ESI

Trivalent Scandium, Yttrium and Lanthanide Complexes with Thia-oxa and Selena-oxa Macrocycles and Crown Ether Coordination

Martin J. D. Champion, Paolo Farina, William Levason* and Gillian Reid

Preparations:

[$\mathbf{L a I}_{\mathbf{3}} \mathbf{(1 5 - c r o w n - 5)] : ~ T o ~ a ~ S c h l e n k ~ f l a s k ~ c o n t a i n i n g ~ a ~ s u s p e n s i o n ~ o f ~} \mathrm{LaI}_{3}(0.150 \mathrm{~g}, 0.29 \mathrm{mmol})$ in $\mathrm{MeCN}(10$ $\mathrm{mL})$ was added a solution of $15-$ crown $-5(0.070 \mathrm{~g}, 0.32 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$. A white precipitate began forming immediately and the suspension was stirred for a further 30 mins. The precipitate was filtered off and dried under vacuum. Yield: $0.110 \mathrm{~g}, 52 \%$. Required for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{I}_{3} \mathrm{LaO}_{5} \cdot 0.5 \mathrm{MeCN}(760.4): \mathrm{C}, 17.4 ; \mathrm{H}, 2.9$; N, 0.9. Found: C, 17.7; H, 3.6; N, 0.7\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right): \delta=4.29(\mathrm{~m},[10 \mathrm{H}]) 4.10(\mathrm{~m},[10 \mathrm{H}])$.
[$\mathrm{LaI}_{\mathbf{3}}$ (18-crown-6)]: To a Schlenk flask containing a suspension of $\mathrm{LaI}_{3}(0.10 \mathrm{~g}, 0.19 \mathrm{mmol}$) in dichloromethane (30 mL) was added a solution of 18 -crown- $6(0.051 \mathrm{~g}, 0.19 \mathrm{mmol})$ in dichloromethane (30 mL). The solution was stirred for 72 h and the residual solid filtered off. The filtrate was taken to dryness under vacuum. The residue was washed with diethyl ether (10 mL) leaving a yellow powder. Yield 0.06 g , 40%. Required for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{I}_{3} \mathrm{LaO}_{6}$ (783.9): C, $18.4 ; \mathrm{H}, 3.1$. Found: C, $18.5 ; \mathrm{H}, 3.2 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 295\right.$ $\mathrm{K}): \delta=4.26(\mathrm{~s})$.
[$\mathbf{L a I}_{\mathbf{2}}$ (18-crown-6) $\mathbf{P P F}_{6}$: To a Schlenk flask containing a suspension of $\mathrm{LaI}_{3}(0.150 \mathrm{~g}, 0.29 \mathrm{mmol})$ in MeCN $(10 \mathrm{~mL})$ was added a solution of 18 -crown-6 $(0.076 \mathrm{~g}, 0.29 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$. The solution was stirred for 1 h after which a small amount of extremely fine solid was filtered off. $\left[\mathrm{NH}_{4}\right] \mathrm{PF}_{6}(0.047 \mathrm{~g}, 0.29$ mmol) in methanol (3 mL) was added and stirred for a further 1 h . The solvent volume was reduced by half, diethyl ether (20 mL) was added and the solution placed in the freezer overnight. This produced a white powder which was collected by filtration and dried under vacuum. Yield: $0.165 \mathrm{~g}, 71 \%$. Required for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{I}_{2} \mathrm{LaO}_{6} \mathrm{P}$ (802.0): C, 18.0; H, 3.0. Found: C, 17.7; H, 3.6\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}$): $\delta=4.17$ (s). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right): \delta=-72.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{FP}}=702 \mathrm{~Hz}\right) . \Lambda_{\mathrm{M}} \mathrm{MeCN} 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}=272 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. IR (Nujol/ cm ${ }^{-1}$): 845 (vs), 558(m) $\left(\mathrm{PF}_{6}\right)$.
$\left[\mathbf{L u I}_{\mathbf{2}}\left(\mathbf{1 5}\right.\right.$-crown-5)]I: To a Schlenk flask containing a suspension of $\mathrm{LuI}_{3}(0.075 \mathrm{~g}, 0.135 \mathrm{mmol})$ in $\mathrm{MeCN}(5$ $\mathrm{mL})$ was added a solution of 15 -crown $-5(0.036 \mathrm{~g}, 0.135 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$. The solution was stirred for 1 h after which a small amount of extremely fine precipitate was filtered off. Diethyl ether (10 mL) was layered onto the solution. Colourless crystals were deposited overnight, along with some powdered material. The solid was collected by filtration and dried under vacuum. Yield: $0.122 \mathrm{~g}, 58 \%$. Required for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{I}_{3} \mathrm{LuO}_{5}$ (776.0): C, 15.5; H, 2.6. Found: C, 15.5; H, 2.5\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right): \delta=4.39$ (s).
[LuI (18-crown-6)(MeCN) $)_{2} \mathbf{I}_{2}$: was made similarly from $\operatorname{LuI}_{3}(0.075 \mathrm{~g}, 0.135 \mathrm{mmol})$ and 18 -crown-6 (0.036 g, 0.135 mmol). Yield: $0.055 \mathrm{~g}, 45 \%$. Required for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{I}_{3} \mathrm{LuO}_{6}$ (861.1): C, 21.3; H, 3.4; N, 3.1. Found: C, 21.5; H, 3.5; N, 3.2\%. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right): \delta=4.22$ (s). IR (Nujol/ cm^{-1}): 2308, 2274 (MeCN).
[$\mathbf{N d I}_{\mathbf{3}}$ (18-crown-6)]: was made similarly from $\operatorname{NdI}_{3}(0.152 \mathrm{~g}, 0.29 \mathrm{mmol})$ and 18-crown-6 ($0.076 \mathrm{~g}, 0.29$ mmol). Yield $0.10 \mathrm{~g}, 44 \%$. Required for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{I}_{3} \mathrm{NdO}_{6}$ (789.3): C, 18.3; H, 3.1. Found: C, 17.9; H, 3.0\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}$): $\delta=8.53$ (s). $\Lambda_{\mathrm{M}} \mathrm{MeCN}, 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}: 288 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
[$\mathrm{CeI}_{3}(\mathbf{1 8}$-crown-6)]: was made similarly. Small colourless crystals grew overnight from the filtrate. The crystals were collected by filtration and dried under vacuum. Yield 0.086 g , 38%. Required for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{CeI}_{3} \mathrm{O}_{6}$ (785.2): C, 18.4; H, 3.1. Found: C, 18.6; H, 3.7\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right): \delta=6.92$ (s). $\Lambda_{\mathrm{M}} \mathrm{MeCN}, 10^{-3}$ mol dm ${ }^{-3}: 240 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
$\left[\mathbf{L a}\left(\mathbf{O}_{3} \mathbf{S C F}_{3}\right)_{2}(\mathbf{1 8}\right.$-crown-6 $\left.)\right]\left[\mathrm{O}_{3} \mathbf{S C F}_{3}\right]$: In a Schlenk flask containing $\mathrm{La}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{3}(0.100 \mathrm{~g}, 0.17 \mathrm{mmol})$ was added a solution of 18 -crown- $6(0.161 \mathrm{~g}, 0.61 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$. The resulting white suspension was stirred overnight at which point a clear solution had been obtained. The solvent was removed under vacuum and then residue was triturated with dichloromethane (10 mL) and hexane (5 mL). The white microcrystalline product was collected by filtration and dried under vacuum. Yield: $0.060 \mathrm{~g}, 44 \%$. Required for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~F}_{9} \mathrm{LaO}_{15} \mathrm{~S}_{3}$ (850.4): C, 21.2; H, 2.8. Found: C, 21.3; H, 3.1\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right) \delta=4.05$ (s). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right) \delta=-78.4(\mathrm{~s}) .{ }^{139} \mathrm{La} \operatorname{NMR}\left(\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CD}_{3} \mathrm{CN}, 295 \mathrm{~K}\right): \delta=-112.4\left(\mathrm{~W}_{1 / 2}=\right.$ $3000 \mathrm{~Hz}) . \Lambda_{\mathrm{M}} \mathrm{MeCN}, 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}: 163 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Figure S1. The anion in $\left[\mathrm{YCl}_{2}(18 \text {-crown-6) }]_{3}\left[\mathrm{Y}_{2} \mathrm{Cl}_{9}\right]\right.$. $\mathrm{Y}-\mathrm{Cl}$ (terminal) $=2.5317(15)-2.5709(14)$, $\mathrm{Y}-\mathrm{Cl}$ $($ bridge $)=2.7091(14)-2.7468(15) \AA$.

Figure S2. The cation in $\left[\mathrm{CeI}_{2}(18\right.$-crown-6)(MeCN)]I• $n \mathrm{MeCN}(n=1 / 2)$. The displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Ce1-O5 = $2.550(5), \mathrm{Ce} 1-1=2.576(5), \mathrm{Ce} 1-\mathrm{O} 2=2.582(5), \mathrm{Ce} 1-\mathrm{O} 4=2.589(5), \mathrm{Ce} 1-\mathrm{O} 6=2.597(5), \mathrm{Ce} 1-\mathrm{N} 1=2.608(7)$, $\mathrm{Ce} 1-\mathrm{O} 3=2.622(5), \mathrm{Ce} 1-\mathrm{I} 1=3.1886(9), \mathrm{Ce} 1-\mathrm{I} 2=3.2103(8), \mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 2=62.82(17), \mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 4=62.55(17)$, $\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 6=2.35(17), \mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 3=60.55(17), \mathrm{O} 4-\mathrm{Ce} 1-\mathrm{O} 3=61.79(17), \mathrm{N} 1-\mathrm{Ce} 1-\mathrm{I} 1=141.14(16), \mathrm{N} 1-\mathrm{Ce} 1-\mathrm{I} 2$ $=70.46(16), \mathrm{I} 1-\mathrm{Ce} 1-\mathrm{I} 2=147.62(2) . \mathrm{Ce}(2)$ is very similar.

Table S1: Crystallographic parameters

Compound	$\left[\mathrm{LaI}_{3}\left([18] \mathrm{aneO}_{4} \mathrm{~S}_{2}\right)\right]$	$\begin{aligned} & {\left[\mathrm{LaI}\left(\mathrm{OH}_{2}\right)_{2}\left([18] \mathrm{aneO}_{4} \mathrm{~S}_{2}\right)\right] \mathrm{I}_{2}} \\ & \cdot \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\left[\mathrm{LaI}_{3}\left([18] \mathrm{aneO}_{4} \mathrm{Se}_{2}\right)\right]$	$\begin{aligned} & {\left[\mathrm{LaI}_{3}(15 \text {-crown-5) }]\right.} \\ & \cdot \mathrm{MeCN} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{LaI}_{2}(18 \text {-crown- } 6)(\mathrm{MeCN})\right] \mathrm{I}} \\ & \cdot n \mathrm{MeCN}(n=0.5) \end{aligned}$	$\begin{aligned} & {\left[\mathrm{CeI}_{2}(18 \text {-crown- } 6)(\mathrm{MeCN})\right] \mathrm{I}} \\ & \cdot n \mathrm{MeCN}(n=0.5) \end{aligned}$
Formula	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{I}_{3} \mathrm{LaO}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{I}_{3} \mathrm{LaO}_{7} \mathrm{~S}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{I}_{3} \mathrm{LaO}_{4} \mathrm{Se}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{I}_{3} \mathrm{LaNO}_{5}$	$\mathrm{C}_{15} \mathrm{H}_{28.5} \mathrm{I}_{3} \mathrm{LaN}_{1.5} \mathrm{O}_{6}$	$\mathrm{C}_{15} \mathrm{H}_{28.5} \mathrm{CeI}_{3} \mathrm{~N}_{1.5} \mathrm{O}_{6}$
M	816.04	870.09	909.84	780.92	845.50	846.71
crystal syst	Orthorhombic	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	Pbca (no. 61)	$\mathrm{P} 21 / \mathrm{c}$ (no.14)	Pbca (no. 61)	Pnma (no. 62)	$\mathrm{P} 21 / \mathrm{c}$ (no.14)	$\mathrm{P} 21 / \mathrm{c}$ (no. 14)
$a[\AA]$	15.276(3)	8.5208(16)	15.375(3)	21.695(7)	8.1091(11)	8.0939(18)
b [A]	13.763(2)	20.401(4)	13.506(3)	12.454(4)	21.599(3)	21.505(5)
$c[\AA]$	20.617(4)	14.616(3)	21.053(4)	7.900(3)	29.150(4)	29.104(7)
α [deg]	90	90	90	90	90	90
β [deg]	90	106.278(3)	90	90	91.469(3)	91.479(3)
γ [deg]	90	90	90	90	90	90
$U\left[\AA^{3}\right]$	4334.3(13)	2438.9(8)	4371.8(14)	2134.6(12)	5103.9(12)	5064.3(19)
Z	8	4	8	4	8	8
$\begin{array}{ll} \mu(\mathrm{Mo} & \mathrm{K} \alpha) \\ {\left[\mathrm{mm}^{-1}\right]} & \end{array}$	6.448	5.746	9.533	6.357	5.330	5.482
total no. reflns	20061	11038	23251	10231	23074	22455
unique reflns	4952	5520	5010	2541	11528	11504
$R_{\text {int }}$	0.149	0.174	0.073	0.136	0.032	0.073

no. of params, restraints	194, 6	226, 0	199, 0	127, 11	481, 0	481, 0
$R_{1}^{\mathrm{b}}\left[I_{\mathrm{o}}>2 \sigma\left(I_{\mathrm{o}}\right)\right]$	0.043	0.067	0.033	0.054	0.028	0.059
R_{1} [all data]	0.047	0.069	0.043	0.058	0.035	0.078
$\begin{array}{lll} & w R_{2}^{b} \quad\left[I_{o} \quad>\right. \\ \left.2 \sigma\left(I_{o}\right)\right] \end{array}$	0.110	0.171	0.068	0.136	0.052	0.107
$w R_{2}$ [all data]	0.113	0.175	0.073	0.140	0.054	0.115

${ }^{\mathrm{a}}$ Common items: temperature $=100 \mathrm{~K}$ check; wavelength $(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \theta(\max)=27.5^{\circ} ;{ }^{\mathrm{b}} R_{1}=\Sigma \| \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right| / \Sigma\right| \mathrm{F}_{\mathrm{o}} \mid ; w R_{2}=\left[\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma \mathrm{wF} \mathrm{F}_{\mathrm{o}}\right]^{1 / 2}$.

Table S1 cont.

Compound	$\begin{aligned} & {\left[\mathrm{LuI}_{2}\left([18] \mathrm{aneO}_{4} \mathrm{Se}_{2}\right)\right] \mathrm{I} \cdot} \\ & n \mathrm{MeCN}^{(n=2)} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Lu}(\mathrm{MeCN})_{2}\left(\mathrm{OH}_{2}\right)(15-\right.} \\ & \text { crown-5)] } \mathrm{I}_{3} \end{aligned}$	$\left[\mathrm{LuI}(\mathrm{MeCN})_{2}\left(18\right.\right.$-crown-6) I_{2}	$\left[\mathrm{YCl}_{2}\left([18] \mathrm{aneO}_{4} \mathrm{~S}_{2}\right)\right]\left[\mathrm{FeCl}_{4}\right]$	$\begin{aligned} & {\left[\mathrm{YCl}_{2}(18 \text {-crown- } 6)\right]_{3}} \\ & {\left[\mathrm{Y}_{2} \mathrm{Cl}_{9}\right] \cdot \mathrm{nMeCN}(\mathrm{n}=1.65)} \end{aligned}$
Formula	$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{I}_{3} \mathrm{LuN}_{2} \mathrm{O}_{4} \mathrm{Se}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{I}_{3} \mathrm{LuN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{I}_{3} \mathrm{LuN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{FeO}_{4} \mathrm{~S}_{2} \mathrm{Y}$	$\mathrm{C}_{39.30} \mathrm{H}_{76.95} \mathrm{Cl}_{15} \mathrm{~N}_{1.65} \mathrm{O}_{18} \mathrm{Y}_{5}$
M	1028.01	876.05	902.09	653.89	1836.98
crystal syst	Orthorhombic	Orthorhombic	Monoclinic	Orthorhombic	Triclinic
Space group	Pnma (no. 62)	Pnma (no.62)	$\mathrm{P} 2_{1} / \mathrm{m}$ (no. 11)	Pccn (no. 56)	P-1 (no. 2)
$a[\AA]$	15.436(5)	18.946(7)	8.787(4)	23.764(5)	13.174(2)
b [\AA]	11.954(4)	11.146(4)	10.151(4)	16.180(2)	17.299(3)
$c[\AA]$	14.804(5)	11.901(5)	14.970(6)	12.5376(18)	18.224(4)
α [deg]	90	90	90	90	115.694(3)
β [deg]	90	90	100.635(5)	90	95.928(5)
$\Gamma[\operatorname{deg}]$	90	90	90	90	91.622(1)
$U\left[\AA^{3}\right]$	2731.6(15)	2513.1(16)	1312.4(9)	4820.7(14)	3710.0(12)
Z	4	4	2	8	2
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left[\mathrm{mm}^{-1}\right]$	9.691	7.640	7.319	3.851	4.463
total no. reflns	11879	12417	6255	41731	45947
unique reflns	3265	3019	3155	5515	17003
$R_{\text {int }}$	0.154	0.125	0.1977	0.0503	0.1446
no. of params,	148, 6	128, 0	137, 0	235, 0	731, 6

restraints					
$R_{1}^{\mathrm{b}}\left[I_{\mathrm{o}}>2 \sigma\left(I_{\mathrm{o}}\right)\right]$	0.0630	0.0410	0.0868	0.0301	0.0647
R_{1} [all data $]$	0.0716	0.0440	0.0868	0.0419	0.1807
$w R_{2}^{\mathrm{b}}\left[I_{o}>2 \sigma\left(I_{o}\right)\right]$	0.1529	0.1038	0.2166	0.0627	0.1920
$w R_{2}[$ all data $]$	0.1595	0.1061	0.2166	0.0664	

Table S1 cont.

Compound	$\begin{aligned} & {\left[\mathrm{ScI}_{2}\left([18] \mathrm{aneO}_{4} \mathrm{~S}_{2}\right)\right] \mathrm{I}} \\ & \cdot \mathrm{MeCN} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{ScCl}_{2}\left([18] \mathrm{aneO}_{4} \mathrm{~S}_{2}\right)\right]} \\ & {\left[\mathrm{FeCl}_{4}\right]} \end{aligned}$
Formula	$\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{I}_{3} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Sc}$	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{FeO}_{4} \mathrm{~S}_{2} \mathrm{Sc}$
M	763.15	609.94
crystal syst	Orthorhombic	Orthorhombic
Space group	Pnma (no.62)	Abm2 (no. 69)
A [\AA]	15.2900(10)	16.150(4)
B [\AA]	11.9434(8)	64.370(8)
C [\AA]	14.4913(8)	11.3327(12)
α [deg]	90	90
β [deg]	90	90
Γ [deg]	90	90
$\mathrm{U}\left[\AA^{3}{ }^{3}\right.$	2646.3(3)	11781(4)
Z	4	20
$\mu(\mathrm{MoK} \alpha)\left[\mathrm{mm}^{-1}\right]$	3.951	1.777
total no. reflns	27355	69707
unique reflns	2710	13386
$\mathrm{R}_{\text {int }}$	0.0610	0.0841
no. of params, restraints	144,8	428, 10
$\mathrm{R}_{1}{ }^{\mathrm{b}}\left[\mathrm{I}_{\mathrm{o}}>2 \sigma\left(\mathrm{I}_{0}\right)\right]$	0.074	0.0963
R_{1} [all data]	0.100	0.1288
$w R_{2}{ }^{\text {b }}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]$	0.188	0.2292
wR_{2} [all data]	0.206	0.2517

