.20204	0.20396	0.20408	0.20448
Alpha virt. eigenvalues	0.20756	0.20852	0.20978	0.21185	0.21321
Alpha virt. eigenvalues	0.21587	0.21592	0.21878	0.21904	0.22069
Alpha virt. eigenvalues	0.22449	0.22641	0.22990	0.23143	0.23240
Alpha virt. eigenvalues	0.23426	0.23614	0.23811	0.23904	0.23950
Alpha virt. eigenvalues	0.24115	0.24139	0.24388	0.24640	0.24709
Alpha virt. eigenvalues	0.24724	0.24803	0.24903	0.24991	0.25595
Alpha virt. eigenvalues	0.25618	0.25632	0.26003	0.26227	0.26277
Alpha virt. eigenvalues	0.26465	0.26508	0.26657	0.27045	0.27129
Alpha virt. eigenvalues	0.27165	0.27212	0.27253	0.27538	0.27952
Alpha virt. eigenvalues	0.28037	0.28045	0.28068	0.28190	0.28387
Alpha virt. eigenvalues	0.28411	0.28797	0.29082	0.29139	0.29555
Alpha virt. eigenvalues	0.29624	0.29750	0.29919	0.30079	0.30367
Alpha virt. eigenvalues	0.30593	0.30800	0.31071	0.31322	0.31479
Alpha virt. eigenvalues	0.31520	0.31565	0.31889	0.31973	0.32145
Alpha virt. eigenvalues	0.32149	0.32419	0.32490	0.32904	0.32919
Alpha virt. eigenvalues	0.32993	0.33473	0.33479	0.33548	0.34151
Alpha virt. eigenvalues	0.34259	0.34384	0.34483	0.34503	0.35066
Alpha virt. eigenvalues	0.35464	0.35693	0.36086	0.36304	0.36464
Alpha virt. eigenvalues	0.36664	0.36765	0.37043	0.37093	0.37152
Alpha virt. eigenvalues	0.37577	0.37621	0.37827	0.37989	0.38010
Alpha virt. eigenvalues	0.38406	0.38592	0.38643	0.38646	0.39189
Alpha virt. eigenvalues	0.39458	0.39670	0.39714	0.40141	0.40157
Alpha virt. eigenvalues	0.40491	0.40572	0.40729	0.40938	0.41347
Alpha virt. eigenvalues	0.41451	0.41579	0.41936	0.42097	0.42319
Alpha virt. eigenvalues	0.42386	0.42631	0.42669	0.42705	0.43325
Alpha virt. eigenvalues	0.43504	0.43640	0.43706	0.43969	0.44251
Alpha virt. eigenvalues	0.44324	0.44363	0.44771	0.44942	0.45069
Alpha virt. eigenvalues	0.45140	0.45205	0.45450	0.46186	0.46344
Alpha virt. eigenvalues	0.46457	0.46586	0.46972	0.47018	0.47321
Alpha virt. eigenvalues	0.47444	0.47574	0.48378	0.48413	0.48727
Alpha virt. eigenvalues	0.48773	0.49098	0.49244	0.49497	0.49730
Alpha virt. eigenvalues	0.50093	0.50183	0.50547	0.50611	0.51143
Alpha virt. eigenvalues	0.51391	0.51529	0.52429	0.52443	0.52776
Alpha virt. eigenvalues	0.52860	0.53273	0.53709	0.53782	0.54759
Alpha virt. eigenvalues	0.54847	0.55289	0.55437	0.56202	0.56414
Alpha virt. eigenvalues	0.56499	0.57230	0.57494	0.57754	0.57956
Alpha virt. eigenvalues	0.58280	0.58375	0.58821	0.58982	0.59249
Alpha virt. eigenvalues	0.59573	0.60239	0.60709	0.61146	0.61455
Alpha virt. eigenvalues	0.61651	0.61703	0.62241	0.62248	0.62440
Alpha virt. eigenvalues	0.62525	0.63265	0.63647	0.64072	0.64798
Alpha virt. eigenvalues	0.64942	0.65473	0.65767	0.65774	0.66250
Alpha virt. eigenvalues	0.67347	0.68057	0.68132	0.69071	0.69207
Alpha virt. eigenvalues	0.69672	0.69919	0.70735	0.71015	0.71201
Alpha virt. eigenvalues	0.71629	0.73334	0.73783	0.74693	0.74802
Alpha virt. eigenvalues	0.74974	0.75405	0.75878	0.77910	0.78093
Alpha virt. eigenvalues	0.80237	0.81578	0.83458	0.84315	0.84347
Alpha virt. eigenvalues	0.85357	0.87869	0.88538	0.88692	0.89460
Alpha virt. eigenvalues	0.92657	0.92863	0.93627	0.96740	0.98649
Alpha virt. eigenvalues	0.99402	0.99562	0.99970	1.00054	1.00220
Alpha virt. eigenvalues	1.00289	1.00975	1.01602	1.01908	1.02421

## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

	1 0 0 0 0 0	1 0 0 0 0 0	1 0 10 10	1 0 1 5 0 5	1 0 10 10
Alpha virt. eigenvalues	1.03000	1.03997	1.04210	1.04702	1.04962
Alpha virt. eigenvalues	1.05979	1.06223	1.06444	1.07249	1.07619
Alpha virt. eigenvalues	1.08465	1.08532	1.09459	1.09835	1.10183
Alpha virt. eigenvalues	1.10224	1.10941	1.11052	1.11325	1.11663
Alpha virt. eigenvalues	1.12082	1.12220	1.12378	1.12698	1.12905
Alpha virt. eigenvalues	1.12969	1.13949	1.14295	1.14324	1.14534
Alpha virt. eigenvalues	1.14569	1.14855	1.15212	1.15701	1.15770
Alpha virt. eigenvalues	1.15794	1.15901	1.16169	1.16759	1.16949
Alpha virt. eigenvalues	1.17017	1.17477	1.17611	1.17887	1.18307
Alpha virt. eigenvalues	1.18500	1.18508	1.19049	1.19188	1.19602
Alpha virt. eigenvalues	1.19770	1.20334	1.20553	1.20900	1.21069
Alpha virt. eigenvalues	1.21338	1.21478	1.21932	1.22192	1.22540
Alpha virt. eigenvalues	1.22852	1.22899	1.23497	1.23543	1.23921
Alpha virt. eigenvalues	1.24108	1.24345	1.24632	1.25332	1.25403
Alpha virt. eigenvalues	1.26279	1.26343	1.27136	1.27180	1.27341
Alpha virt. eigenvalues	1.27478	1.27666	1.28232	1.28434	1.28971
Alpha virt. eigenvalues	1.29354	1.29858	1.29920	1.30307	1.31105
Alpha virt. eigenvalues	1.31111	1.31501	1.31613	1.32025	1.32178
Alpha virt. eigenvalues	1.32844	1.33352	1.33383	1.33787	1.33984
Alpha virt. eigenvalues	1.35529	1.35534	1.35773	1.36179	1.36824
Alpha virt. eigenvalues	1.36889	1.37857	1.38193	1.38705	1.39545
Alpha virt. eigenvalues	1.39570	1.40821	1.41402	1.41666	1.41730
Alpha virt. eigenvalues	1.42215	1.42756	1.43488	1.44205	1.45233
Alpha virt. eigenvalues	1.45987	1.46965	1.47466	1.48410	1.48962
Alpha virt. eigenvalues	1.50054	1.50500	1.51207	1.51560	1.52074
Alpha virt. eigenvalues	1.53354	1.55025	1.55077	1.56166	1.56530
Alpha virt. eigenvalues	1.56925	1.57306	1.58205	1.58694	1.59198
Alpha virt. eigenvalues	1.59278	1.60676	1.61880	1.62417	1.64141
Alpha virt. eigenvalues	1.64840	1.65555	1.66559	1.69267	1.74599
Alpha virt. eigenvalues	1.75002	1.78851	1.78966	1.79909	1.81076
Alpha virt. eigenvalues	1.87930	1.89120	11.12065	11.15176	
· · · · ·					

Condensed to atoms (all electrons):

Mulliken atomic charges: 1

		-
1	С	-0.333911
2	Η	0.265782
3	С	0.127837
4	С	-0.780046
5	Η	0.297158
6	Η	0.284250
7	Η	0.281275
8	С	0.011102
9	С	0.327394
10	$\mathbf{C}$	-0.467888
11	$\mathbf{C}$	-0.339764
12	С	-0.536073
13	$\mathbf{C}$	-0.452126
14	$\mathbf{C}$	-0.288567
15	$\mathbf{C}$	-0.731062
16	Η	0.250191
17	Η	0.249865
18	Η	0.239525
19	С	-0.745451
20	Η	0.244420
21	Η	0.256114
22	Η	0.249806
23	С	0.135312
24	$\mathbf{C}$	-0.787881
25	Η	0.301723
26	Η	0.286571
27	Η	0.285099
28	С	0.034581

29	С	0.306330
20	C	0 467724
50	C	-0.407734
31	С	-0.308329
22	C	0.414001
52	C	-0.414991
33	C	-0.460677
24	Ĉ	0.070045
34	C	-0.272945
35	C	-0.740638
20		0.7 10050
36	Н	0.241202
37	Н	0 248146
20		0.210110
38	Н	0.254732
39	С	-0.758627
57		0.750027
40	Н	0.236766
<i>1</i> 1	н	0.251303
	11	0.231303
42	Н	0.255408
12	C	0 125836
45	C	0.123830
44	С	-0.782316
15	тт	0 200197
43	п	0.299187
46	Η	0.284487
17	ц	0 277726
4/	п	0.277720
48	C	0.086060
40	ā	0.2110/0
49	C	0.311069
50	C	-0.448951
<i>7</i> 1	õ	0.077576
51	C	-0.3//5/6
52	C	-0.261371
	õ	0.402240
53	C	-0.483340
54	С	-0.234559
	č	0.231357
55	C	-0.742056
56	Н	0.262206
		0.202200
57	Н	0.252734
58	н	0 238845
50		0.230043
59	C	-0.752076
60	н	0 233642
00	11	0.233042
61	Н	0.255805
62	н	0 2/17188
02	11	0.24/100
63	Н	0.330560
61	ц	0 222580
04	11	0.522569
65	Н	0.591807
66	н	0 355608
00	11	0.555070
67	Η	0.273663
68	н	0 384422
00	11	0.364422
69	Η	0.312428
70	ц	0 420651
70	11	0.420031
71	Η	0.372535
72	н	0.243027
12	11	0.243027
73	Н	0.327664
74	н	0 358/152
/ -	11	0.550+52
75	Н	0.307297
76	н	0 360020
/0	11	0.307720
77	Н	0.215491
78	N	-0 197911
70	11	-0.177711
79	Ν	-0.232535
80	N	-0 233008
00	11	0.233330
81	TI	0.650540
82	<b>T</b> 1	0 650548
02	- I I	0.0000-0
83	C	0.011362
84	С	0.327311
07	$\tilde{c}$	0.027011
85	C	-0.467876
86	С	-0 339763
07	č	0.526052
0/	U	-0.330032
88	С	-0.452201
80	С	-0 333159
07	C	-0.555150
90	Н	0.265199

<u>.</u>	0.105/01	
91 C	0.127634	
92 C	-0 780647	
02 11	0.207212	
95 П	0.297515	
94 H	0.284381	
95 H	0 281053	
	0.201035	
96 C	-0.289442	
97 C	-0.731310	
00 U	0.250160	
90 П	0.230100	
99 H	0.249821	
100 H	0.239983	
101 C	0.744721	
101 C	-0.744731	
102 H	0.244392	
103 H	0.255544	
104 U	0.250229	
104 П	0.230238	
105 C	0.135290	
106 C	-0.787938	
107 U	0.201910	
10/ П	0.301810	
108 H	0.286681	
109 H	0.284569	
110 C	0.03/285	
110 C	0.00+200	
111 C	0.306052	
112 C	-0.468198	
112 0	-0 308613	
115 C	-0.308013	
114 C	-0.413913	
115 C	-0.460742	
116 C	-0.273140	
110 C	-0.273140	
$\Pi / C$	-0.740243	
118 H	0.241122	
110 H	0 248072	
100 11	0.240072	
120 H	0.254763	
121 C	-0.758739	
122 H	0 236770	
122 II 102 II	0.250770	
123 H	0.251335	
124 H	0.255370	
125 C	0 126099	
120 0	0.720099	
126 C	-0.782435	
127 H	0.299201	
128 H	0 284571	
120 11	0.204571	
129 H	0.277579	
130 C	0.086418	
131 C	0 310248	
122 0	0.110210	
132 C	-0.448260	
133 C	-0.377588	
134 C	-0.261409	
135 C	0 /83//0	
155 C	-0.483449	
136 C	-0.235026	
137 C	-0.742096	
138 H	0.262066	
130 11	0.202000	
139 H	0.252513	
140 H	0.239148	
141 C	-0 752139	
140 17	0.752159	
142 H	0.233609	
143 H	0.255983	
144 H	0 247189	
145 11	0.220512	
145 H	0.330313	
146 H	0.322563	
147 H	0.591797	
1/0 TT	0.255710	
148 H	0.555/19	
149 H	0.273802	
150 H	0.385192	
151 U	0.312462	
131 H	0.312403	
152 H	0.419807	

0.372590
0.242978
0.327373
0.358736
0.307282
0.369913
0.215813
-0.197158
-0.231984
-0.233992
Mulliken atomic charges = 2.00000
n charges with hydrogens summed into heavy atoms:
1
-0.068129
0.127837
0.082638
0.011102
0.327394
-0.137327
-0.017175
0.055734
-0.096427
-0.014904
0.008519
0.004888
0.135312
0.085512
0.034581
0.306330
-0.083312
0.004099
0.005660
-0.088141
-0.029919
0.003442
-0.015150
0.125836
0.079084
0.086060
0.311069
-0.121287
-0.019123
0.045926
-0.113420
-0.019068
0.011729
-0.015441
-0.197911
-0.232333
-0.233770 0.650540
0.650548
0.011362
0.327311
-0 137363
-0.017201
0.055745
-0.096481
-0.096481 -0.067958
-0.096481 -0.067958 0.127634
-0.096481 -0.067958 0.127634 0.082099
-0.096481 -0.067958 0.127634 0.082099 -0.015640

97 C 0.008654 101 C 0.005442 105 C 0.135290 106 C 0.085122 110 C 0.034285 111 C 0.306052 112 C -0.083006 113 C 0.003850 114 C 0.005895 115 C -0.088153 116 C -0.030162 117 C 0.003713 121 C -0.015265 125 C 0.126099 126 C 0.078916 130 C 0.086418 131 C 0.310248 132 C -0.120887 133 C -0.018852 134 C 0.045873 135 C -0.113536 136 C -0.019213 137 C 0.011631 141 C -0.015358 160 N -0.197158 161 N -0.231984 162 N -0.233992 Sum of Mulliken charges with hydrogens summed into heavy atoms = 2.00000Electronic spatial extent (au):  $\langle R^{**2} \rangle =$ 55179.7615 2.0000 electrons Charge= Dipole moment (field-independent basis, Debye): X=-0.0008 Y= -0.0012 Z= -0.0030 Tot= 0.0033 Quadrupole moment (field-independent basis, Debye-Ang): -290.4308 YY= -377.6805 ZZ= XX= -373.5408 27.7707 YZ= XY =-5.3358 XZ= -0.3635 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 56.7866 YY= -30.4631 ZZ= -26.3234 XY =-5.3358 XZ= 27.7707 YZ= -0.3635 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0082 YYY= -0.1873 ZZZ= 0.0124 XYY= -0.04580.0306 XXZ= -0.0442 XZZ= XXY= -0.0317 YZZ= -0.0179YYZ= -0.0730 XYZ= -0.0507 Hexadecapole moment (field-independent basis, Debye-Ang**3): -30982.2777 YYYY= -20106.9176 ZZZZ= -14318.3487 XXXY= -630.0522 XXXX= XXXZ= 287.9859 YYYX= 164.9672 YYYZ= 260.4428 ZZZX= 536.5887 ZZZY =-241.5723 XXYY= -8751.7082 XXZZ= -7092.4410 YYZZ= -5618.2510 XXYZ= 141.7306 YYXZ= -307.9519 ZZXY= 80.4701 N-N= 1.483812916045D+04 E-N=-3.673304832783D+04 KE= 3.044672329488D+03 NATURAL ATOMIC ORBITAL AND NATURAL BOND ORBITAL ANALYSIS ******************************Gaussian NBO Version 3.1**************************** /RESON /: Allow strongly delocalized NBO set Analyzing the SCF density

Job title: CSD ENTRY ofm27p-1

Storage needed: 2371396 in NPA ( 33481086 available)

NATURAL POPULATIONS: Natural atomic orbital occupancies

NA	O A	tom N	o lang Typ	pe(AO) O	ccupancy	Energy
	 С	1 S	Cor(1S)	1 99882	-10 23427	
2	C	1 S	Val(2S)	0.96075	-0 35897	
3	C	1 S	Rvd(3S)	0.00111	1 35451	
4	C	1 b 1 by	Val(2n)	1 1 2 0 0 8	-0.26082	
5	C	1 pz	$\operatorname{Rvd}(3p)$	0.01055	0.392/3	
5	C	1 px	Val(2p)	1 07207	0.39243	
7	C	1 py	Var(2p) Pvd(3p)	0.00504	-0.28135	
0	C	1 py	Kyu(3p)	1 15114	0.34233	
0	C	1 pz	Val(2p) Pvd(3p)	0.01367	-0.24985	
7	C	i pz	Kyu( 5p)	0.01507	0.41505	
10	Н	2 S	Val(1S)	0.77092	0.01379	
11	Η	2 S	Ryd(2S)	0.00188	0.89805	
12	С	35	Cor(1S)	1 99900	-10 30754	
12	C	35	Val(2S)	0.85587	-0 32376	
1/	C	35	$\operatorname{Pvd}(3S)$	0.003507	0.94734	
14	C	3 5	$V_{\rm ol}(2n)$	0.00474	0.94734	
15	C	5 px	var(2p)	0.91499	-0.20014	
10	C	5 px	Kyu(3p)	0.00700	0.45204	
1/	C	5 py	var(2p)	0.84203	-0.27083	
18	C	3 py	Kyd(3p)	0.00798	0.35828	
19	C	3 pz	val(2p)	0.92087	-0.23319	
20	C	3 pz	Ryd(3p)	0.00677	0.41287	
21	С	4 S	Cor(1S)	1.99907	-10.16140	
22	С	4 S	Val(2S)	1.02345	-0.29132	
23	С	4 S	Ryd(3S)	0.00053	1.05488	
24	С	4 px	Val(2p)	1.26715	-0.20659	
25	Č	4 px	Rvd(3p)	0.00260	0.15957	
26	Ĉ	4 pv	Val(2n)	1.20848	-0.21458	
27	Ċ	4  pv	Rvd(3n)	0.00201	0 18319	
28	Č	4  pz	Val(2p)	1 13477	-0 23240	
29	C	4  pz	Ryd(3p)	0.00351	0.16823	
•	••			0 == 2 40	0.0000	
30	H	5 5	Val(IS)	0.77349	0.03085	
31	Н	58	Ryd(28)	0.00144	0.81496	
32	Н	6 S	Val(1S)	0.76876	0.02294	
33	Η	6 S	Ryd(2S)	0.00102	0.74571	
24	тт	7 0	$\mathbf{V}_{\mathbf{r}}\mathbf{l}(1\mathbf{C})$	0 770(2	0.02020	
34 25	н		Val(15)	0.77062	0.02020	
55	п	/ 3	Kyu( 25)	0.00101	0.73223	
36	С	8 S	Cor(1S)	1.99873	-10.25755	
37	С	8 S	Val(2S)	0.84207	-0.27531	
38	С	8 S	Rvd(3S)	0.00198	1.07008	
39	С	8 px	Val(2p)	0.89434	-0.20233	
40	C	8 px	Rvd(3p)	0.01412	0.57295	
41	C	8 pv	Val(2p)	1.07307	-0.21663	
42	C	8 pv	Rvd(3p)	0.00510	0.43334	
43	č	8 nz	Val(2n)	1.03116	-0.27444	
44	Č	8 pz	Ryd(3p)	0.00801	0.35060	
4.7	C	0.0	0. / 10	1 00001	10 222 40	
45	C	9 S	Cor(1S)	1.99891	-10.22240	
46	C	9 S	Val(2S)	0.89121	-0.28186	
47	C	9 S	Ryd(3S)	0.00175	1.12664	
48	C	9 px	Val(2p)	1.06187	-0.20170	
49	C	9 px	Ryd(3p)	0.00744	0.48019	
50	C	9 py	Val(2p)	1.06118	-0.21040	
51	С	9 py	Ryd(3p)	0.00959	0.58686	

52	С	9 pz	Val(2p)	0.98440	-0.25346
53	С	9 pz	Ryd(3p)	0.00685	0.39912
54	С	10 S	Cor(1S)	1.99906	-10.19632
55	С	10 S	Val(2S)	0.93745	-0.27267
56	С	10 S	Ryd(3S)	0.00130	1.02671
57	С	10 px	Val(2p)	1.10929	-0.16743
58	С	10 px	Ryd(3p)	0.00641	0.38470
59	С	10 py	Val(2p)	1.11083	-0.16791
60	С	10 py	Ryd(3p)	0.00448	0.46244
61	С	10 pz	Val(2p)	1.00019	-0.25693
62	С	10 pz	Ryd(3p)	0.00351	0.27207
63	С	11 S	Cor(1S)	1.99917	-10.19601
64	С	11 S	Val(2S)	0.93831	-0.25988
65	С	11 S	Ryd(3S)	0.00150	0.95053
66	С	11 px	Val(2p)	1.15915	-0.10801
67	С	11 px	Ryd(3p)	0.00685	0.43549
68	С	11 py	Val(2p)	1.04953	-0.18528
69	С	11 py	Ryd(3p)	0.00382	0.34433
70	С	11 pz	Val(2p)	1.00319	-0.25676
71	С	11 pz	Ryd(3p)	0.00372	0.28236
	~		~		
72	С	12 S	Cor(1S)	1.99858	-10.15233
73	С	12 S	Val(2S)	0.87393	-0.11866
74	С	12 S	Ryd(3S)	0.00108	0.96431
75	С	12 px	Val(2p)	1.06280	-0.17858
76	С	12 px	Ryd(3p)	0.00404	0.42785
77	С	12 py	Val(2p)	1.12700	-0.01159
78	С	12 py	Ryd(3p)	0.00713	0.33730
79	С	12 pz	Val(2p)	0.99869	-0.25361
80	С	12 pz	Ryd(3p)	0.00405	0.33470
~ .	~		~		
81	С	13 S	Cor(1S)	1.99904	-10.19692
82	С	13 S	Val(2S)	0.92823	-0.26055
83	С	13 S	Ryd(3S)	0.00138	1.08466
84	С	13 px	Val(2p)	1.10023	-0.17272
85	С	13 px	Ryd(3p)	0.00520	0.48594
86	C	13 py	Val(2p)	1.10399	-0.17481
87	C	13 py	Ryd(3p)	0.00724	0.37207
88	С	13 pz	Val(2p)	1.04828	-0.25589
89	С	13 pz	Ryd(3p)	0.00395	0.36796
00	C	14 0	$O_{\rm ext}(10)$	1.00007	10 17750
90	C	14 S	$\operatorname{Cor}(1S)$	1.99896	-10.17752
91	C	14 5	Val(2S)	0.91775	-0.24279
92	C	14 5	Kyd(3S)	0.00055	1.30081
93	C	14 px	val(2p)	1.14115	-0.139/3
94	C	14 px	Ryd(3p)	0.00867	0.33968
95	C	14 py	Val(2p)	1.01/31	-0.19/89
96	C	14 py	Kya(3p)	0.00434	0.33814
9/	C	14 pz	Val(2p)	1.04581	-0.18590
98	C	14 pz	Ryd(3p)	0.00315	0.39390
90	С	15 \$	Cor(1S)	1 99918	-10 11000
100	C	15 5	Val(2S)	1 01165	-0 23312
101	č	15 5	Rvd(3S)	0.00051	1 02956
102	c	15 D	Val(2n)	1 24284	-0 15573
102	c	15  px 15  px	Rvd(3n)	0.00248	0.16004
104	c	15  px 15  pv	Val(2p)	1 23533	-0 15386
105	c	15 py	Rvd(3n)	0.00279	0.1000
106	c	15 py	Val(2n)	1.07768	-0 18481
107	C	15 pz	Rvd(3n)	0.00290	0.18908
/	-	PL	) -( ⁻ P)		

108	H	16 S	Val(1S)	0.79821	0.05817
109	H	16 S	Ryd(2S)	0.00152	0.75032
110	H	17 S	Val(1S)	0.79391	0.06437
111	H	17 S	Ryd(2S)	0.00122	0.74153
112	H	18 S	Val(1S)	0.80358	0.05321
113	H	18 S	Ryd(2S)	0.00128	0.78190
114 115 116 117 118 119 120 121 122	C C C C C C C C C C	<ol> <li>S</li> <li>S</li> <li>S</li> <li>S</li> <li>P</li> <li>P</li></ol>	Cor( 1S) Val( 2S) Ryd( 3S) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p) Val( 2p) Ryd( 3p)	$\begin{array}{c} 1.99921 \\ 1.00349 \\ 0.00045 \\ 1.19655 \\ 0.00229 \\ 1.16494 \\ 0.00317 \\ 1.19914 \\ 0.00324 \end{array}$	-10.11942 -0.22629 1.06664 -0.16870 0.29795 -0.17342 0.29118 -0.16208 0.26417
123	H	20 S	Val(1S)	0.81143	0.04469
124	H	20 S	Ryd(2S)	0.00145	0.91511
125	H	21 S	Val(1S)	0.79308	0.06497
126	H	21 S	Ryd(2S)	0.00128	0.79256
127	H	22 S	Val(1S)	$0.80320 \\ 0.00180$	0.04837
128	H	22 S	Ryd(2S)		0.86595
129 130 131 132 133 134 135 136 137	C C C C C C C C C C	<ul> <li>23 S</li> <li>23 S</li> <li>23 S</li> <li>23 px</li> <li>23 px</li> <li>23 py</li> <li>23 py</li> <li>23 pz</li> <li>23 pz</li> </ul>	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	$\begin{array}{c} 1.99899\\ 0.85654\\ 0.00496\\ 0.94981\\ 0.00706\\ 0.86994\\ 0.00899\\ 0.85920\\ 0.00640\\ \end{array}$	-10.30473 -0.32328 0.98224 -0.20699 0.44214 -0.25263 0.38652 -0.25120 0.38854
138 139 140 141 142 143 144 145 146	C C C C C C C C C C	24 S 24 S 24 S 24 px 24 px 24 px 24 py 24 py 24 pz 24 pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	1.99907 1.02082 0.00055 1.10118 0.00413 1.25338 0.00213 1.25978 0.00217	-10.15620 -0.28520 1.08178 -0.23787 0.15620 -0.20370 0.16080 -0.20331 0.20372
147	H	25 S	Val(1S)	0.76956	$0.03800 \\ 0.82303$
148	H	25 S	Ryd(2S)	0.00130	
149	H	26 S	Val( 1S)	0.76802	0.02947
150	H	26 S	Ryd( 2S)	0.00108	0.75421
151	H	27 S	Val(1S)	0.77263	0.01826
152	H	27 S	Ryd(2S)	0.00117	0.81650
153	C	28 S	Cor( 1S)	1.99877	-10.24349
154	C	28 S	Val( 2S)	0.84459	-0.26332
155	C	28 S	Ryd( 3S)	0.00207	1.04583
156	C	28 px	Val( 2p)	1.04372	-0.25197

157	С	28 1	рх	Ryd(3p)	0.00666	0.40465
158	С	28 j	ру	Val(2p)	1.00567	-0.19710
159	С	28 j	ру	Ryd(3p)	0.00718	0.51745
160	С	28 j	pz	Val(2p)	0.95595	-0.20324
161	С	28 ]	pz	Ryd(3p)	0.01041	0.52898
162	С	29 \$	S	Cor(1S)	1.99899	-10.21076
163	С	29 \$	S	Val(2S)	0.89205	-0.26761
164	С	29 \$	S	Ryd(3S)	0.00139	1.11335
165	С	29 j	рх	Val(2p)	0.99405	-0.22967
166	С	29 1	рх	Ryd(3p)	0.00762	0.42570
167	С	29 j	ру	Val(2p)	1.04364	-0.18445
168	С	29 j	ру	Ryd(3p)	0.00654	0.48167
169	С	29 j	pz	Val(2p)	1.03886	-0.19866
170	С	29 j	pz	Ryd(3p)	0.00843	0.52924
171	С	30 \$	S	Cor(1S)	1.99889	-10.15233
172	С	30 \$	S	Val(2S)	0.89472	-0.16917
173	С	30 \$	S	Ryd(3S)	0.00093	0.97774
174	С	30 j	рх	Val(2p)	1.02190	-0.20503
175	С	30 j	рх	Ryd(3p)	0.00252	0.32440
176	С	30 j	ру	Val(2p)	1.14851	-0.08294
177	С	30 1	ру	Ryd(3p)	0.00768	0.26759
178	С	30 1	pz	Val(2p)	1.06639	-0.18198
179	С	30 1	pz	Ryd(3p)	0.00297	0.45086
180	С	31 \$	S	Cor(1S)	1.99921	-10.17727
181	С	31 \$	S	Val(2S)	0.93342	-0.23034
182	С	31 \$	S	Ryd(3S)	0.00089	0.89781
183	С	31 1	рх	Val(2p)	1.00626	-0.21900
184	С	31	px	Ryd(3p)	0.00298	0.27519
185	С	31 1	ру	Val(2p)	1.08341	-0.15648
186	С	31 1	ру	Ryd(3p)	0.00455	0.30994
187	С	31 1	pz	Val(2p)	1.12364	-0.11033
188	С	31 1	pz	Ryd(3p)	0.00541	0.34449
189	С	32 \$	S	Cor(1S)	1.99904	-10.16401
190	С	32 \$	S	Val(2S)	0.91220	-0.18502
191	С	32 \$	S	Ryd(3S)	0.00075	0.89437
192	С	32 1	рх	Val(2p)	1.02124	-0.20666
193	С	32 1	рх	Ryd(3p)	0.00402	0.26067
194	С	32 1	ру	Val(2p)	1.06117	-0.15001
195	С	32 1	ру	Ryd(3p)	0.00343	0.35270
196	С	32 1	pz	Val(2p)	1.09786	-0.10058
197	С	32 ]	pz	Ryd(3p)	0.00569	0.29191
198	С	33 \$	S	Cor(1S)	1.99907	-10.17873
199	С	33 \$	S	Val(2S)	0.92137	-0.23660
200	С	33 \$	S	Ryd(3S)	0.00121	1.01641
201	С	33 I	рх	Val(2p)	1.04295	-0.24337
202	С	33 I	рх	Ryd(3p)	0.00442	0.31812
203	С	33 1	ру	Val(2p)	1.15849	-0.11235
204	С	33 1	ру	Ryd(3p)	0.00683	0.51603
205	С	33 1	pz	Val(2p)	1.07167	-0.20609
206	С	33 j	pz	Ryd(3p)	0.00466	0.44128
207	С	34 \$	S	Cor(1S)	1.99911	-10.18966
208	С	34 \$	S	Val(2S)	0.94564	-0.28345
209	С	34 \$	S	Ryd(3S)	0.00052	1.35521
210	С	34 1	рх	Val(2p)	1.00836	-0.19886
211	С	34 j	рх	Ryd(3p)	0.00272	0.31802
212	С	34 1	ру	Val(2p)	1.08863	-0.18196
213	С	34 py	Ryd(3p)	0.00735	0.45107	
------------	--------	---------------------	--------------------------------------------------	----------	------------	
214	С	34 pz	Val(2p)	1.10051	-0.16176	
215	С	34 pz	Ryd(3p)	0.00587	0.27539	
		- 1	J			
216	С	35 S	Cor(1S)	1.99917	-10.11250	
217	Ĉ	35 S	Val(2S)	1.01313	-0.22724	
218	C	35 S	Rvd(3S)	0.00041	1 02022	
219	c	35 nx	Val(2n)	1 22944	-0 14792	
220	C	35  px	Rvd(3n)	0.00294	0.20060	
220	c	35 px	Val(2p)	1 10372	0.17052	
221	C	35 py	$\operatorname{Pud}(2p)$	0.00260	0.18602	
222	C	35 py	$V_{al}(3p)$	1 22101	0.15120	
223	C	25 pz	Var(2p) Pud(2p)	0.00240	0.12062	
224	C	55 pz	Kyu( 5p)	0.00249	0.18002	
225	ы	26 8	$V_{0}(1S)$	0 80572	0.05919	
223	п ц	26 S	Val(13) Pud(25)	0.00372	0.03818	
220	п	30 3	Kyu(25)	0.00141	0.77703	
227	тт	27 0	$\mathbf{V}_{\mathbf{r}}\mathbf{I}(1\mathbf{C})$	0 70524	0.07114	
227	н	3/ 3	Val(1S)	0.79524	0.07114	
228	Н	3/ 8	Ryd(2S)	0.00125	0.75152	
220		<b>2</b> 0 <b>G</b>	1.1.10	0 70 110	0.07405	
229	H	38 S	Val(IS)	0.79419	0.07425	
230	Н	38 S	Ryd(2S)	0.00118	0.74307	
	~		~			
231	С	39 S	Cor(1S)	1.99918	-10.12829	
232	С	39 S	Val(2S)	1.01080	-0.23849	
233	С	39 S	Ryd(3S)	0.00051	1.02927	
234	С	39 px	Val(2p)	1.09587	-0.19700	
235	С	39 px	Ryd(3p)	0.00379	0.37972	
236	С	39 pv	Val(2p)	1.22861	-0.15981	
237	C	39  pv	Rvd(3n)	0.00292	0 22824	
238	c	39 pz	Val(2p)	1 23561	-0.16171	
230	C	30 pz	$P_{rad}(2p)$	0.00227	0.32000	
239	C	39 pz	Kyu( 5p)	0.00227	0.32099	
240	н	40 S	Val(1S)	0.81581	0.03854	
240	и П	40 5	$\mathbf{P}_{\mathbf{M}}(\mathbf{1S})$	0.0150	0.03034	
241	11	40 3	Kyu( 25)	0.00150	0.89155	
242	ц	41 S	$V_{0}(1S)$	0 70/83	0.05650	
242	п П	41 5	Val(13) Pud(25)	0.79463	0.03039	
243	н	41 5	Ryd(25)	0.00138	0.77936	
244	тт	12 5	$\mathbf{V}_{2}\mathbf{I}(1\mathbf{C})$	0 70059	0.05420	
244	п	42 S	Val(15)	0.79938	0.03439	
245	Н	42 8	Ryd(2S)	0.00150	0.79942	
0.16	C	12 0	$\mathbf{G}$ (10)	1 00000	10 20 61 4	
246	C	43 8	Cor(1S)	1.99898	-10.30614	
247	C	43 S	Val(2S)	0.85448	-0.32225	
248	С	43 S	Ryd(3S)	0.00488	0.95167	
249	С	43 px	Val(2p)	0.80819	-0.29302	
250	С	43 px	Ryd(3p)	0.00761	0.34571	
251	С	43 py	Val(2p)	0.98559	-0.24260	
252	С	43 py	Ryd(3p)	0.00632	0.49835	
253	С	43 pz	Val(2p)	0.88388	-0.18050	
254	С	43 pz	Ryd(3p)	0.00802	0.42276	
		1	1/			
255	С	44 S	Cor(1S)	1.99907	-10.16054	
256	С	44 S	Val(2S)	1.02262	-0.29020	
257	Č	44 S	Rvd(3S)	0 00054	1 06163	
258	č	44 nv	Val(2n)	1 24258	-0 20525	
250	c	11 pr	$\mathbf{R}\mathbf{v}\mathbf{d}(2\mathbf{p})$	0.001/0	0.21500	
2J7 760		44 px	$V_{o1}(2p)$	1 16502	0.21333	
200 261	C	44 py	var(2p)	1.10323	-0.22720	
201		44 py	Kyu(3p)	1.005/9	0.10120	
262	C	44 pz	var(2p)	1.20513	-0.219/2	
263	С	44 pz	Kyd( 3p)	0.00276	0.13999	

264 265	H H	45 S 45 S	Val(1S) Ryd(2S)	0.77005 0.00126	0.03427 0.80851
266 267	H H	46 S 46 S	Val( 1S) Ryd( 2S)	0.77014 0.00100	0.02659 0.75232
268	Н	47 S	Val(1S)	0.77147	0.01884
269	н	4/ 5	Ryd(28)	0.00104	0.78255
270	C C	48 S	Cor(1S) Val(2S)	1.99878	-10.25139
271	C	40 S 18 S	$\operatorname{Pvd}(3S)$	0.04199	1.06407
272	C	40 5 48 pv	Val(2n)	1.07871	0.22305
273	C	40 pz	$\operatorname{Rvd}(2p)$	0.00511	0.43222
275	C	40  px 48  nv	Val(2p)	0.00311	-0 20131
276	c	40 py 48 nv	Rvd(3n)	0.00771	0.48783
270	C	48 pz	Val(2p)	1 01707	-0 23851
278	C	48 pz	Ryd $(3p)$	0.01077	0.55558
279	С	49 S	Cor(1S)	1.99897	-10.21149
280	С	49 S	Val(2S)	0.89039	-0.26733
281	С	49 S	Ryd(3S)	0.00140	1.11279
282	С	49 px	Val(2p)	1.04112	-0.20769
283	С	49 px	Ryd(3p)	0.00824	0.57463
284	С	49 py	Val(2p)	1.04258	-0.20741
285	С	49 py	Ryd(3p)	0.00685	0.44991
286	С	49 pz	Val(2p)	1.02408	-0.21424
287	С	49 pz	Ryd(3p)	0.00695	0.42913
288	С	50 S	Cor(1S)	1.99907	-10.17686
289	С	50 S	Val(2S)	0.93223	-0.24308
290	С	50 S	Ryd(3S)	0.00099	0.97926
291	С	50 px	Val(2p)	1.08847	-0.17199
292	С	50 px	Ryd(3p)	0.00423	0.36828
293	С	50 py	Val(2p)	1.04257	-0.19125
294	С	50 py	Ryd(3p)	0.00362	0.34058
295	С	50 pz	Val(2p)	1.08605	-0.17157
296	С	50 pz	Ryd(3p)	0.00545	0.28876
297	С	51 S	Cor(1S)	1.99914	-10.17026
298	С	51 S	Val(2S)	0.92654	-0.21781
299	С	51 S	Ryd(3S)	0.00073	0.88052
300	С	51 px	Val(2p)	1.03637	-0.18468
301	С	51 px	Ryd(3p)	0.00293	0.31452
302	C	51 py	Val(2p)	1.09676	-0.14756
303	C	51 py	Ryd(3p)	0.00566	0.26692
304	C	51 pz	Val(2p)	1.07130	-0.15510
305	С	51 pz	Ryd(3p)	0.00413	0.28887
306	C	52 S	Cor(1S)	1.99921	-10.18795
307	C	52 S	Val(2S)	0.93838	-0.24833
308	C	52 S	Ryd(3S)	0.00084	0.89380
309	C	52 px	Val(2p)	1.11394	-0.15476
310	C	52 px	Kyd(3p)	0.00645	0.41687
311	C	52 py	Val(2p)	1.06987	-0.16746
312 212	C	52 py	Kyd(3p)	0.00438	0.29831
313	C	52 pz	val(2p)	1.028/3	-0.20630
314	C	52 pz	Kyd( 3p)	0.00327	0.29916
315	С	53 S	Cor(1S)	1.99906	-10.18583
316	С	53 S	Val(2S)	0.92120	-0.24351
317	С	53 S	Ryd(3S)	0.00128	1.02224

318	С	53 p	ox Val(2p)	1.11282	-0.17221
319	С	53 p	ox Ryd(3p)	0.00641	0.40996
320	С	53 p	by Val(2p)	1.06101	-0.21870
321	С	53 p	y Ryd(3p)	0.00416	0.40047
322	С	53 p	vz Val(2p)	1.10248	-0.18765
323	С	53 p	z Ryd(3p)	0.00492	0.39497
224	G	<b>7</b> 4 6	G (10)	1 0001 6	10 10054
324	C	54 8	Cor(1S)	1.99916	-10.19254
325	C	54 8	S Val(2S)	0.95064	-0.29306
326	С	54 S	S Ryd(3S)	0.00052	1.37887
327	С	54 p	ox Val(2p)	1.02515	-0.19674
328	С	54 p	ox Ryd(3p)	0.00392	0.36320
329	С	54 p	by Val(2p)	1.13815	-0.15971
330	С	54 p	by Ryd(3p)	0.00680	0.30045
331	С	54 p	vz Val(2p)	1.02763	-0.19656
332	С	54 p	oz Ryd(3p)	0.00445	0.43287
333	С	55 9	Cor(1S)	1 99916	-10 11642
333	C	55 0	$V_{\rm el}(2S)$	1.01167	0.22017
225	C	55 0	$\mathbf{v}$ and $(2\mathbf{S})$	0.00050	-0.23017
222	C	55 S	$V_{\rm rel}(33)$	1.16121	1.04328
330	C	55 p	x val(2p)	1.16131	-0.16/52
337	C	55 p	x  Kyd(3p)	0.00285	0.19637
338	C	55 p	by Val(2p)	1.23887	-0.15362
339	С	55 p	by Ryd(3p)	0.00209	0.21422
340	С	55 p	oz Val(2p)	1.15310	-0.16396
341	С	55 p	oz Ryd(3p)	0.00324	0.21214
342	Н	56 \$	S Val(1S)	0.79315	0.07319
343	Η	56 \$	S Ryd(2S)	0.00160	0.76206
344	н	57 \$	S Val(1S)	0 79381	0.06715
345	Н	57 5	S = Rvd(2S)	0.00128	0.00713
545	11	57 5	5 Ryd(25)	0.00120	0.74570
346	Η	58 5	S Val(1S)	0.81631	0.04570
347	Η	58 \$	S Ryd(2S)	0.00155	0.88304
348	С	59.5	Cor(1S)	1 99918	-10 11448
3/0	c	50 5	$V_{\rm el}(2S)$	1.01244	0 22064
350	C	50 5	$\mathbf{F} = \mathbf{P} \mathbf{v} \mathbf{d} (\mathbf{2S})$	0.00045	1 03862
251	C	50 5	Val(33)	1 21585	0.15190
252	C	50 m	$\mathbf{x} = \mathbf{V} \mathbf{a} (2\mathbf{p})$	0.00202	-0.13189
332 252	C	59 p	X = Kyu(3p)	0.00292	0.21557
333	C	59 p	by $val(2p)$	1.24878	-0.14/84
354	C	59 p	by Ryd(3p)	0.00212	0.19897
333	C	59 p	z Val(2p)	1.10229	-0.1/624
356	С	59 p	oz Ryd(3p)	0.00313	0.19331
357	Н	60 5	S Val(1S)	0.80430	0.05717
358	Η	60 \$	S Ryd(2S)	0.00122	0.79814
350	ц	61	$\mathbf{S} = \mathbf{V}_{0}\mathbf{I}(1\mathbf{S})$	0 70010	0.07466
200	п	01	$\mathbf{S} = \mathbf{Val}(\mathbf{1S})$	0.79019	0.07400
360	н	61 3	5 Kyd(25)	0.00115	0.77483
361	Н	62 8	S Val(1S)	0.79736	0.06731
362	Н	62.5	S $Rvd(2S)$	0.00162	0 74359
002		0	, 11,0( 2.2)	0.00102	017 1007
363	Н	63 5	S Val(1S)	0 80495	0 07443
364	н	63 9	S = Rvd(2S)	0.00166	0.90368
504	11	05 L	, ityu(25)	0.00100	0.20200
365	н	64	Val(18)	0 81429	0 00000
366	ц	6/ 9	S = Rvd(2S)	0.01427	0.05500
500	11	0+ 1	, Kyu(23)	0.00103	0.05220
367	Н	65 5	S Val(1S)	0.89645	0.25763

368	Η	65	S	Ryd(2S)	0.00241	0.76964
260	тт	~	c	$V_{2}(10)$	0.01647	0.09225
369	H	66	2	val(15)	0.8164/	0.08335
370	н	00	3	Kyd( 25)	0.00212	0.94052
371	н	67	S	Val(1S)	0 83099	0 120/1
371	ц	67	S	$P_{vd}(2S)$	0.03077	0.12041
512	11	07	3	Kyu( 25)	0.00311	0.84525
373	н	68	S	Val(1S)	0 84688	0 18262
374	н	68	S	Rvd(2S)	0.00229	0.84793
071		00	5	nya( 25)	0.0022)	0.01795
375	Н	69	S	Val(1S)	0.80599	0.10969
376	Н	69	S	Ryd(2S)	0.00185	0.82832
				•		
377	Η	70	S	Val(1S)	0.85944	0.19019
378	Η	70	S	Ryd(2S)	0.00164	0.78101
379	Η	71	S	Val(1S)	0.83028	0.10282
380	Η	71	S	Ryd(2S)	0.00200	0.97501
201			a	TT 1/ 10	0.01000	0.05544
381	H	72	S	Val(1S)	0.81233	0.07566
382	Н	72	S	Ryd(2S)	0.00270	0.84079
202	тт	72	c	$\mathbf{V}_{\mathbf{c}}\mathbf{l}(1\mathbf{C})$	0.91006	0.00647
202	п ц	73	с С	Val(15) Dud(25)	0.01000	0.09047
304	п	15	3	Kyu( 25)	0.00108	0.03004
385	н	74	S	Val(1S)	0 82548	0 14707
386	н	74	S	Rvd(2S)	0.02340	0.14707
500	11	<i>,</i> ,	5	Rya( 25)	0.00100	0.00000
387	Н	75	S	Val(1S)	0.81182	0.08994
388	Н	75	ŝ	Rvd(2S)	0.00156	0.85032
389	Н	76	S	Val(1S)	0.82243	0.09643
390	Н	76	S	Ryd(2S)	0.00180	0.91401
391	Η	77	S	Val(1S)	0.81487	0.04036
392	Η	77	S	Ryd(2S)	0.00262	0.92009
393	N	78	S	Cor(1S)	1.99934	-14.33068
394	Ν	78	S	Val(2S)	1.35143	-0.70496
395	Ν	78	S	Ryd(3S)	0.00213	1.60489
396	Ν	78	px	Val(2p)	1.27342	-0.38750
397	N	78	px	Ryd(3p)	0.00533	0.81598
398	N	78	ру	Val(2p)	1.36611	-0.39498
399	N	78	ру	Ryd(3p)	0.00586	0.62585
400	N	78	pz	Val(2p)	1.57635	-0.42712
401	Ν	/8	pz	Ryd(3p)	0.01112	0.58931
102	N	70	S	Cor(19)	1 00036	-1/ 22501
402	IN N	70	2	Val( 28)	1.33330	-14.32391 _070670
403 404	N	70	S	$\operatorname{Rvd}(2S)$	0.00225	1 61380
-0+ 405	N	70	nv	Val( 25)	1 67828	_0 /3220
405 406	IN N	70	рл nv	v ar(2p) Rvd(2p)	0.01074	0.45229
400 407	N	70	PA DV	$V_{al}(2n)$	1 28212	-0 38/68
407 408	N	70	РУ DV	$\operatorname{Rvd}(2p)$	0.00716	0.30+00
400	N	79 79	РУ NZ	$V_{al}(2p)$	1 271/18	-0 38/190
410 410	N	70	PZ DZ	$\operatorname{Rvd}(3n)$	0.00/03	0.30490
-10	Τų	17	$\mathbf{P}_{\mathbf{\Gamma}}$	ryu( Jp)	0.00+05	0.70023
411	Ν	80	S	Cor(1S)	1.99932	-14.32952
412	N	80	S	Val(2S)	1.34865	-0.70525
413	N	80	S	Ryd(3S)	0.00234	1.60373
414	Ν	80	рх	Val(2p)	1.28046	-0.39229
				、 I /		

415	NT	00		$\mathbf{D}_{n-1}(2n)$	0.00570	0 (5207
415	IN	80	px	Ryd(3p)	0.00570	0.65387
416	Ν	80	ру	Val(2p)	1.55221	-0.40797
417	Ν	80	pv	Rvd(3p)	0.01127	0.78230
118	N	80	FJ 107	$V_{\rm ol}(2n)$	1 40781	0 41882
410	11	00	ΡZ	Var(2p)	1.40781	-0.41002
419	Ν	80	pz	Ryd(3p)	0.00628	0.64215
420	Tl	81	S	Val(6S)	1.85744	-0.44078
121	т1	81	S	Rvd(7S)	0.00024	10.05804
422	11 T1	01	5	$V_{al}(75)$	0.00024	0.10017
422	11	81	px	val( op)	0.16466	0.1891/
423	Tl	81	px	Ryd( 7p)	0.00725	0.55856
424	T1	81	py	Val(6p)	0.06333	-0.04354
425	T1	81	nv	Rvd(7n)	0.00370	0.26373
126	TI	Q1	РЈ 107	$V_{0}(6n)$	0.08044	0.01155
420	T1	01	ΡZ	var(0p)	0.00540	0.01133
427	11	81	pz	Kyd(/p)	0.00549	0.39030
428	Tl	81	dxy	Cor(5d)	1.99618	-0.88539
429	T1	81	dxy	Ryd(6d)	0.00014	1.46576
430	T1	81	dxz	Cor(5d)	1.99654	-0.88393
/31	TI	81	dvz	Pvd(6d)	0.00012	1 / 5010
420	11 TT1	01		$\operatorname{Kyu}(\operatorname{Ou})$	1.00707	0.00440
432	11	81	ayz	Cor(5d)	1.99/8/	-0.88448
433	Tl	81	dyz	Ryd( 6d)	0.00013	1.40965
434	T1	81	dx2y	2 Cor(5d)	1.99769	-0.88718
435	T1	81	$dx^2y$	$2 \operatorname{Rvd}(6d)$	0.00008	1.35619
136	TI	Q1	d72	Cor(5d)	1 00608	0.88202
430	11 TT1	01	1.0	$D_{1}(\zeta_{1})$	0.00010	-0.00292
437	11	81	dz2	Ryd( 6d)	0.00018	1.4/586
438	Tl	82	S	Val(6S)	1.85753	-0.44080
439	T1	82	S	Rvd(7S)	0.00024	10.05808
110	TI	82	nv	Val(6n)	0 16467	0 18921
441	11 TT1	02	рл	$\mathbf{v}_{al}(0\mathbf{p})$	0.10407	0.10721
441	11	82	px	Ryd(7p)	0.00725	0.55867
442	Tl	82	ру	Val( 6p)	0.06334	-0.04355
443	T1	82	ру	Ryd(7p)	0.00370	0.26373
444	T1	82	nz	Val(6p)	0.08945	0.01158
115	T1	82	P2	$P_{vd}(7n)$	0.00549	0 30023
445	11 T1	02	р <u>г</u>	$\operatorname{Cor}(5d)$	1.00(19	0.39023
440	11	02	uxy	Cor(30)	1.99018	-0.88540
447	TI	82	dxy	Ryd( 6d)	0.00014	1.46578
448	T1	82	dxz	Cor(5d)	1.99655	-0.88394
449	T1	82	dxz	Rvd(6d)	0.00012	1.45904
450	т1	82	dvz	Cor(5d)	1 99787	-0.88449
451	T1	02	dyz.	$D_{\rm ev} d(\mathcal{L}d)$	0.00012	1 400(2
451	11	82	dyz		0.00013	1.40962
452	ΤI	82	dx2y	² Cor( 5d)	1.99769	-0.88719
453	T1	82	dx2y	2 Ryd(6d)	0.00008	1.35624
454	T1	82	dz2	Cor(5d)	1.99698	-0.88293
455	T1	82	dz2	Ryd( 6d)	0.00018	1.47588
150	C	02	c	$C_{out}(10)$	1 00972	10 25755
456	C	83	3	Cor(15)	1.998/3	-10.25755
457	С	83	S	Val(2S)	0.84209	-0.27528
458	С	83	S	Ryd(3S)	0.00198	1.07011
459	С	83	nx	Val(2p)	0.89430	-0.20227
460	Ċ	83	p nv	Pud(3n)	0.01/12	0.57306
400	C	05	рл	Kyu(3p)	1.07206	0.37300
401	Č	03	ру	val(2p)	1.07500	-0.21001
462	С	83	ру	Ryd(3p)	0.00510	0.43338
463	С	83	pz	Val(2p)	1.03118	-0.27441
464	С	83	pz	Ryd(3p)	0.00801	0.35060
165	C	Q1	ç	Cor(19)	1 00901	10 22226
403	C	04	с С	COI(15)	1.77071	-10.22230
466	C	84	S	val(2S)	0.89121	-0.28185
467	С	84	S	Ryd(3S)	0.00175	1.12663
468	С	84	рх	Val(2n)	1.06189	-0.20169
469	Ċ	84	nx	Rvd(3n)	0.00743	0 48020
107		01	Р ^л	$V_{0}(2p)$	1 06122	0.10020
4/0	C	04	ру	var(2p)	1.00123	-0.21041
4/1	C	84	ру	Kyd( 3p)	0.00958	0.58681
472	С	84	pz	Val(2p)	0.98444	-0.25343

473	С	84	pz	Ryd(3p)	0.00685	0.39913
474	С	85	S	Cor(1S)	1.99906	-10.19629
475	С	85	S	Val(2S)	0.93745	-0.27265
476	Ċ	85	S	Rvd(3S)	0.00130	1 02666
170	č	85	nv	Val(2n)	1 10928	-0.16740
170	C	05	pr	Val(2p)	0.00641	-0.10740
4/8	C	85	рх	Kyd(Sp)	0.00641	0.38469
479	C	85	ру	Val(2p)	1.11083	-0.16788
480	С	85	ру	Ryd(3p)	0.00448	0.46245
481	С	85	pz	Val(2p)	1.00023	-0.25691
482	С	85	pz	Ryd(3p)	0.00351	0.27209
483	С	86	S	Cor(1S)	1.99917	-10.19598
181	Ĉ	86	ŝ	Val(2S)	0.03831	0 25085
105	C	86	c c	$\operatorname{Pud}(2S)$	0.00150	0.25905
405	C	00	3	Kyu(33)	0.00130	0.93037
486	C	80	рх	val(2p)	1.15915	-0.10/98
487	С	86	рх	Ryd(3p)	0.00685	0.43546
488	С	86	ру	Val(2p)	1.04953	-0.18525
489	С	86	ру	Ryd(3p)	0.00382	0.34432
490	С	86	pz	Val(2p)	1.00320	-0.25673
491	С	86	nz	Rvd(3n)	0.00372	0.28239
171	U	00	P2	nya( sp)	0.00372	0.2023)
492	С	87	S	Cor(1S)	1.99858	-10.15230
493	С	87	S	Val(2S)	0.87394	-0.11863
494	С	87	S	Ryd(3S)	0.00108	0.96434
495	С	87	nx	Val(2n)	1 06279	-0 17854
106	c	87	pri nv	Pud(2p)	0.00403	0.42785
407	C	07	pr nv	$V_{ol}(2p)$	1 12700	0.42705
497	C	07	ру	var(2p)	1.12700	-0.01130
498	C	8/	ру	Ryd(3p)	0.00/13	0.33/30
499	С	87	pz	Val(2p)	0.99868	-0.25357
500	С	87	pz	Ryd(3p)	0.00405	0.33473
501	С	88	S	Cor(1S)	1.99904	-10.19689
502	С	88	S	Val(2S)	0.92823	-0.26051
503	С	88	S	Rvd(3S)	0.00138	1.08470
504	Ĉ	88	nv	Val(2n)	1 10023	-0 17269
505	c	88	pn nv	Pure (2p) Pure (2p)	0.00520	0.17207
505	C	00	рх	Kyu(3p)	1.10200	0.40397
506	C	88	ру	val(2p)	1.10399	-0.1/4//
507	C	88	ру	Ryd(3p)	0.00724	0.37208
508	С	88	pz	Val(2p)	1.04827	-0.25585
509	С	88	pz	Rvd(3n)	0.00005	0.0000
510				11) U( 0 p)	0.00395	0.36803
	С	89	S	Cor(1S)	1.99882	-10.23425
511	C C	89 89	S S	Cor(1S) Val(2S)	0.00395 1.99882 0.96073	-10.23425 -0.35906
511 512	C C C	89 89 89	S S S	Cor(1S) Val(2S) Rvd(3S)	0.00395 1.99882 0.96073 0.00112	-10.23425 -0.35906 1 35468
511 512 513	C C C C	89 89 89 89	S S S	Cor(1S) Val(2S) Ryd(3S)	0.00395 1.99882 0.96073 0.00112	-10.23425 -0.35906 1.35468 0.26089
511 512 513	C C C C C	89 89 89 89	S S S px	Cor(1S) Val(2S) Ryd(3S) Val(2p)	0.00395 1.99882 0.96073 0.00112 1.12006	0.36803 -10.23425 -0.35906 1.35468 -0.26089
511 512 513 514	C C C C C C	89 89 89 89 89	S S S px px	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269
511 512 513 514 515	C C C C C C C	89 89 89 89 89 89 89	S S S px px py	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> </ul>	C C C C C C C C C C	89 89 89 89 89 89 89 89	S S px px py py	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> <li>517</li> </ul>	C C C C C C C C C	89 89 89 89 89 89 89 89	S S px px py py pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Val(2p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> <li>517</li> <li>518</li> </ul>	C C C C C C C C C C C	89 89 89 89 89 89 89 89 89	S S px px py py pz pz	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> <li>517</li> <li>518</li> <li>519</li> </ul>	C C C C C C C C C C H	<ul> <li>89</li> &lt;</ul>	S S px px py py pz pz S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> <li>517</li> <li>518</li> <li>519</li> <li>520</li> </ul>	C C C C C C C C C H H	<ul> <li>89</li> <li>90</li> <li>90</li> <li>90</li> </ul>	S S px px py py pz S S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791
511 512 513 514 515 516 517 518 519 520 521	C C C C C C C C C C C H H C	<ul> <li>89</li> <li>90</li> <li>90</li> <li>91</li> </ul>	S S px py py pz S S S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734
511 512 513 514 515 516 517 518 519 520 521 522	C C C C C C C C C C C C H H C C	<ul> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>90</li> <li>90</li> <li>91</li> <li>91</li> </ul>	S S px py py pz S S S S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S) Val(2S)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900 0.85553	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734 -0.32327
511 512 513 514 515 516 517 518 519 520 521 522 522	C C C C C C C C C C C H H C C C	<ul> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>90</li> <li>90</li> <li>91</li> <li>91</li> <li>91</li> </ul>	S S px py py pz S S S S S S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S) Val(2S) Pyd(2S)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900 0.85553 0.00475	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734 -0.32327 0.94721
511 512 513 514 515 516 517 518 519 520 521 522 523	CCCCCCCC CCCCCC HH CCCC	<ul> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>90</li> <li>90</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> </ul>	S S S px py py pz S S S S S S S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900 0.85553 0.00475	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734 -0.32327 0.94721 0.2425
511 512 513 514 515 516 517 518 519 520 521 522 523 524	CCCCCCCC CCCCCCC HH CCCCC	<ul> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>90</li> <li>90</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> </ul>	S S S px py py pz S S S S S S S S S	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S) Val(2p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900 0.85553 0.00475 0.91513	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734 -0.32327 0.94721 -0.20595
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> <li>517</li> <li>518</li> <li>519</li> <li>520</li> <li>521</li> <li>522</li> <li>523</li> <li>524</li> <li>525</li> </ul>	CCCCCCCC CCCCCC HH CCCCC C	<ul> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>90</li> <li>90</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> </ul>	S S S px py pz pz S S S S S S S S S px	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900 0.85553 0.00475 0.91513 0.00700	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734 -0.32327 0.94721 -0.20595 0.45230
<ul> <li>511</li> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> <li>517</li> <li>518</li> <li>519</li> <li>520</li> <li>521</li> <li>522</li> <li>523</li> <li>524</li> <li>525</li> <li>526</li> </ul>	CCCCCCCC CCCCCCC HH CCCCCC C	<ul> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>89</li> <li>90</li> <li>90</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> <li>91</li> </ul>	S S S px py pz S S S S S S S S S px py py	Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(1S) Ryd(2S) Cor(1S) Val(2S) Ryd(3S) Val(2p) Ryd(3p) Val(2p) Ryd(3p) Val(2p)	0.00395 1.99882 0.96073 0.00112 1.12006 0.01055 1.07303 0.00594 1.15122 0.01368 0.77074 0.00188 1.99900 0.85553 0.00475 0.91513 0.00700 0.84216	0.36803 -10.23425 -0.35906 1.35468 -0.26089 0.39269 -0.28127 0.34303 -0.24995 0.41420 0.01322 0.89791 -10.30734 -0.32327 0.94721 -0.20595 0.45230 -0.27678

528	С	91 j	pz Val	l( 2p)	0.92107	-0.23311
529	С	91	, Dz Ry	d(3p)	0.00677	0.41277
				× 1/		
530	С	92.5	S Cor	(1S)	1.99907	-10.16149
531	C	92 9	S Val	(2S)	1 02359	-0 29153
532	C	92 9	S Rvc	(25)	0.00053	1 05528
532	c	02 1	ov Vo	l(2n)	1 26716	0.20660
524	C	02 1	μη να αν Βυ	d(2p)	0.00260	-0.20000
534	C	92	ра Ку	u(3p)	1 20051	0.13974
555	C	92 ]	py va	I(2p)	1.20851	-0.214//
536	С	92 1	py Ry	d(3p)	0.00201	0.18325
537	С	92 ]	pz Val	l( 2p)	1.13485	-0.23226
538	С	92 ]	pz Ry	d( 3p)	0.00351	0.16820
539	Η	93	S Val	(1S)	0.77348	0.03100
540	Η	93	S Rya	l(2S)	0.00144	0.81483
541	Η	94	S Val	(1S)	0.76875	0.02302
542	Н	94	S Rvo	$\dot{1}(2S)$	0.00102	0.74572
-						
543	н	95	s Val	(1S)	0 77045	0.01954
544	и П	05		4(2S)	0.77045	0.75255
544	11	95 1	S Kyt	1(23)	0.00101	0.75255
515	C	00	с.,	(10)	1 00906	10 17764
545	C	96 3	S Cor	(15)	1.99896	-10.17/64
546	C	96 \$	S Val	(28)	0.91799	-0.24298
547	С	96 \$	S Ryc	I(3S)	0.00053	1.36676
548	С	96 j	px Va	l( 2p)	1.14093	-0.13967
549	С	96 j	px Ry	d( 3p)	0.00867	0.33981
550	С	96 j	py Va	l( 2p)	1.01715	-0.19792
551	С	96 1	oy Ry	d( 3p)	0.00434	0.33816
552	С	96 1	oz Val	l(2p)	1.04571	-0.18587
553	С	96 1	bz Rve	d(3n)	0.00315	0.39386
	-	1	<i>j</i>	-(-F)		
554	С	97 9	S Cor	(1S)	1 99918	-10 11970
555	c	97	5 001 S Val	(2S)	1.011/15	-0 23272
556	C	07 9		(25)	0.00051	1.02051
550	C	97	з кус	1(33)	1.040031	0.155(0
557	C	97	px va	I(2p)	1.24287	-0.15560
558	C	9/ ]	рх ку	d(3p)	0.00248	0.16005
559	С	971	py Va	l(2p)	1.23538	-0.153/3
560	С	97 ]	py Ry	d( 3p)	0.00279	0.20108
561	С	97 j	pz Val	l( 2p)	1.07776	-0.18477
562	С	97 j	pz Rye	d( 3p)	0.00290	0.18913
563	Η	98	S Val	(1S)	0.79820	0.05812
564	Η	98	S Rya	1(2S)	0.00151	0.75051
			2	` '		
565	Н	99	S Val	(1S)	0.79391	0.06430
566	н	99	$S R_{V}$	1(2S)	0.00122	0 74169
500	11	<i>))</i> ,	5 Ky	1(20)	0.00122	0.74107
567	ц	100	s Vo	1(15)	0 00260	0.05417
501	п	100	S Va	1(12)	0.00100	0.03417
308	н		з ку	$(1 \times 3)$		
		100	-	a( <u>-</u> 2)	0.00120	8 0.78147
	~	100	~ ~		0.00120	8 0.78147
569	C	101	S Co	r(1S)	1.99921	-10.11945
569 570	C C	101 101	S Co S Va	r(1S) l(2S)	1.99921 1.00366	-10.11945 -0.22634
569 570 571	C C C	101 101 101	S Co S Va S Ry	r(1S) l(2S) d(3S)	1.99921 1.00366 0.00045	-10.11945 -0.22634 5 1.06644
569 570 571 572	C C C C	101 101 101 101	S Co S Va S Ry px Va	r(1S) l(2S) d(3S) ul(2p)	1.99921 1.00366 0.00045 1.19644	-10.11945 -0.22634 5 1.06644 -0.16836
569 570 571 572 573	C C C C C C	101 101 101 101 101	S Co S Va S Ry px Va px Ry	r(1S) l(2S) d(3S) l(2p) vd(3p)	1.99921 1.00366 0.00045 1.19644 0.00229	-10.11945 -0.22634 5 1.06644 4 -0.16836 9 0.29822
569 570 571 572 573 574	C C C C C C C C C	101 101 101 101 101 101	S Co S Va S Ry px Va px Ry py Va	r(1S) l(2S) d(3S) d(2p) rd(3p) d(2p)	1.99921 1.00366 0.00045 1.19644 0.00229 1.16473	-10.11945 -0.22634 5 1.06644 4 -0.16836 9 0.29822 3 -0.17379
569 570 571 572 573 574 575	C C C C C C C C C C C C C	101 101 101 101 101 101 101	S Co S Va S Ry px Va px Ry py Va py Ry	r(1S) l(2S) d(3S) d(2p) rd(3p) d(2p) rd(3p)	1.99921 1.00366 0.00045 1.19644 0.0022 1.16473 0.0031	-10.11945 -0.22634 -0.16836 -0.16836 -0.29822 -0.17379 -0.29128
569 570 571 572 573 574 575 576	CCCCCCCC	101 101 101 101 101 101 101 101	S Co S Va S Ry px Va px Ry py Va py Ry py Ry	r(1S) l(2S) d(3S) d(2p) vd(3p) ul(2p) vd(3p) ul(2p) vd(3p) ll(2p)	1.99921 1.00366 0.00045 1.19644 0.00229 1.16473 0.00317	-10.11945 -0.22634 -0.16836 -0.16836 -0.16836 -0.17379 -0.29128 -0.16187
569 570 571 572 573 574 575 576 577	CCCCCCCCCC	101 101 101 101 101 101 101 101	S Co S Va S Ry px Va px Ry py Va py Ry pz Va pz Va	r(1S) l(2S) d(3S) d(2p) rd(3p) d(2p) rd(3p) l(2p) rd(3p)	1.99921 1.00366 0.00045 1.19644 0.0022 1.16473 0.0031 1.19905 0.0032	-10.11945 -0.22634 -0.16836 -0.29822 -0.16836 -0.17379 -0.29128 -0.16187 -0.26425
569 570 571 572 573 574 575 576 577	CCCCCCCCC	101 101 101 101 101 101 101 101 101	S Co S Va S Ry px Va px Ry py Va py Ry pz Va pz Ry	r(1S) l(2S) d(3S) d(2p) rd(3p) d(2p) rd(3p) l(2p) rd(3p) l(2p) rd(3p)	1.99921 1.00366 0.00045 1.19644 0.0022 1.16473 0.0031 1.19905 0.0032	-10.11945 -0.22634 -0.16836 -0.29822 -0.16836 -0.29822 -0.17379 -0.29128 -0.16187 -0.26425
569 570 571 572 573 574 575 576 577	C C C C C C C C C C C C C C C C C C C	101 101 101 101 101 101 101 101 101	S Co S Va S Ry px Va px Ry py Va py Ry pz Va pz Ry	r(1S) l(2S) d(3S) d(2p) rd(3p) d(2p) rd(3p) d(2p) rd(3p) d(2p)	1.99921 1.00366 0.00045 1.19644 0.0022 1.16473 0.0031 1.19905 0.00324	-10.11945 -0.22634 5 1.06644 -0.16836 9 0.29822 3 -0.17379 7 0.29128 -0.16187 4 0.26425

579	H 102 S	Ryd(2S)	0.00145	0.91487
580	U 103 S	$V_{0}l(1S)$	0 70304	0.06411
581	H 103 S	Val(1S) Pvd(2S)	0.79304	0.70275
501	11 105 5	Kyu( 25)	0.00120	0.79275
582	H 104 S	Val(1S)	0.80335	0.04938
583	H 104 S	Rvd(2S)	0.00180	0.86514
505	11 101 5	Ryu( 25)	0.00100	0.00511
584	C 105 S	Cor(1S)	1.99899	-10.30463
585	C 105 S	Val(2S)	0.85632	-0.32304
586	C 105 S	Rvd(3S)	0.00495	0.98205
587	C 105 px	Val(2p)	0.94982	-0.20687
588	C 105 px	Ryd(3p)	0.00705	0.44203
589	C 105 py	Val(2p)	0.87013	-0.25259
590	C 105 py	Ryd(3p)	0.00899	0.38653
591	C 105 pz	Val(2p)	0.85917	-0.25120
592	C 105 pz	Ryd(3p)	0.00640	0.38851
	-	•		
593	C 106 S	Cor(1S)	1.99907	-10.15638
594	C 106 S	Val(2S)	1.02100	-0.28574
595	C 106 S	Ryd(3S)	0.00055	1.08197
596	C 106 px	Val(2p)	1.10160	-0.23796
597	C 106 px	Ryd(3p)	0.00412	0.15602
598	C 106 py	Val(2p)	1.25336	-0.20419
599	C 106 py	Ryd(3p)	0.00213	0.16076
600	C 106 pz	Val(2p)	1.25978	-0.20334
601	C 106 pz	Ryd(3p)	0.00218	0.20360
602	H 107 S	Val(1S)	0.76945	0.03791
603	H 107 S	Ryd(2S)	0.00130	0.82303
<b>CO 1</b>	II 100 G	V 1( 10)	0.7/705	0.00055
604	H 108 S	Val(1S)	0.76795	0.02955
005	H 108 S	Kyd(25)	0.00108	0./541/
606	H 109 S	Val(1S)	077231	0.01690
607	H 109 S	Rvd(2S)	0.00117	0.81740
	11 107 5	11)0(22)	0.00117	01017.10
608	C 110 S	Cor(1S)	1.99877	-10.24339
609	C 110 S	Val(2S)	0.84438	-0.26301
610	C 110 S	Ryd(3S)	0.00207	1.04583
611	C 110 px	Val(2p)	1.04373	-0.25195
612	C 110 px	Ryd(3p)	0.00667	0.40467
613	C 110 py	Val(2p)	1.00600	-0.19703
614	C 110 py	Ryd(3p)	0.00718	0.51731
615	C 110 pz	Val(2p)	0.95597	-0.20327
616	C 110 pz	Ryd(3p)	0.01041	0.52894
617	C 111 S	Cor(1S)	1.99899	-10.21059
618	C 111 S	Val(2S)	0.89193	-0.26732
619	C 111 S	Rvd(3S)	0.00140	1.11363
620	C 111 px	Val(2p)	0.99416	-0.22964
621	C 111 px	Rvd(3p)	0.00763	0.42590
622	C 111 py	Val(2p)	1.04396	-0.18434
623	C 111 py	Ryd(3p)	0.00654	0.48151
624	C 111 pz	Val(2p)	1.03891	-0.19867
625	C 111 pz	Ryd(3p)	0.00844	0.52943
626	C 112 S	Cor(1S)	1.99889	-10.15219
627	C 112 S	Val(2S)	0.89454	-0.16865
628	C 112 S	Ryd(3S)	0.00093	0.97792
629	C 112 px	Val(2p)	1.02185	-0.20484
630	C 112 px	Ryd(3p)	0.00252	0.32441

631	C 112 pv	Val(2n)	1 1/1828	-0.08255
622	C 112 py	$\operatorname{Pud}(2p)$	0.00769	0.06235
032	С 112 ру	Kyu(Sp)	0.00708	0.20755
633	C 112 pz	Val(2p)	1.06626	-0.18197
634	C 112 pz	Ryd(3p)	0.00297	0.45096
635	C 113 S	Cor(1S)	1.99921	-10.17717
636	C 113 S	Val(2S)	0.93334	-0.23020
637	C 113 S	Rvd(3S)	0.00089	0.89777
638	C 113 px	Val(2p)	1.00629	-0.21900
639	C 113  px	Rvd(3n)	0.00298	0 27508
640	C 113 px C 113 px	$V_{ol}(2p)$	1.09251	0.15642
040	С 113 ру	var(2p)	1.08551	-0.13042
641	С 113 ру	Ryd(3p)	0.00455	0.30984
642	C 113 pz	Val(2p)	1.12364	-0.11033
643	C 113 pz	Ryd(3p)	0.00541	0.34437
~ • • •	G 114 G	G (10)	1 00005	10.1.640.4
644	C 114 S	Cor(1S)	1.99905	-10.16404
645	C 114 S	Val(2S)	0.91232	-0.18538
646	C 114 S	Ryd(3S)	0.00075	0.89412
647	C 114 px	Val(2p)	1.02131	-0.20661
648	C 114 px	Rvd(3n)	0.00402	0.26096
649	C 114  pv	Val(2n)	1.06133	-0 15004
650	C 114 py	$\operatorname{Pud}(2p)$	0.00242	0.25207
650	C 114 py	Kyu(Sp)	0.00343	0.33297
651	C 114 pz	Val(2p)	1.09808	-0.10102
652	C 114 pz	Ryd(3p)	0.00569	0.29200
652	C 115 S	Cor(1S)	1 00007	10 17970
055	C 115 S	Col(13)	1.99907	-10.17879
654	C 115 S	Val(28)	0.92144	-0.23670
655	C 115 S	Ryd(3S)	0.00121	1.01643
656	C 115 px	Val(2p)	1.04288	-0.24337
657	C 115 px	Ryd(3p)	0.00442	0.31804
658	C 115 pv	Val(2p)	1.15839	-0.11229
659	C 115  pv	Rvd(3n)	0.00683	0 51600
660	C 115 py	$V_{\rm el}(2p)$	1.07145	0.20602
661	C 115 pz	var(2p)	1.0/143	-0.20005
001	C 115 pz	Kyd( Sp)	0.00400	0.44154
662	C 116 S	Cor(1S)	1 99912	-10 18966
663	C 116 S	$V_{al}(2S)$	0.04573	0.28347
005	C 110 S	Val(2S)	0.94575	1 25511
004	C 110 S	Kyu( 55)	0.00032	1.55511
665	C 116 px	Val(2p)	1.00824	-0.19880
666	C 116 px	Ryd(3p)	0.00272	0.31799
667	C 116 py	Val(2p)	1.08852	-0.18187
668	C 116 py	Ryd(3p)	0.00735	0.45113
669	C 116 pz	Val(2n)	1.10033	-0.16167
670	C 116 pz	Ryd(3p)	0.00586	0.27538
671	C 117 S	Cor(1S)	1.99917	-10.11236
672	C 117 S	Val(2S)	1.01304	-0.22704
673	C 117 S	Ryd(3S)	0.00041	1.02006
674	С 117 рх	Val(2p)	1.22940	-0.14776
675	C 117 px	Rvd(3n)	0.00294	0 20060
676	C 117 px C 117 px	$V_{\rm ol}(2p)$	1 10376	0.17056
670	С 117 ру	Val(2p)	1.10370	-0.17030
6//	С 117 ру	Kyd( Sp)	0.00269	0.18015
678	C II/ pz	Val(2p)	1.22100	-0.15117
679	C 117 pz	Ryd(3p)	0.00248	0.18057
680	Н 118 С	Val( 18)	0 80577	0.05872
601	н 110 б Ц 110 с	$\mathbf{v}_{al}(10)$	0.00377	0.03823
001	11 110 0	ryu(23)	0.00141	0.77774
682	H 119 S	Val(1S)	0.79525	0.07111
683	H 119 S	Rvd(2S)	0.00125	0.75162
		1.50(20)	0.00120	0.70102
684	H 120 S	Val(1S)	0.79428	0.07460

685	H 120 S	Ryd(2S)	0.00119	0.74297
686	C 121 S	Cor(1S)	1 99918	-10 12824
687	C 121 S	Val(2S)	1 01080	-0.238/6
6007	C 121 S	Val(2S)	0.00051	1 02025
000	C 121 S	Kyd(55)	0.00031	1.02955
689	C 121 px	Val(2p)	1.09598	-0.19697
690	C 121 px	Ryd(3p)	0.00379	0.37977
691	C 121 py	Val(2p)	1.22860	-0.15976
692	C 121 py	Ryd(3p)	0.00292	0.22826
693	C 121 pz	Val(2p)	1.23559	-0.16167
694	C 121 pz	Ryd(3p)	0.00227	0.32096
695	H 122 S	Val(1S)	0.81582	0.03857
696	H 122 S	Ryd(2S)	0.001502	0.89134
607	H 122 S	$V_{0}(1S)$	0 70484	0.05664
697	H 123 S	var(15)	0.79484	0.05664
698	H 123 S	Ryd(2S)	0.00138	0.77940
699	H 124 S	Val(1S)	0.79961	0.05439
700	H 124 S	Ryd(2S)	0.00150	0.79944
701	C 125 S	Cor(1S)	1.99898	-10.30600
702	C 125 S	Val(2S)	0.85423	-0.32197
703	C 125 S	Rvd(3S)	0.00487	0.95177
704	C 125 nx	Val(2n)	0.80822	-0 29298
705	C 125 px C 125 px	Rvd(3n)	0.00761	0.3/1579
705	C 125 px	$V_{0}(3p)$	0.00701	0.24259
700	C 125 py	var(2p)	0.96369	-0.24236
707	C 125 py	Kyd( 5p)	0.00631	0.49855
/08	C 125 pz	Val(2p)	0.88403	-0.18051
709	C 125 pz	Ryd(3p)	0.00801	0.42286
710	C 126 S	Cor(1S)	1.99907	-10.16063
711	C 126 S	Val(2S)	1.02271	-0.29038
712	C 126 S	Ryd(3S)	0.00054	1.06181
713	C 126 px	Val(2p)	1.24258	-0.20539
714	C 126 px	Rvd(3p)	0.00149	0.21609
715	C 126 pv	Val(2n)	1.16521	-0.22721
716	C 126 py	Rvd(3n)	0.00379	0 18121
717	C 126 py	$V_{al}(2p)$	1 20513	0.21072
710	C 120 pz	Val(2p)	0.00276	-0.21973
/10	C 120 pz	Kyu( Sp)	0.00276	0.13990
719	H 127 S	Val(1S)	0.77008	0.03430
720	H 127 S	Ryd(2S)	0.00126	0.80846
721	H 128 S	Val(1S)	0.77013	0.02665
722	H 128 S	Ryd(2S)	0.00100	0.75225
723	Н 129 S	Val( 18)	0 77136	0.01835
724	H 129 S	Ryd(2S)	0.00103	0.78278
725	C 130 S	Cor(1S)	1.99878	-10.25121
726	C 130 S	Val(2S)	0.84180	-0.26772
727	C 130 S	Ryd(3S)	0.00210	1.06407
728	C 130 px	Val(2p)	1.07886	-0.22307
729	C 130 px	Ryd(3p)	0.00510	0.43223
730	C 130 py	Val(2p)	0.90484	-0.20131
731	C 130 pv	Ryd(3p)	0.00771	0.48787
732	C 130 nz	Val(2n)	1.01728	-0.23848
733	C 130 pz	Ryd(3p)	0.01076	0.55566
724	C 121 S	$C_{or}(19)$	1 00207	10 21150
134	C 131 $S$	$\frac{\text{UI}(15)}{\text{Val}(20)}$	1.7707/	-10.21150
133	C 131 S	val(2S)	0.89044	-0.20/38

736	C 131 S	Ryd(3S)	0.00140	1.11321
737	C 131 px	Val(2p)	1.04110	-0.20766
738	C 131 px	Ryd(3p)	0.00825	0.57457
739	C 131 py	Val(2p)	1.04246	-0.20746
740	C 131 py	Ryd(3p)	0.00685	0.45028
741	C 131 pz	Val(2p)	1.02408	-0.21422
742	C 131 pz	Ryd(3p)	0.00695	0.42913
7/3	C 132 S	Cor(1S)	1 99907	-10 17691
744	C 132 S	Val(2S)	0.93223	-0 24315
745	C 132 S	Rvd(3S)	0.00099	0.97913
746	C 132 px	Val(2p)	1.08867	-0.17186
747	C 132 px	Rvd(3p)	0.00422	0.36838
748	C 132 pv	Val(2p)	1.04237	-0.19122
749	C 132 py	Rvd(3p)	0.00362	0.34063
750	C 132 pz	Val(2p)	1.08590	-0.17181
751	C 132 pz	Ryd(3p)	0.00545	0.28863
750	C 133 S	Cor(1S)	1 00014	10 16007
753	C 133 S	Val(2S)	0.92620	-0.21725
754	C 133 S	$\operatorname{Rvd}(3S)$	0.92020	0.88050
755	C 133  pv	Val(2n)	1.03671	-0 18468
756	C 133 px C 133 px	$\operatorname{Rvd}(2p)$	0.00293	0.31/153
757	C 133 px	Val(2p)	1 09696	-0 14749
758	C 133 py	Rvd(3p)	0.00566	0.26665
759	C 133 pz	Val(2p)	1.07136	-0.15504
760	C 133 pz	Ryd(3p)	0.00413	0.28889
761	C 124 S	Cor(1S)	1 00021	10 19705
762	C 134 S	$V_{\rm el}(2S)$	0.03838	-10.16795
763	C 134 S	$\operatorname{Rvd}(3S)$	0.93838	-0.24833
764	C 134  pv	Val(2n)	1 11384	-0 15473
765	C 134 px C 134 px	Rvd(3n)	0.00645	0.41692
766	C 134 px	Val(2p)	1 06983	-0 16746
767	C 134  py	Rvd(3p)	0.00438	0.29833
768	C 134 pz	Val(2p)	1.02864	-0.20626
769	C 134 pz	Ryd(3p)	0.00327	0.29920
770	C 135 S	Cor(1S)	1 99906	-10 18581
771	C 135 S	Val(2S)	0.92119	-0 24349
772	C 135 S	Rvd(3S)	0.00128	1 02238
773	C 135 b	Val(2p)	1.11277	-0.17217
774	C 135 px	Rvd(3p)	0.00641	0.40997
775	C 135 py	Val(2p)	1.06102	-0.21869
776	C 135 py	Ryd(3p)	0.00416	0.40046
777	C 135 pz	Val(2p)	1.10248	-0.18765
778	C 135 pz	Ryd(3p)	0.00492	0.39500
779	C 136 S	Cor(1S)	1.99916	-10.19251
780	C 136 S	Val(2S)	0.95064	-0.29294
781	C 136 S	Rvd(3S)	0.00052	1.37896
782	C 136 px	Val(2p)	1.02514	-0.19677
783	C 136 px	Ryd $(3p)$	0.00392	0.36319
784	C 136 py	Val(2p)	1.13817	-0.15946
785	C 136 py	Ryd(3p)	0.00680	0.30047
786	C 136 pz	Val(2p)	1.02760	-0.19661
787	C 136 pz	Ryd(3p)	0.00446	0.43314
788	C 137 S	Cor(1S)	1.99916	-10.11655
789	C 137 S	Val(2S)	1.01182	-0.23047
790	C 137 S	Ryd(3S)	0.00050	1.04542
791	C 137 px	Val(2p)	1.16129	-0.16750

792 793 794	C 137 px C 137 py C 137 py C 137 py	Ryd( 3p) Val( 2p) Ryd( 3p)	0.00285 1.23890 0.00209	0.19627 -0.15400 0.21438
795 796	C 137 pz C 137 pz	Val(2p) Ryd(3p)	0.00324	0.21231
797	H 138 S	Val(1S)	0.79305	0.07274
798	H 138 S	Ryd(2S)	0.00159	0.76222
799	H 139 S	Val(1S)	0.79371	0.06656
800	H 139 S	Ryd(2S)	0.00128	0.74396
801	H 140 S	Val(1S)	0.81638	$0.04616 \\ 0.88288$
802	H 140 S	Ryd(2S)	0.00156	
803	C 141 S	Cor(1S)	1.99917	-10.11444
804	C 141 S	Val(2S)	1.01243	-0.22948
805	C 141 S	Ryd(3S)	0.00045	1.03849
806	C 141 PX	Val(2p)	1.21578	-0.15184
807	C 141 PX	Ryd(3p)	0.00291	0.21338
808 809 810 811	C 141 py C 141 py C 141 pz C 141 pz C 141 pz	Val(2p) Ryd(3p) Val(2p) Ryd(3p)	1.24877 0.00211 1.10220 0.00313	-0.14763 0.19902 -0.17625 0.19339
812	H 142 S	Val(1S)	0.80432	0.05714
813	H 142 S	Ryd(2S)	0.00122	0.79815
814	H 143 S	Val(1S)	0.79032	0.07518
815	H 143 S	Ryd(2S)	0.00115	0.77455
816	H 144 S	Val(1S)	0.79739	0.06731
817	H 144 S	Ryd(2S)	0.00161	0.74356
818	H 145 S	Val(1S)	0.80497	0.07443
819	H 145 S	Ryd(2S)	0.00166	0.90367
820	H 146 S	Val(1S)	0.81431	0.09901
821	H 146 S	Ryd(2S)	0.00185	0.85229
822	H 147 S	Val(1S)	0.89645	0.25767
823	H 147 S	Ryd(2S)	0.00241	0.76967
824	H 148 S	Val(1S)	0.81647	0.08338
825	H 148 S	Ryd(2S)	0.00212	0.94056
826	H 149 S	Val(1S)	0.83113	0.12044
827	H 149 S	Ryd(2S)	0.00310	0.84512
828	H 150 S	Val(1S)	0.84726	0.18329
829	H 150 S	Ryd(2S)	0.00229	0.84735
830	H 151 S	Val(1S)	0.80598	0.10966
831	H 151 S	Ryd(2S)	0.00185	0.82840
832	H 152 S	Val(1S)	0.85901	0.18964
833	H 152 S	Ryd(2S)	0.00165	0.78182
834	H 153 S	Val(1S)	0.83035	0.10282
835	H 153 S	Ryd(2S)	0.00200	0.97489
836	H 154 S	Val(1S)	0.81242	0.07570

837	Η	154	S	Ryd(2S)	0.00270	0.84073
838	н	155	S	$V_{2}(1S)$	0 8000/	0.00600
830	н	155	S	$\operatorname{Rvd}(2S)$	0.0077	0.8591/
059	11	155	5	Kyu( 25)	0.00107	0.03914
840	Н	156	S	Val(1S)	0.82547	0.14733
841	Η	156	S	Ryd(2S)	0.00187	0.80094
842	Η	157	S	Val(1S)	0.81185	0.08992
843	Η	157	S	Ryd(2S)	0.00156	0.85030
011	тт	150	c	$\mathbf{V}_{2}\mathbf{I}(1\mathbf{S})$	0 82244	0.00645
044 045	п	150	с С	val(15)	0.82244	0.09043
845	н	158	3	Kyd( 25)	0.00180	0.91401
846	н	159	S	Val(1S)	0 81495	0.04083
847	Н	159	ŝ	Rvd(2S)	0.00262	0.91973
0.7		107	2	11/0(=2)	0.00202	0171770
848	Ν	160	S	Cor(1S)	1.99934	-14.33049
849	Ν	160	S	Val(2S)	1.35098	-0.70465
850	Ν	160	S	Ryd(3S)	0.00213	1.60481
851	Ν	160	рх	Val(2p)	1.27354	-0.38753
852	Ν	160	px	Ryd(3p)	0.00533	0.81598
853	Ν	160	pv	Val(2p)	1.36594	-0.39494
854	Ν	160	py	Rvd(3p)	0.00587	0.62589
855	Ν	160	DZ	Val(2p)	1.57653	-0.42713
856	Ν	160	pz	Rvd(3p)	0.01114	0.58926
			1	1/		
857	Ν	161	S	Cor(1S)	1.99936	-14.32586
858	Ν	161	S	Val(2S)	1.36013	-0.70648
859	Ν	161	S	Ryd(3S)	0.00225	1.61381
860	Ν	161	рх	Val(2p)	1.67830	-0.43219
861	Ν	161	рх	Ryd(3p)	0.01074	0.58690
862	Ν	161	ру	Val(2p)	1.28220	-0.38461
863	Ν	161	ру	Ryd(3p)	0.00716	0.76581
864	Ν	161	pz	Val(2p)	1.27139	-0.38481
865	N	161	pz	Ryd(3p)	0.00403	0.70645
866	N	162	S	Cor(1S)	1 00032	14 32040
867	N	162	2	$V_{01}(2S)$	1.33932	0 70518
868	N	162	2	Val(2S)	0.00234	-0.70318
000 860	IN NT	162	ы nv	$V_{0}(25)$	1 28016	0 20227
009 870	IN NT	162	px py	v ar(2p) <b>D</b> $vd(2p)$	0.00570	-0.37227
070	1N NT	102	px	$X_{0}(3p)$	1.55210	0.03390
0/1 070	IN N	102	ру	val(2p)	1.33219	-0.40/91
012	IN NT	102	ру	Kyu(3p)	0.0112/	0.78240
813	IN NT	102	pz	val(2p)	1.40//3	-0.418/4
ð/4	IN	162	pz	куа( эр)	0.00628	0.64220

[136 electrons found in the effective core potential]

WARNING: 1 low occupancy (<1.9990e) core orbital found on C 1 1 low occupancy (<1.9990e) core orbital found on C 3 1 low occupancy (<1.9990e) core orbital found on C 8 1 low occupancy (<1.9990e) core orbital found on C 9 1 low occupancy (<1.9990e) core orbital found on C 12 1 low occupancy (<1.9990e) core orbital found on C 14 1 low occupancy (<1.9990e) core orbital found on C 23 1 low occupancy (<1.9990e) core orbital found on C 28 1 low occupancy (<1.9990e) core orbital found on C 29 1 low occupancy (<1.9990e) core orbital found on C 30 1 low occupancy (<1.9990e) core orbital found on C 43 1 low occupancy (<1.9990e) core orbital found on C 48 1 low occupancy (<1.9990e) core orbital found on C 49

5 low occupancy (<1.9990e) core orbitals found on Tl	81
5 low occupancy (<1.9990e) core orbitals found on Tl	82
1 low occupancy (<1.9990e) core orbital found on C 8	33
1 low occupancy (<1.9990e) core orbital found on C 8	34
1 low occupancy (<1.9990e) core orbital found on C 8	37
1 low occupancy (<1.9990e) core orbital found on C 8	39
1 low occupancy (<1.9990e) core orbital found on C	91
1 low occupancy (<1.9990e) core orbital found on C	96
1 low occupancy (<1.9990e) core orbital found on C 1	05
1 low occupancy (<1.9990e) core orbital found on C 1	10
1 low occupancy (<1.9990e) core orbital found on C 1	11
1 low occupancy (<1.9990e) core orbital found on C 1	12
1 low occupancy (<1.9990e) core orbital found on C 1	25
1 low occupancy (<1.9990e) core orbital found on C 1	30
1 low occupancy (<1.9990e) core orbital found on C 1	31

Summary of Natural Population Analysis:

rutural r opulation
---------------------

		ו	Nat	ural				
_	Ato	m N	No	Charge	Core	Valence	Rydberg	Total
	С	1	-0.	33502	1.99882	4.30493	0.03127	6.33502
	Η	2	0.	22720	0.00000	0.77092	0.00188	0.77280
	С	3	0.4	44075	1.99900	3.53377	0.02648	5.55925
	С	4	-0.	64156	1.99907	4.63384	0.00864	6.64156
	Η	5	0.	22507	0.00000	0.77349	0.00144	0.77493
	Η	6	0.	23022	0.00000	0.76876	0.00102	0.76978
	Η	7	0.	22837	0.00000	0.77062	0.00101	0.77163
	С	8	0.	13143	1.99873	3.84064	0.02921	5.86857
	С	9	-0.	02319	1.99891	3.99865	0.02563	6.02319
	С	10	-0	.17252	1.99906	4.15776	0.01570	6.17252
	С	11	-0	.16526	1.99917	4.15019	0.01589	6.16526
	С	12	-0	.07731	1.99858	4.06243	0.01630	6.07731
	С	13	-0	.19756	1.99904	4.18074	0.01777	6.19756
	С	14	-0	.13768	1.99896	4.12202	0.01670	6.13768
	С	15	-0	.57537	1.99918	4.56751	0.00869	6.57537
	Η	16	0	.20028	0.00000	0.79821	0.00152	0.79972
	Η	17	0	.20487	0.00000	0.79391	0.00122	0.79513
	Η	18	0	.19515	0.00000	0.80358	0.00128	0.80485
	С	19	-0	.57249	1.99921	4.56412	0.00915	6.57249
	Н	20	0	.18712	0.00000	0.81143	0.00145	0.81288
	Η	21	0	.20564	0.00000	0.79308	0.00128	0.79436
	Η	22	0	.19500	0.00000	0.80320	0.00180	0.80500
	С	23	0.	.43811	1.99899	3.53549	0.02741	5.56189
	С	24	-0	.64322	1.99907	4.63517	0.00897	6.64322
	Η	25	0	.22914	0.00000	0.76956	0.00130	0.77086
	Η	26	0	.23090	0.00000	0.76802	0.00108	0.76910
	Η	27	0	.22620	0.00000	0.77263	0.00117	0.77380
	С	28	0.	.12497	1.99877	3.84993	0.02633	5.87503
	С	29	0.	.00842	1.99899	3.96861	0.02398	5.99158
	С	30	-0	.14450	1.99889	4.13151	0.01410	6.14450
	С	31	-0	.15976	1.99921	4.14673	0.01382	6.15976
	С	32	-0	.10540	1.99904	4.09247	0.01388	6.10540
	С	33	-0	.21067	1.99907	4.19448	0.01712	6.21067
	С	34	-0	.15871	1.99911	4.14313	0.01646	6.15871
	С	35	-0	.57500	1.99917	4.56730	0.00853	6.57500
	Н	36	0	.19287	0.00000	0.80572	0.00141	0.80713
	Н	37	0	.20351	0.00000	0.79524	0.00125	0.79649
	Η	38	0	.20463	0.00000	0.79419	0.00118	0.79537
	С	39	-0	.57955	1.99918	4.57088	0.00949	6.57955

Η	40	0.18269	0.00000	0.81581	0.00150	0.81731
Н	41	0.20379	0.00000	0.79483	0.00138	0.79621
Н	42	0.19892	0.00000	0.79958	0.00150	0.80108
C	43	0 44205	1 99898	3 53214	0.02683	5 55795
C	44	-0.64322	1 99907	4 63557	0.00858	6 64322
н	45	0.04322	0.00000	0.77005	0.00030	0.04322
ц	45 46	0.22805	0.00000	0.77003	0.00120	0.77115
	40	0.22883	0.00000	0.77014	0.00100	0.77113
ПС	47	0.22730	1.00000	0.77147	0.00104	5 86604
C	40	0.15500	1.998/8	3.04247	0.02309	5.80094
C	49	-0.02058	1.99897	3.99817	0.02344	6.02058
C	50	-0.16267	1.99907	4.14932	0.01428	6.16267
C	51	-0.14355	1.99914	4.13096	0.01345	6.14355
C	52	-0.16506	1.99921	4.15091	0.01494	6.16506
C	53	-0.21333	1.99906	4.19/51	0.01676	6.21333
C	54	-0.15643	1.99916	4.14157	0.01570	6.15643
С	55	-0.57278	1.99916	4.56494	0.00867	6.57278
Н	56	0.20525	0.00000	0.79315	0.00160	0.79475
Η	57	0.20491	0.00000	0.79381	0.00128	0.79509
Η	58	0.18214	0.00000	0.81631	0.00155	0.81786
С	59	-0.58716	1.99918	4.57937	0.00861	6.58716
Η	60	0.19449	0.00000	0.80430	0.00122	0.80551
Η	61	0.20866	0.00000	0.79019	0.00115	0.79134
Η	62	0.20102	0.00000	0.79736	0.00162	0.79898
Η	63	0.19340	0.00000	0.80495	0.00166	0.80660
Η	64	0.18385	0.00000	0.81429	0.00185	0.81615
Η	65	0.10115	0.00000	0.89645	0.00241	0.89885
Η	66	0.18141	0.00000	0.81647	0.00212	0.81859
Η	67	0.16590	0.00000	0.83099	0.00311	0.83410
Η	68	0.15083	0.00000	0.84688	0.00229	0.84917
Η	69	0.19216	0.00000	0.80599	0.00185	0.80784
Η	70	0.13892	0.00000	0.85944	0.00164	0.86108
Η	71	0.16772	0.00000	0.83028	0.00200	0.83228
Η	72	0.18498	0.00000	0.81233	0.00270	0.81502
Η	73	0.18826	0.00000	0.81006	0.00168	0.81174
Η	74	0.17266	0.00000	0.82548	0.00186	0.82734
Η	75	0.18662	0.00000	0.81182	0.00156	0.81338
Η	76	0.17577	0.00000	0.82243	0.00180	0.82423
Η	77	0.18251	0.00000	0.81487	0.00262	0.81749
Ν	78	-0.59109	1.99934	5.56731	0.02444	7.59109
Ν	79	-0.61582	1.99936	5.59228	0.02418	7.61582
Ν	80	-0.61403	1.99932	5.58912	0.02559	7.61403
T1	81	0.82255	77.98527	2.17486	0.01732	80.17745
T1	82	0.82242	77.98527	2.17498	0.01733	80.17758
С	83	0.13144	1.99873	3.84063	0.02920	5.86856
С	84	-0.02330	1.99891	3.99878	0.02562	6.02330
С	85	-0.17253	1.99906	4.15778	0.01570	6.17253
Ċ	86	-0.16527	1.99917	4.15020	0.01589	6.16527
Ċ	87	-0.07728	1.99858	4.06241	0.01630	6.07728
Ċ	88	-0.19753	1.99904	4.18072	0.01777	6.19753
Č	89	-0.33515	1.99882	4.30504	0.03129	6.33515
Н	90	0.22738	0.00000	0.77074	0.00188	0.77262
С	91	0.44060	1.99900	3.53389	0.02651	5.55940
Č	92	-0.64183	1.99907	4.63411	0.00865	6.64183
й	93	0.22509	0.00000	0.77348	0.00144	0.77491
н	94	0.23023	0.00000	0 76875	0.00102	0 76977
н	95	0 22854	0.00000	0 77045	0.00101	0 77146
C	96	-0 137/3	1 99896	4 12178	0.01669	6 137/3
č	97	-0 57533	1 00018	4 56747	0.00869	6 57533
н	98	0.20028	0.00000	0 79820	0.00151	0 79972
н	90	0.20020	0.00000	0.79301	0.00122	0.79513
ц	100	0.20407	0.00000	0.77571	0.00122	0.77515
C	101	-0 57224	1 99921	4 56388	0.00915	6 57224
$\sim$	101	0.01224	1.77741		0.00715	0.01224

H 102 0.18701	0.00000	0.81153	0.00145	0.81299	
H 103 0.20569	0.00000	0.79304	0.00128	0.79431	
H 104 0.19484	0.00000	0.80335	0.00180	0.80516	
C 105 0.43817	1.99899	3.53544	0.02740	5.56183	
C 106 -0.64379	1.99907	4.63573	0.00898	6.64379	
H 107 0.22924	0.00000	0.76945	0.00130	0.77076	
H 108 0 23097	0.00000	0 76795	0.00108	0.76903	
H 100 0.22653	0.00000	0.77231	0.00117	0.77347	
C 110 0.22055	1 99877	3 85007	0.00117	5 87516	
C 110 0.12404 C 111 0.00806	1.00800	3 06805	0.02052	5 0010/	
C 112 0 1/301	1.00880	1 13003	0.02400	6 1/301	
C 112 -0.14391 C 113 -0.15081	1.99009	4.13093	0.01410	6 15081	
C 113 -0.13981	1.99921	4.14070	0.01382	6 10507	
C 114 -0.10397 C 115 -0.21025	1.99903	4.09304	0.01369	6.10397	
C 113 -0.21033	1.99907	4.19410	0.01/11	0.21033	
C 110 -0.15858	1.99912	4.14281	0.01040	0.15858	
C 11/ -0.5/490	1.99917	4.30/21	0.00852	0.5/490	
H 118 0.19282	0.00000	0.80577	0.00141	0.80/18	
H 119 0.20350	0.00000	0.79525	0.00125	0.79650	
H 120 0.20454	0.00000	0.79428	0.00119	0.79546	
C 121 -0.57965	1.99918	4.57098	0.00949	6.57965	
H 122 0.18269	0.00000	0.81582	0.00150	0.81731	
H 123 0.20378	0.00000	0.79484	0.00138	0.79622	
H 124 0.19888	0.00000	0.79961	0.00150	0.80112	
C 125 0.44183	1.99898	3.53237	0.02681	5.55817	
C 126 -0.64328	1.99907	4.63563	0.00858	6.64328	
H 127 0.22866	0.00000	0.77008	0.00126	0.77134	
H 128 0.22887	0.00000	0.77013	0.00100	0.77113	
H 129 0.22761	0.00000	0.77136	0.00103	0.77239	
C 130 0.13277	1.99878	3.84278	0.02567	5.86723	
C 131 -0.02051	1.99897	3.99808	0.02345	6.02051	
C 132 -0.16253	1.99907	4.14918	0.01428	6.16253	
C 133 -0.14383	1.99914	4.13124	0.01345	6.14383	
C 134 -0.16484	1.99921	4.15068	0.01494	6.16484	
C 135 -0.21329	1.99906	4.19747	0.01677	6.21329	
C 136 -0.15642	1.99916	4.14155	0.01571	6.15642	
C 137 -0.57292	1.99916	4.56509	0.00867	6.57292	
H 138 0.20536	0.00000	0.79305	0.00159	0.79464	
H 139 0.20501	0.00000	0.79371	0.00128	0.79499	
H 140 0.18206	0.00000	0.81638	0.00156	0.81794	
C 141 -0.58697	1.99917	4.57918	0.00861	6.58697	
H 142 0 19446	0.00000	0.80432	0.00122	0.80554	
H 143 0 20854	0.00000	0 79032	0.00115	0 79146	
H 144 0 20100	0.00000	0.79739	0.00113	0.79900	
H 145 0 19338	0.00000	0 80497	0.00166	0.80662	
H 146 0 1838/	0.00000	0.81/131	0.00185	0.81616	
H 147 0 10115	0.00000	0.896/5	0.00103	0.89885	
$H 1/8 \cap 181/1$	0.00000	0.81647	0.00241	0.81859	
н 140 0.10141 Н 140 0 16577	0.00000	0.0104/	0.00212	0.01039	
11 149 0.103//	0.00000	0.03113	0.00310	0.03423	
п 150 0.15045 н 151 0.10217	0.00000	0.84/20	0.00229	0.04933	
п 151 0.1921/	0.00000	0.80398	0.00165	0.00/05	
н 152 0.13935	0.00000	0.85901	0.00165	0.82024	
H 153 0.16766	0.00000	0.83035	0.00200	0.83234	
H 154 0.18488	0.00000	0.81242	0.00270	0.81512	
H 155 0.18839	0.00000	0.80994	0.00167	0.81161	
H 156 0.17266	0.00000	0.82547	0.00187	0.82734	
H 157 0.18659	0.00000	0.81185	0.00156	0.81341	
H 158 0.17576	0.00000	0.82244	0.00180	0.82424	
H 159 0.18244	0.00000	0.81495	0.00262	0.81756	
N 160 -0.59080	1.99934	5.56699	0.02447	7.59080	
N 161 -0.61556	1.99936	5.59202	0.02418	7.61556	
N 162 -0.61396	1.99932	5.58905	0.02559	7.61396	

_____

* Total * 2.00000 303.90060 390.62231 1.47709 696.00000

Natural Population

Effective Core	136.00000	
Core	167.90060 (99.9408% of 168)	
Valence	390.62231 (99.6485% of 392)	
Natural Minimal	Basis 694.52291 (99.7878% of 696	б)
Natural Rydberg	Basis 1.47709 (0.2122% of 696)	

## Atom No Natural Electron Configuration

C 1	[core]2S( 0.96)2p( 3.34)3p( 0.03)
H 2	1S( 0.77)
C 3	[core]2S( 0.86)2p( 2.68)3p( 0.02)
C 4	[core]2S( 1.02)2p( 3.61)3p( 0.01)
Н 5	1S( 0.77)
H 6	1S( 0.77)
Η 7	1S( 0.77)
C 8	[core]2S( 0.84)2p( 3.00)3p( 0.03)
C 9	[core]2S( 0.89)2p( 3.11)3p( 0.02)
C 10	[core]2S( 0.94)2p( 3.22)3p( 0.01)
C 11	[core]2S( 0.94)2p( 3.21)3p( 0.01)
C 12	[core]2S( 0.87)2p( 3.19)3p( 0.02)
C 13	[core]2S( 0.93)2p( 3.25)3p( 0.02)
C 14	[core]2S( 0.92)2p( 3.20)3p( 0.02)
C 15	[core]2S( 1.01)2p( 3.56)3p( 0.01)
H 16	1S( 0.80)
H 17	1S( 0.79)
H 18	1S( 0.80)
C 19	[core]2S( 1.00)2p( 3.56)3p( 0.01)
Н 20	1S( 0.81)
H 21	1S( 0.79)
Н 22	1S( 0.80)
C 23	[core]2S( 0.86)2p( 2.68)3p( 0.02)
C 24	[core]2S( 1.02)2p( 3.61)3p( 0.01)
Н 25	1S( 0.77)
H 26	1S( 0.77)
H 27	1S( 0.77)
C 28	[core]2S( 0.84)2p( 3.01)3p( 0.02)
C 29	[core]2S( 0.89)2p( 3.08)3p( 0.02)
C 30	[core]2S( 0.89)2p( 3.24)3p( 0.01)
C 31	[core]2S( 0.93)2p( 3.21)3p( 0.01)
C 32	[core]2S( 0.91)2p( 3.18)3p( 0.01)
C 33	[core]2S( 0.92)2p( 3.27)3p( 0.02)
C 34	[core]2S( 0.95)2p( 3.20)3p( 0.02)
C 35	[core]2S(1.01)2p(3.55)3p(0.01)
H 36	1S(0.81)
H 37	1S( 0.80)
H 38	1S( 0.79)
C 39	[core]2S(1.01)2p(3.56)3p(0.01)
H 40	IS( 0.82)
H 41	1S( 0.79)
H 42	1S( 0.80)
C 43	[core] 2S( 0.85)2p( 2.68)3p( 0.02)
C 44	[core]2S(1.02)2p(3.61)3p(0.01)
H 45	1S(0.77)
H 46	1S(0.77)
H 47	1S(0.77)
C 48	[core] 2S( 0.84)2p( 3.00)3p( 0.02)
C 49	[core]2S( 0.89)2p( 3.11)3p( 0.02)

С	50	[core]2S( 0.93)2p( 3.22)3p( 0.01)
С	51	[core]2S( 0.93)2p( 3.20)3p( 0.01)
C	52	[core]2S(0.94)2p(3.21)3p(0.01)
C	53	[core]2S(0.92)2p(3.28)3p(0.02)
C	54 55	[core]2S(10.95)2p(3.19)3p(0.02)
н	55 56	1S(0.79)
Н	57	1S(0.79)
Н	58	1S(0.82)
С	59	[core]2S( 1.01)2p( 3.57)3p( 0.01)
Η	60	1S( 0.80)
Η	61	1S( 0.79)
Η	62	1S( 0.80)
H	63	1S( 0.80)
H	64	1S(0.81)
H U	65 66	15(0.90)
п	67	15(0.82) 15(0.83)
Н	68	1S(0.85)
Н	69	1S(0.81)
Н	70	1S( 0.86)
Н	71	1S( 0.83)
Η	72	1S( 0.81)
Η	73	1S( 0.81)
Н	74	1S( 0.83)
H	75	1S( 0.81)
H	76	1S(0.82)
п N	78	13(0.01) [core]28(135)2p(422)3p(0.02)
N	78 79	[core]2S(1.35)2p(4.22)3p(0.02)
N	80	[core]2S(1.35)2p(4.24)3p(0.02)
Tl	81	[core]6S(1.86)6p(0.32)7p(0.02)
T1	82	[core]6S(1.86)6p(0.32)7p(0.02)
С	83	[core]2S( 0.84)2p( 3.00)3p( 0.03)
С	84	[core]2S( 0.89)2p( 3.11)3p( 0.02)
C	85	[core]2S( 0.94)2p( 3.22)3p( 0.01)
C	86	[core]2S(0.94)2p(3.21)3p(0.01)
C	87	[core]2S(0.87)2p(3.19)3p(0.02)
C	88 80	[core]2S(0.95)2p(3.25)3p(0.02)
н	90	1S(0.77)
C	91	[core]2S(0.86)2p(2.68)3p(0.02)
C	92	[core]2S(1.02)2p(3.61)3p(0.01)
Н	93	1S( 0.77)
Η	94	1S( 0.77)
Η	95	1S( 0.77)
C	96	[core]2S( 0.92)2p( 3.20)3p( 0.02)
C	97	[core]2S(1.01)2p(3.56)3p(0.01)
H	98	1S(0.80) 1S(0.70)
п u	99 100	15(0.79) 15(0.80)
C	100	13(0.00) [core]2S(100)2n(356)3n(001)
Н	101	1S( 0.81)
Н	103	1S( 0.79)
Н	104	1S( 0.80)
С	105	[core]2S( 0.86)2p( 2.68)3p( 0.02)
С	106	[core]2S( 1.02)2p( 3.61)3p( 0.01)
Η	107	1S(0.77)
H	108	1S( 0.77)
H	109	IS(0.77)
C	110	[core]28(0.84)2p(3.01)3p(0.02)
U	111	1000000000000000000000000000000000000

С	112	[core]2S(0.89)2p(3.24)3p(0.01)
č	113	[core]2S(0.93)2p(3.21)3p(0.01)
c	114	[core]2S(0.93)2p(3.21)3p(0.01)
C	115	[core]2S(0.91)2p(3.10)3p(0.01)
C	115	[core]2S(0.92)2p(3.27)3p(0.02)
C	110	$[core]_{2S}(0.95)_{2P}(3.20)_{3P}(0.02)$
C	11/	[core]2S(1.01)2p(3.55)3p(0.01)
Н	118	1S( 0.81)
Η	119	1S( 0.80)
Η	120	1S( 0.79)
С	121	[core]2S( 1.01)2p( 3.56)3p( 0.01)
Η	122	1S( 0.82)
Η	123	1S(0.79)
Н	124	1S(0.80)
С	125	[core]2S(0.85)2p(2.68)3p(0.02)
Ċ	126	[core]2S(102)2p(361)3p(001)
н	127	1S(077)
ц	127	15(0.77)
и П	120	15(0.77)
	127	13(0.77)
C	130	[core]2S(0.84)2p(3.00)3p(0.02)
C	131	[core]28((0.89)2p((3.11)3p((0.02)))
С	132	[core]2S(0.93)2p(3.22)3p(0.01)
С	133	[core]2S(0.93)2p(3.21)3p(0.01)
С	134	[core]2S( 0.94)2p( 3.21)3p( 0.01)
С	135	[core]2S( 0.92)2p( 3.28)3p( 0.02)
С	136	[core]2S( 0.95)2p( 3.19)3p( 0.02)
С	137	[core]2S(1.01)2p(3.55)3p(0.01)
Н	138	1S( 0.79)
Н	139	1S(0.79)
Н	140	1S(0.82)
C	141	[core] 2S(1,01) 2n(3,57) 3n(0,01)
н	142	1S(0.80)
и П	1/2	1S(0.30)
	143	15(0.73)
п	144	15(0.80)
Н	145	15(0.80)
H	146	15(0.81)
Н	147	18(0.90)
Н	148	IS( 0.82)
Н	149	1S( 0.83)
Η	150	1S( 0.85)
Η	151	1S( 0.81)
Η	152	1S( 0.86)
Η	153	1S(0.83)
Η	154	1S(0.81)
Н	155	1S(0.81)
Н	156	1S(0.83)
Н	157	1S(0.81)
н	158	15(0.82)
Ч	150	15(0.02) 15(0.81)
N	160	IO(0.01) $[aora]2S(1.25)2n(4.22)2n(0.02)$
1N NT	100	[core]2S(1.33)2P(4.22)SP(0.02)
IN NT	101	$[core]_{25}(1.50)_{2}p(4.25)_{5}p(0.02)$
IN	162	1core [28(1.35)2p(4.24)3p(0.02)

## NBO analysis skipped by request.

1|1|UNPC-E-C07CYG43054|SP|RB3LYP|LANL2DZ|C68H86N6Tl2(2+)|MCDSTFM|03-Ap r-2013|0||# b3lyp/lanl2dz guess=local pop=npa geom=connectivity||CSD E NTRY ofm27p-1||2,1|C,0,-3.903023,0.051295,-2.737981|H,0,-4.514533,0.08 5596,-3.503394|C,0,-2.503247,-0.227432,-3.276213|C,0,-2.460164,-0.9729 3,-4.569492|H,0,-1.545611,-1.129417,-4.817515|H,0,-2.892297,-0.452722, -5.252444|H,0,-2.914133,-1.812707,-4.470777|C,0,-0.170439,-0.150782,-2 .958032|C,0,0.684185,0.872376,-3.360395|C,0,2.019408,0.533222,-3.58217 4|C,0,2.485112,-0.764383,-3.385337|C,0,1.626865,-1.746963,-2.977845|C, 0,0.293215,-1.440024,-2.76505|C,0,0.184239,2.270912,-3.616048|C,0,0.07 5302,2.538076,-5.096013|H,0,0.950346,2.513578,-5.490651|H,0,-0.31535,3 .402468,-5.238301|H,0,-0.477148,1.865062,-5.502998|C,0,1.011329,3.3330 35,-2.953263|H,0,1.034524,3.177106,-2.005839|H,0,0.627484,4.194823,-3. 12687|H,0,1.907183,3.306084,-3.303069|C,0,-4.397058,-1.03942,-1.801017 |C,0,-5.870231,-1.237389,-1.780559|H,0,-6.091786,-1.92487,-1.148722|H, 0,-6.170325,-1.496216,-2.654573|H,0,-6.299217,-0.417141,-1.523277|C,0, -3.930526,-2.580467,-0.074942|C,0,-3.537481,-3.9179,-0.181117|C,0,-3.8 687,-4.722562,0.913689|C,0,-4.486773,-4.273217,2.005895|C,0,-4.844529, -2.938962,2.109501|C,0,-4.561165,-2.096006,1.051875|C,0,-2.743405,-4.4 17091,-1.351036|C,0,-3.218501,-5.772304,-1.879589|H,0,-3.237334,-6.408 158,-1.160273|H,0,-2.617282,-6.078198,-2.561382|H,0,-4.100692,-5.67953 3,-2.24793|C,0,-1.265249,-4.513108,-0.965484|H,0,-0.951616,-3.65163,-0 .678966|H,0,-0.754039,-4.801185,-1.727045|H,0,-1.160762,-5.146678,-0.2 52564|C,0,-3.945046,1.410207,-2.054612|C,0,-4.205935,2.575653,-2.95337 1|H,0,-4.280814,3.375466,-2.426758|H,0,-5.022881,2.43207,-3.435929|H,0 ,-3.479994,2.669176,-3.574825|C,0,-3.652669,2.677734,-0.075475|C,0,-4. 641162,2.969572,0.868363|C,0,-4.446268,4.099082,1.65003|C,0,-3.329395, 4.893029,1.516565|C,0,-2.380753,4.600231,0.572637|C,0,-2.53584,3.48771 7,-0.227047|C,0,-5.870955,2.099481,0.968797|C,0,-6.904465,2.519616,-0. 066748|H,0,-7.202563,3.411803,0.123697|H,0,-7.652825,1.918078,-0.03450 7|H,0,-6.510077,2.493668,-0.940994|C,0,-6.505344,2.084019,2.364325|H,0 ,-5.825671,1.911567,3.021302|H,0,-7.171417,1.392791,2.406236|H,0,-6.91 2835,2.933227,2.539671|H,0,2.65523,1.199916,-3.845393|H,0,3.404316,-0. 872897,-3.515165|H,0,1.834315,-2.474982,-2.848538|H,0,-0.287553,-2.068 439,-2.397481|H,0,-0.623664,2.406848,-3.216657|H,0,-3.527049,-5.49686, 0.780988|H,0,-4.706301,-4.730062,2.803385|H,0,-5.227296,-2.596463,2.78 4907|H,0,-4.79531,-1.214323,1.081259|H,0,-2.826831,-3.811705,-2.100233 |H,0,-5.041747,4.344775,2.343442|H,0,-3.322704,5.561882,2.121677|H,0,-1.641429,5.183719,0.4565|H,0,-1.893421,3.336427,-0.866954|H,0,-5.61291 1,1.174631,0.717379|N,0,-1.519237,0.154047,-2.581712|N,0,-3.535959,-1. 658124,-1.095997|N,0,-3.736426,1.452274,-0.810506|T1,0,-1.816362,-0.09 5993,0.135685|T1,0,1.816323,0.09545,-0.136066|C,0,0.170681,0.151034,2. 958188|C,0,-0.683944,-0.872124,3.360551|C,0,-2.019167,-0.53297,3.58233 1|C,0,-2.484871,0.764635,3.385494|C,0,-1.626623,1.747215,2.978002|C,0, -0.292974,1.440276,2.765207|C,0,3.902984,-0.051837,2.7376|H,0,4.514774 ,-0.085344,3.503551|C,0,2.503207,0.226889,3.275832|C,0,2.460125,0.9723 87,4.569111|H,0,1.545852,1.129669,4.817671|H,0,2.892539,0.452974,5.252 601|H,0,2,914375,1,812959,4,470934|C,0,-0,183997,-2,27066,3,616204|C,0 ,-0.075061,-2.537824,5.09617|H,0,-0.950105,-2.513326,5.490807|H,0,0.31 5592,-3.402216,5.238458|H,0,0.477109,-1.865605,5.502617|C,0,-1.012327, -3.333367,2.953071|H,0,-1.034283,-3.176854,2.005995|H,0,-0.627206,-4.1 95139,3.127848|H,0,-1.906942,-3.305832,3.303225|C,0,4.397299,1.039672, 1.801173 C,0,5.869514,1.237852,1.780905 H,0,6.092028,1.925122,1.148879 |H,0,6.169608,1.496679,2.654918|H,0,6.299178,0.416598,1.522896|C,0,3.9 29808,2.58093,0.075287|C,0,3.537442,3.917358,0.180736|C,0,3.868942,4.7 22814,-0.913532|C,0,4.487014,4.273469,-2.005739|C,0,4.843811,2.939425, -2.109156|C,0,4.561407,2.096258,-1.051719|C,0,2.743647,4.417343,1.3511 92|C,0,3.218742,5.772556,1.879746|H,0,3.237295,6.407615,1.159892|H,0,2 .617523,6.07845,2.561539|H,0,4.100653,5.67899,2.247549|C,0,1.26549,4.5 13361,0.96564|H,0,0.951858,3.651882,0.679122|H,0,0.754281,4.801437,1.7 27201|H,0,1.161003,5.14693,0.252721|C,0,3.945288,-1.409955,2.054769|C, 0,4.206177,-2.575401,2.953528|H,0,4.281056,-3.375214,2.426914|H,0,5.02 3122,-2.431818,3.436086|H,0,3.480273,-2.669493,3.575803|C,0,3.652911,-2.677482,0.075632|C,0,4.640444,-2.969109,-0.868017|C,0,4.445269,-4.099 414,-1.650222|C,0,3.329636,-4.892777,-1.516408|C,0,2.380994,-4.599979, -0.57248|C,0,2.536082,-3.487465,0.227203|C,0,5.870238,-2.099018,-0.968 451|C,0,6.903748,-2.519153,0.067093|H,0,7.202804,-3.41155,-0.123541|H, 0,7.653067,-1.917826,0.034663|H,0,6.509079,-2.494,0.940802|C,0,6.50558 6.-2.083767,-2.364168|H,0,5.825913,-1.911315,-3.021146|H,0,7.170699,-1 .392328,-2.40589|H,0,6.913077,-2.932975,-2.539515|H,0,-2.654988,-1.199 664,3.84555|H,0,-3.404074,0.873149,3.515322|H,0,-1.834074,2.475234,2.8

$$\begin{split} &48695 [\text{H}, 0, 0.287795, 2.068691, 2.397638 [\text{H}, 0, 0.623905, -2.406596, 3.216814] \text{H} \\ &, 0, 3.527009, 5.496317, -0.781369 [\text{H}, 0, 4.706543, 4.730314, -2.803228 [\text{H}, 0, 5.2 27537, 2.596715, -2.784751 [\text{H}, 0, 4.795551, 1.214575, -1.081102 [\text{H}, 0, 2.827073, 3.811957, 2.10039 [\text{H}, 0, 5.041988, -4.344523, -2.343285 [\text{H}, 0, 3.321986, -5.5614 2, -2.121332 [\text{H}, 0, 1.641671, -5.183467, -0.456343 [\text{H}, 0, 1.893663, -3.336175, 0. 867111 [\text{H}, 0, 5.613153, -1.174379, -0.717222 [\text{N}, 0, 1.519479, -0.153795, 2.58186 9 [\text{N}, 0, 3.5362, 1.658376, 1.096154 [\text{N}, 0, 3.736668, -1.452022, 0.810662 [] Versio n=IA32W-G09RevB.01 [State=1-A | HF=-3072.0579794 [RMSD=5.507e-009 | Dipole=-0.0003059, -0.0004876, -0.0011615 | Quadrupole=42.2194261, -22.6486038, -19. 5708223, -3.9670195, 20.6468479, -0.2702449 | PG=C01 [X(C68H86N6T12)] ]] @$$

## A HARD FALL SHOULD MEAN A HIGH BOUNCE IF ONE IS MADE OF THE RIGHT MATERIAL.

-- THE CHEMIST ANALYST, MARCH 1950 Job cpu time: 0 days 9 hours 36 minutes 6.0 seconds. File lengths (MBytes): RWF= 403 Int= 0 D2E= 0 Chk= 28 Scr= 1 Normal termination of Gaussian 09 at Wed Apr 03 22:53:43 2013.