Supporting information for:

Preparation, Formation Mechanism and Photocatalysis of Ultrathin Mesoporous Single-Crystal-Like CeO₂ Nanosheets

Yifu Yu, Yingming Zhu, Ming Meng*

Tianjin Collaborative Innovation Center for Chemistry and Chemical Engineering , Tianjin Key Laboratory of Applied Catalysis Science & Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072 (P. R. China)

Figures

Fig. S1 TEM images of the obtained sample after hydrothermal treatment on 1D Ce-EDA nanorods at 280 $^{\circ}$ C for 12 h.

Fig. S2 Low-magnification SEM images of the Ce(OH)CO₃ nanosheets.

Fig. S3 Tapping-mode AFM and corresponding photograph of the monolayer $Ce(OH)CO_3$ nanosheets on a mica plate.

Fig. S4 Tapping-mode AFM and corresponding photograph of the monolayer CeO_2 nanosheets. Atomic force microscope (AFM) image of the CeO_2 nanosheets shows that their height is ~2.4 nm. It can be concluded that monolayer CeO_2 nanosheets are derived from the thermal decomposition of single-layered $Ce(OH)CO_3$.

Fig. S5 FT-IR spectrum of the sample prepared after hydrothermal treatment on 1D Ce-EDA nanorods for 6 h. The sample was collected and washed with water for 6 times.

Fig. S6 TEM images of the sample obtained in the same conditions as those for $Ce(OH)CO_3$ nanosheets except the difference in hydrothermal temperature: (a) 200 °C, (b) 240 °C.

Fig. S7 The TEM images of evolution from coarse surface to smooth nanosheets (a to c).

Fig. S8 The thermogravimetric analysis curve of as-obtained Ce(OH)CO₃ nanosheets.

Fig. S9 SEM image of CeO₂ nanoparticles prepared by sol-gel method.

Fig. S10. Mesopore size distributions (a) and nitrogen adsorption/desorption isotherms (b) of the CeO₂ nanoparticles and porous CeO₂ nanosheets, suggesting the existence of mesopores in both CeO₂ catalysts. The porous CeO₂ nanosheets possess narrower pore-size distribution with an average pore size of 3.7 nm, which is lower than that of CeO₂ nanoparticles (4.2 nm). The specific surface areas of CeO₂ catalysts in porous sheets and particles are 66 m²/g and 60 m²/g, respectively.