1

Electronic Supplementary Information

Influence of CeO₂ morphology on the catalytic activity of CeO₂-Pt hybrids for CO oxidation

Nisha Singhania^a, E. A. Anumol^a, N. Ravishankar^{a,*}, Giridhar Madras^b

^aMaterials Research Center, Indian Institute of Science, Bangalore 560012, India. Email: <u>nravi@mrc.iisc.ernet.in</u>; Tel: +918022933255 ^bDepartment of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India (S1) TEM images of CeO₂/Pt nanohybrids after catalysis (a) Rod, (b) Cube, and (c) Octahedra

(S2) EDS analysis for Ceria/ Pt nanohybrids for Pt analysis

Catalyst	Pt content (atomic %)
Rod/Pt	1.0
Cube/Pt	1.1
Octa/Pt	1.3

(S3) XPS spectra of Ce3d core level for annealed rods

(S5) CO conversion with as-synthesized and annealed CeO₂ rod.

(S6) IR spectra for CeO₂/Pt nanohybrids after catalysis

(S7) Variation of CO conversion with temperature for Rod/Pt catalyst for different cycles indicating stability.

