Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper (II) ion detection

Xiaohai Bu, Yuming Zhou^{*}, Man He, Zhenjie Chen and Tao Zhang

School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China

^{*} Corresponding author: Tel. /fax: +86 25 52090617. E-mail address: ymzhou@seu.edu.cn (Y. Zhou).

Fig. S1. TGA curves for (a) native BSA molecular and (b) dBSA coated CdSe QDs

Fig. S2. Normalized PL intensity of dBSA coated CdSe QDs for evolution under ultraviolet irradiation measured at 525 nm

Fig. S3. TEM images of CdSe QDs flower shape aggregates in the presence of Cu^{2+}

Fig. S4. XRD for native BSA (a), dBSA coated CdSe QDs (b) and CdSe QDs in the presence of Cu²⁺ (c). In b, three diffraction peaks (2 θ) at 25.45 °, 42.08 °, 49.82 ° respectively correspond to the (111), (220), (311) crystal planes of CdSe QDs.

Fig. S5. UV-vis spectra for dBSA coated CdSe QDs in the absence and presence of Cu^{2+} (25, 250, 1000, 2000, 4000 nM). The UV-vis absorption of Cu^{2+} above 4000 nM are not presented here because the curves of them have no obvious absorption peak which is similar to the curve of QDs-Cu²⁺ (4000 nM).

Fig. S6. CD spectrum of dBSA coated CdSe QDs in the presence of Cu^{2+} (10 mM).

QDs Probes	Capping	Detection	Detection	Reference
	ligands	concentration range	limit	
CdTe/CdSe	MPA	$0.05 \sim 5.0 \times 10^{-5} \text{M}$	$2.0 imes 10^{-8} \text{M}$	[1]
CdSe	-SO3	$0 \sim 60 \ \mu g L^{-1}$	$2.4 \ \mu g L^{-1}$	[2]
	-COO	$0 \sim 60 \ \mu g L^{-1}$	$9.7 \mu g L^{-1}$	
CdSe/Ag	16-MHA	5~100 μM	5 nM	[3]
CdSe/ZnS	BSA	0.1~1.6μΜ	10 nM	[4]
CdSe/CdS	DDTC	0~100 μgL ⁻¹	$0.29 \ \mu g L^{-1}$	[5]
CdSe/CdS	L-cysteine	$10^{-8} \sim 2.0 \times 10^{-7} \text{ M}$	3 nM	[6]
CdSe/ZnS	silica	0~10 μM	0.9 μΜ	[7]
CdSeTe	L-cysteine	0.02~2.0 μM	7 nM	[8]
CdSe	dBSA	$10^{-8} \sim 7.5 \times 10^{-6} \text{ M}$	5 nM	Currently used

Table S1. Comparison of probes for copper (II) detection based on CdSe QDs

Reference

(1) Xia, Y., Zhu, C. Analyst 2008, 133, 928.

(2) Fernández-Argüelles, M. T., Jin, W. J., Costa-Fernández, J. M., Pereiro, R., Sanz-Medel,A. Anal. Chim. Acta 2005, 549, 20.

(3) Chan, Y. H., Chen, J., Liu, Q., Wark, S. E., Son, D. H., Batteas, J. D. Anal. Chem. 2010, 82, 3671.

(4) Xie, H. Y., Liang, J. G., Zhang, Z. L., Liu, Y., He, Z. K., Pang, D. W. Spectrochim Acta Part A 2004, 60, 2527.

(5) Wang, J., Zhou, X., Ma, H., Tao, G. Spectrochim. Acta Part A 2011, 81, 178.

(6) Zhang, Y. H., Zhang, H. S., Guo, X. F., Wang, H. Microchem. J. 2008, 89, 142.

(7) Sung, T. W., Lo, Y. L. Sens. Actuators B 2012, 165, 119.

(8) Liang, G. X., Liu, H. Y., Zhang, J. R., Zhu, J. J. *Talanta* 2010, 80, 2172.