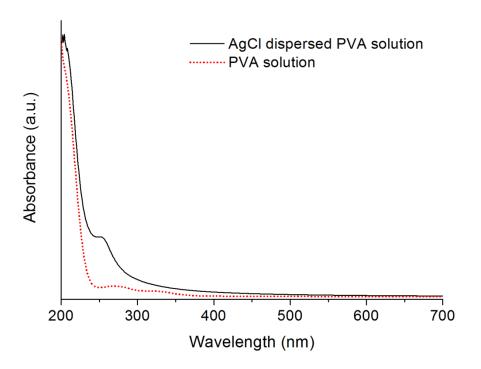
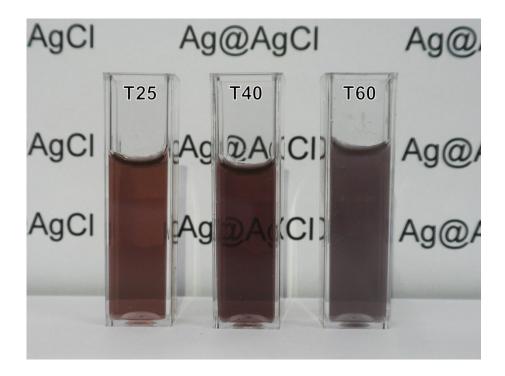

Supporting Information

Low temperature aqueous phase synthesis of silver/silver chloride plasmonic nanoparticles as visible light photocatalyst

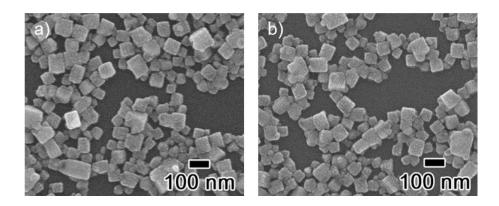
Jooyoung Song, Jongmin Roh, Inkyu Lee, and Jyongsik Jang*


WCU program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea

Bulk AgCl and Ag@AgCl prepared without PVA stabilizer


Figure S1. FE-SEM images of the (a) bulk AgCl and (b) bulk Ag@AgCl prepared under the same condition as in Figure 1b except for the addition of PVA stabilizer. The inserted photographs show the as-prepared solution of bulk AgCl (upper right) and bulk Ag@AgCl (bottom right). The bulk Ag@AgCl was prepared *via* reduction of bulk AgCl with L-arginine for 1 h.

UV-vis spectra of the AgCl and PVA solution


Figure S2. UV-vis spectra of the as-prepared AgCl dispersed PVA solution (black solid line) and the as-prepared PVA solution (red dot line).

Photographs of the as-prepared Ag@AgCl solutions

Figure S3. Photographs of the Ag@AgCl suspensions prepared via the partial reduction of the asprepared AgCl nanocubes. The AgCl nanocubes with edge length of \sim 57 (T25), \sim 61(T40), and \sim 87 nm (T60) were synthesized at 25, 40, and 60 °C, respectively and reduced to Ag@AgCl nanocomposites using L-arginine at 25 °C.

FE-SEM images of the as-prepared Ag@AgCl before and after photocatalytic test

Figure S4. SEM images of Ag@AgCl before (a) and after (b) photocatalytic test. For more clear image, the test was conducted with Ag@AgCl T40 samples which has bigger size than the Ag@AgCl T25.