Electronic Supplementary Information for:

Synthesis of MnFe₂O₄@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal

Ma Zichuan,^a Dongyuan Zhao,^a Chang Yongfang,^b Xing Shengtao,^{*a} Wu Yinsu^a and Gao

Yuanzhe^{*a*}

^a College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang

050024, China

^b College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China

Figure S1. HRTEM image of MnFe₂O₄@Mn-Co oxide.

Figure S2. FTIR spectra of (a) MnFe₂O₄ and (b) MnFe₂O₄@Mn-Co oxide.

Figure S3. Nitrogen adsorption–desorption isotherms of $MnFe_2O_4$ and $MnFe_2O_4$ @Mn-Co oxide.

Figure S4. Room-temperature magnetization loops of of $MnFe_2O_4$ and $MnFe_2O_4$ (@Mn-Co oxide.

Figure S5. Adsorption kinetics curves of heavy metals on MnFe₂O₄@Mn-Co oxide

Figure S6. Effects of adsorbent concentrations on heavy metals removal.

Figure S7. The removal efficiencies of mixed metal ions by $MnFe_2O_4@Mn-Co$ oxide. The concentration of each metal ion was 5 mg L⁻¹.