Supporting Information

Assembly of trimeric polyoxovanadate aggregates based on [MnV₁₃O₃₈]⁷⁻ building blocks and lanthanide cations

Ding Liu,^a Ying Lu,^{*a} Yang-Guang Li,^a Hua-Qiao Tan,^b Wei-Lin Chen,^a

Zhi-Ming Zhang and En-Bo Wang*^a

^aKey Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China

^bState Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nanhu Road, Changchun 130033, People's Republic of China.

Fig. S1 Polyhedral and ball-and-stick representation of the structures of cluster $[MnV_{13}O_{38}]^{7-}$. Pink, yellow, and red represent V, Mn, and O atoms, respectively. The $[MnV_{13}O_{38}]^{7-}$ polyoxoanion consists of thirteen edge-shared VO₆ octahedra surrounding a central Mn atom in an octahedral cavity.

Fig. S2 Polyhedral and ball-and-stick representation of polyoxoanion $[MnV_{13}O_{38}]^{7-}$ acting as a bidentate ligand coordinating to two La³⁺ ions in compound **1**, and a pair of pyridine-3-carboxylic acid molecules interaction with the $[MnV_{13}O_{38}]^{7-}$ through hydrogen bonding on the other side.

Fig. S3 ORTEP diagram of the basic structural unit in compound **1** with ellipsoids at 50 % probability displacement. The organic molecules and water molecules are omitted for clarity.

Fig. S4 View of the thickness of polyhedral and ball-and-stick representation of triple- $\{MnV_{13}\}$ polyoxoanion.

Fig. S5 Ball-and-stick representation of the coordination mode of the K⁺ cation sealed in polyoxoanion **1**.

Fig. S6 Polyhedral and ball-and-stick representation of the packing arrangements of 1 along *b* axis.

Fig. S7 (a) The cyclic voltammograms of 2×10^{-4} M **2** in the pH 4 (0.4 M CH₃COONa + CH₃COOH) buffer solution at the scan rates (from inner to outer: 25, 50, 75, 100, 125, 150, 175, 200 mV s⁻¹); (b) Electrocatalysis of the reduction of NO₂⁻¹ in the presence of 2×10^{-4} M **2** at the scan rate of 150 mV s⁻¹ with NO₂⁻² concentrations of (i) 0.0, (ii) 1.0, (iii) 2.0, and (iv) 4.0 mM. The working electrode was glassy carbon, and the reference electrode was Ag/AgCl.

Fig. S8 (a) The cyclic voltammograms of 2×10^{-4} M **3** in the pH 4 (0.4 M CH₃COONa + CH₃COOH) buffer solution at the scan rates (from inner to outer: 25, 50, 75, 100, 125, 150, 175, 200 mV s⁻¹); (b) Electrocatalysis of the reduction of NO₂⁻¹ in the presence of 2×10^{-4} M **3** at the scan rate of 150 mV s⁻¹ with NO₂⁻² concentrations of (i) 0.0, (ii) 1.0, (iii) 2.0, and (iv) 4.0 mM. The working electrode was glassy carbon, and the reference electrode was Ag/AgCl.

Fig. S9 The dependence of anodic peak I currents of 1 on scan rates.

Fig. S10 XPRD patterns of compound 2: (a) calculated, (b) as-synthesized.

Fig. S11 IR spectrum of compound 1.

Fig. S12 IR spectrum of compound 2.

Fig. S13 IR spectrum of compound 3.

Fig. S14 The UV spectrum of 1-3 in the solution.

Fig. S15 The TG curve of compound **1** exhibits four continuous weight loss stages in the temperature ranges 38-445 °C. The first weight loss is 9.9 % in the temperature range 38-114 °C, corresponding to the release of lattice water molecules in the framework (calcd. 9.1 %). Then, the weight loss step of 6.4 % occurred in the temperature range of 114-294 °C, mainly corresponding to the loss of the coordinated water molecules (calcd. 6.6 %). The following weight loss of 2.5 % in the temperature range of 294-356 °C is attributed to the loss of sulfate ions (calcd. 2.9 %). The last weight loss of 5.2 % in the temperature range of 356-445 °C could be related to the loss of pyridine-3-carboxylic acid molecules and gradual elimination of carbon deposition resulting from the complex decomposition under a N₂ atmosphere (calcd. 5.7 %). The whole weight loss is 24.3 %, agreement with the theoretical weight loss value (calcd. 24 %). In the DTA curve of **1**, the endothermic broad peak around 87.3 °C corresponds to the release of lattice and coordinated water molecules; The exothermic peaks at 443 °C is attributed to the decomposition of the polyoxoanion.

Fig. S16 The TG curve of compound **2** exhibits three continuous weight loss stages in the temperature ranges 18-421 °C. The first weight loss is 6.8 % in the temperature range 18-100 °C, corresponding to the release of lattice water molecules in the framework (calcd. 6.0 %). Then, the weight loss step of 7.1 % occurred in the temperature range of 100-259 °C, mainly corresponding to the loss of the coordinated water molecules (calcd. 6.9 %). The last two weight loss steps of 8.0 % in the temperature range of 259-418 °C could be related to the decomposition of sulfate ions and pyridine-3-carboxylic acid molecules (calcd. 8.9 %). The whole weight loss is 21.9 %, agreement with the theoretical weight loss value (calcd. 21.8 %). In the DTA curve of **2**, the endothermic broad peak around 70 °C corresponds to the release of lattice and coordinated water molecules; The exothermic peaks at 413 °C is attributed to the decomposition of the polyoxoanion.

Fig. S17 The TG curve of compound **3** exhibits two continuous weight loss stages in the temperature ranges 30-434 °C. The first weight loss is 19.1 % in the temperature range 30-279 °C, corresponding to the release of lattice and coordinated water molecules in the framework (calcd. 19.6 %). The second weight loss step of 9.5 % in the temperature range of 279-434 °C could be related to the decomposition of sulfate ions and pyridine-3-carboxylic acid molecules (calcd. 8.8 %). The whole weight loss is 28.6 %, agreement with the theoretical weight loss value (calcd. 28.4 %). In the DTA curve of **3**, the endothermic broad peak around 72 °C corresponds to the release of lattice and coordinated water molecules; The exothermic peaks at 413 °C is attributed to the decomposition of the polyoxoanion.