Supporting Information

${\rm Hg}^{2+}$ induced hydrolysis of pentaquinone based Schiff Base: A new chemodosimeter for ${\rm Hg}^{2+}$ ions in aqueous media

Vandana Bhalla,^{*a} Roopa,^a Manoj Kumar,^{*a} Parduman Raj Sharma,^b and Tandeep Kaur^b

^aDepartment of Chemistry, UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India ^bDepartment of Cancer Pharmacology, Indian Institute of Integrative Medicine, Canal road, Jammu-180001, India

Contents	page no
Figure S1 ¹ H NMR spectrum of compound 3.	S 3
Figure S2 13 C NMR spectrum of compound 3 .	S4
Figure S3 Mass spectrum of compound 3.	S 5
Figure S4 IR spectrum of compound 3.	S6
Figure S5 UV-vis spectra of 3 in the presence of various metal ions.	S7
Figure S6 TLC showing the formation of pentaquinone diamine	and N,N-
dimethylaminocinnamaldehyde.	S8
Figure S7 ¹ H NMR spectra of receptor 3 in DMSO- d_6 - D_2O .	S9
Figure S8 Mass spectrum of receptor 3 in THF-H ₂ O(9:1).	S10
Figure S9 Fluorescence spectra of 3 -Hg ^{$2+$} in the presence of TBAF in THF/H ₂ O (9.5:0.5, v:v)	r). S11
Figure S10 Fluorescence spectra of 3 in the presence of different metal ions in THF/H ₂ O (9	9.5:0.5, v:v).
S12	
Figure S11 Fluorescence spectra of 3 in the presence of Hg^{2+} ions in THF/H ₂ O (1:1, v:v).	S13
Figure S12 Fluorescence spectra of 3 in the presence of Hg^{2+} ions in THF/H ₂ O (0.5:9.5, v:v)	. S14
Figure S13 Fluorescence spectra of 3 in the presence of Hg^{2+} ions in DMSO/H ₂ O (9.5:0.5, v.	:v). S15
Figure S14 Fluorescence spectra of 3-Hg ²⁺ in the presence of blood serum in THF/H ₂ O (1:1, v	v:v). S16
Figure S15 Fluorescence spectra of 3- Hg^{2+} in the presence of cysteine in THF/H ₂ O (1:1, v:v).	S17

Figure S16 Fluorescence spectra of 3 in the presence of $Hg(NO_3)_2$ in tap water.	S18
Figure S17 Fluorescence response of 3-Hg ²⁺ towards TBAX in THF/H ₂ O (9.5:0.5, v:v).	S19
Figure S18 Fluorescence response of C1 with Hg^{2+} ions.	S20
Figure S19 Fluorescence response of C2 with Hg^{2+} ions.	S20
Figure S20 Fluorescence response of C3 with Hg^{2+} ions.	S20

Figure S1. ¹H NMR (CDCl₃, 300 MHz, ppm) spectrum of **3**.

Figure S2. ¹³C NMR (1,1,2,2-tetrachloroethane- d_2 , 75.45 MHz, ppm) spectrum of **3**.

Figure S3. Mass spectrum of 3.

Figure S5. UV-vis spectra of **3** (5 μ M) in the presence of various metal ions (0-200 equiv) in THF/H₂O (9.5:0.5, v:v) buffered with HEPES, pH = 7.

a. 3 + Hg²⁺
b. overlap of 3 + Hg²⁺
and reaction mixture
c. reaction mixture

Figure S6. TLC showing the formation of pentaquinone diamine (1) and N,N-dimethylaminocinnamaldehyde (2). (A) naked eye (B) under UV lamp (excited at 365 nm).

Figure S7. Partial ¹H NMR spectra of (**A**) **3** in DMSO-d₆ (**B**) **3** + Hg²⁺ in DMSO-d₆ (**C**) reaction of **3** with Hg²⁺ was carried out in DMSO-D₂O (9:1, v/v) for 5 min and then ¹H NMR spectrum of the resulting solution was recorded. \bigstar Protons of *N*,*N*-dimethylaminocinnamaldehyde (**2**) \bigstar Protons of pentaquinone diamine (**1**).

Figure S8. Mass spectrum of receptor 3 in THF-H₂O(9:1).

Wavelength (nm) Figure S9. Fluorescence response of **3**-Hg²⁺ towards TBAI (400 equiv) in THF/H₂O (9.5:0.5, v:v) buffered with HEPES, pH = 7.

Figure S10. Fluorescence spectra of 3 (5 μ M) in response to different metal ions (200 equiv each) in THF/H₂O (9.5:0.5, v:v) buffered with HEPES, pH = 7; $\lambda_{ex} = 380$ nm.

Figure S11. Fluorescence response of receptor **3** (5 μ M) on addition of Hg²⁺ ions (0-500 equiv) in THF/H₂O (1:1, v:v) buffered with HEPES, pH = 7; λ_{ex} = 380 nm. Spectra were recorded at the interval of every 30 sec.

Figure S12. Fluorescence response of receptor **3** (5 μ M) on addition of Hg²⁺ ions (0-500 equiv) in THF/H₂O (0.5:9.5, v:v) buffered with HEPES, pH = 7; λ_{ex} = 380 nm. Spectra were recorded at the interval of every 30 sec.

Figure S13. Fluorescence response of receptor **3** (5 μ M) on addition of Hg²⁺ ions (0-100 equiv) in DMSO/H₂O (9.5: 0.5, v:v), $\lambda_{ex} = 380$ nm. Spectra were recorded at the interval of every 30 sec.

Wavelength (nm) Figure S14. Fluorescence response of $\mathbf{3} + \text{Hg}^{2+}$ system on addition of human blood serum in THF/H₂O (1:1, v:v) buffered with HEPES, pH = 7; $\lambda_{ex} = 380$ nm.

Figure S15. Fluorescence response of **3** + Hg²⁺ system on addition of cystein in THF/H₂O (1:1, v:v) buffered with HEPES, pH = 7; λ_{ex} = 380 nm.

Figure S16. Fluorescence response of 3 upon addition of incremental amount of Hg(NO₃)₂ (250 equiv) in drinking water; $\lambda_{ex} = 380$ nm.

Figure S18. Fluorescence spectra of **C1** (5 μ M) in the presence of Hg²⁺ ions (0–150 μ M) in THF:H₂O (6:4); $\lambda_{Ex} = 380$ nm.

Wavelength (nm)

Figure S19. Fluorescence response of **C2** in the presence of Hg²⁺ ions (200 equiv) in THF/H₂O (9.5:0.5, v:v) buffered with HEPES, pH = 7; $\lambda_{Ex} = 380$ nm.

Figure S20. Fluorescence response of **C3** in the presence of Hg²⁺ ions (200 equiv) in THF/H₂O (9.5:0.5, v:v) buffered with HEPES, pH = 7; $\lambda_{Ex} = 380$ nm.