Fluorenylidene Bridged Cyclotriphosphazenes: 'Turn-Off' Fluorescence Probe for Cu²⁺ and Fe³⁺

Gönül Yenilmez Çiftçi,* Elif Şenkuytu, Mahmut Durmuş, Fatma Yuksel and Adem Kılıç

Department of Chemistry, Gebze Institute of Technology, Gebze 41400, Kocaeli, Turkey <u>yenilmez@gyte.edu.tr</u>

Supporting Information

TABLE OF CONTENTS

Figure S1. (a) ¹ H NMR spectrum of compound 4 in CDCl ₃ between $0 - 8.5$ ppm. (b) ¹ H NMR expanded spectra between 7.00-8.00 ppm. 3
Figure S2. (a) ¹ H NMR spectrum of compound 8 in CDCl ₃ between $0 - 9.00$ ppm. (b) ¹ H NMR expanded spectra between 4.50-7.80 ppm
Table S1. ¹ H NMR spectral data of compounds 3-6 in CDCl ₃
Table S2. ¹ H NMR spectral data of compounds 8-11 in CDCl ₃ 6
Table S3. Selected bond lengths (Å), bond angles (°) and torsion angles (°) for compounds 4, 8 and 9 7
Figure S3. The selected bond angles of compounds 4, 8 and 9
Figure S4. The angles between the planes of aniline or phenol rings of compounds 4 and 8.10
Figure S5. The angles between the planes of cyclotriphosphazene and aniline or phenol rings of compounds 4 , and 8
Figure S6. The angles between the planes of cyclotriphosphazene rings of compounds 4, 8 and 9
Figure S7. The angles between the planes of aniline rings of each FDA bridges of compound 9. 13
Figure S8. The angles between the planes of two fluorenylidene rings of compound 9
Figure S9. (A) Fluorescence response of chemosensor 3 to various equivalents of Cu^{2+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of 3 -Cu ²⁺ complex in THF solutions. The total concentration of 3 and Cu ²⁺ was $1x10^{-2}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 325 nm
Figure S10. The proposed interaction between chemosensor 3 and Cu^{2+} ions
Figure S11. (A) Fluorescence response of chemosensor 3 to various equivalents of Fe^{3+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of 3 -Fe ³⁺ complex in THF solutions. The total concentration of 3 and Fe ³⁺ was $1x10^{-3}$ M The excitation wavelength was 270 nm. The monitored wavelength was 325 nm
Figure S12. The proposed interaction between chemosensor 3 and Fe^{3+} ions

Figure S13. (A) Fluorescence response of chemosensor 4 to various equivalents of Cu^{2+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of 4 - Cu^{2+} complex in THF solutions. The total concentration of 4 and Cu^{2+} was $1x10^{-2}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 320 nm
Figure S14. The proposed interaction between chemosensor 4 and Cu^{2+} ions17
Figure S15. (A) Fluorescence response of chemosensor 4 to various equivalents of Fe^{3+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of 4 - Fe^{3+} complex in THF solutions. The total concentration of 4 and Fe^{3+} was $1x10^{-3}$ M The excitation wavelength was 270 nm. The monitored wavelength was 320 nm
Figure S16. The proposed interaction between chemosensor 4 and Fe ³⁺ ions
Figure S17.The proposed interaction between (A) 5 and Cu^{2+} ions and (B) 5 and Fe^{3+} ions
Figure S18. (A) Fluorescence response of chemosensor 6 to various equivalents of Cu^{2+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of 6 - Cu^{2+} complex in THF solutions. The total concentration of 6 and Cu^{2+} was $1x10^{-2}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 314 and 322 nm
Figure S19. The proposed interaction between chemosensor 6 and Cu^{2+} ions
Figure S20. (A) Fluorescence response of chemosensor 6 to various equivalents of Fe^{3+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of 6 - Fe^{3+} complex in THF solutions. The total concentration of 6 and Fe^{3+} was $1x10^{-3}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 314 and 322 nm
Figure S21. The proposed interaction between chemosensor 6 and Fe ³⁺ ions21
Figure S22. (A) Mass spectrum of compound 10 ESI $(m/z)[M+Na]^+$; (B) chloro pattern of compound 10 ; (C) computer analyzing of chloro pattern of compound 1022

Figure S1. (a) ¹H NMR spectrum of compound **4** in CDCl₃ between 0 - 8.5 ppm. (b) ¹H NMR expanded spectrum between 7.00-8.00 ppm.

Figure S2. (a) ¹H NMR spectra of compound **8** in CDCl₃ between 0 - 9.00 ppm. (b) ¹H NMR expanded spectra between 4.50-7.80 ppm.

 Table S1. ¹H NMR spectral data of compounds 3-6 in CDCl₃.

Hf He Hb Hc Hb R							
No	<u>Ha</u>	<u>Hb</u>	<u>Hc</u>	<u>Hd</u>	He	<u>Hf</u>	<u>OH</u>
(3)	4H, dd, 6.70, ³ J _{HH} =8.62 ⁴ J _{PH} =1.28	4H, d, 7.06, ³ J _{HH} =8.61	2H, d, 7.13	2H,m, 7.41-7.23	2H,m, 7.41-7.23	2H, d, 7.84 ³ J _{HH} =7.53	1H, s 5.25
(4)	4H, dd, 7.05 ³ J _{HH} =8.85 ⁴ J _{PH} =2.04	4H, d, 7.12 ³ J _{HH} =8.84	2H, m 7.27-7.18	2H,m, 7.27-7.18	² H, d, 7.31 ³ J _{HH} =7.36	² H, d, 7.70 ³ J _{HH} =7.50	-
(5)	8H, m, 7.08-7.00	8H, m, 7.21-7.10	4H, m 7.41-7.23	4H,m, 7.41-7.23	4H, m, 7.41-7.23	4H,m, 7.80-7.73	-
(6)	12H, m, 6.96-6.92	12H, m, 7.07-7.01	6H, m 7.32-7.09	6H,m, 7.32-7.09	6H, m, 7.32-7.09	6H,m, 7.64-7.10	-

Hf

(δ are reported in ppm; J values in Hz; s, singlet; d, doublet; dd, doublet of doublet; m, multiplet.)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

 Table S2. ¹H NMR spectral data of compounds 8-11 in CDCl₃.

No	<u>Ha</u>	<u>Hb</u>	Hc	Hd	<u>He</u>	<u>Hf</u>	<u>NH</u>
(8)	4H, dd, 6.95, ³ J _{HH} =7.88 ⁴ J _{NHH} =1.46	4H, d, 6.89, ³ J _{HH} =7.91	2H, d, 7.35 ³ J _{HH} =7.50	2H,t, 7.33-7.21	2H,t, 7.33-7.21	² H,d, 7.69 ³ J _{HH} =7.51	2H, dd, 4.84, ² J _{PH} =10.93 ⁴ J _{NHH} =1.60
(9)	8H, d, 7.03 ³ J _{HH} =7.80	8H, d, 6.76 ³ J _{HH} =7.91	4H, d 7.43 ³ J _{HH} =7.46	4H,t, 7.41-7.28	4H,t, 7.41-7.28	4H,d, 7.77 ³ J _{HH} =7.56	4 H, d, 4.92 2 J _{PH} =11.07
(10)	8H, d, 7.14-7.00	8H, d, 6.97-6.78	4H, d, 7.23-7.19	4H,m, 7.41-7.31	4H, m, 7.41-7.31	4H,d, 7.78-7.72	4H, 5.10-5.48
(11)	12H, d, 7.00-6.92	12H, d, 6.82-6.78	6H, m 7.21-7.08	6H,m 7.33-7.13	6H, m, 7.33-7.13	6H,m, 7.73-7.70	6H, 5. 20-5.46

(δ are reported in ppm; J values in Hz; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet.)

	4	8	9
P1-N1	1.5864(14)	1.593(2)	1.604(3)
P1-N3	1.5750(15)	1.593(2)	1.600(3)
P2-N1	1.5735(16)	1.568(2)	1.562(2)
P2-N2	1.5737(16)	1.584(2)	1.586(3)
P3-N2	1.5823(14)	1.580(2)	1.581(3)
P3-N3	1.5731(15)	1.573(2)	1.563(2)
P4-N4	1.5901(14)		1.594(3)
P4-N6	1.5826(14)		1.605(2)
P5-N4	1.5811(13)		
P5-N5	1.5819(15)		1.588(3)
P6-N5	1.5865(15)		1.593(3)
P6-N6	1.5781(13)		
P1-01	1.5720(12)		
P4-O2	1.5853(11)		
P1-N7(P1-N4 for 8)		1.622(2)	1.637(3)
P1-N8			1.655(3)
P4-N9			1.639(3)
P4-N10			1.637(3)
01-C1	1.4075(19)		
O2-C23	1.4239(18)		
N7-C1(N4-C1 for8)		1.423(3)	1.422(4)
N8-C26			1.421(4)
N9-C23			1.427(4)
N10-C48			1.416(4)
N1-P1-N3	117.55(8)	116.85(11)	115.61(13)
N1-P2-N2	118.84(8)	118.07(11)	119.44(14)
N2-P3-N3	118.43(8)	119.51(10)	119.62(14)
N4-P4-N6	117.05(7)		115.42(13)
N4-P5-N5	118.81(8)		
N5-P6-N6	118.31(7)		
P1-N1-P2	121.45(10)	119.83(12)	120.93(16)
P2-N2-P3	120.34(9)	119.45(13)	119.47(16)
P3-N3-P1	122.15(9)	120.23(13)	120.40(16)
P4-N4-P5	122.01(9)		
P5-N5-P6	120.27(9)		119.24(15)
P6-N6-P4	121.88(9)		
C4-C7-C20 (C4-C7-C4# for8)	112.84(12)	111.0(2)	111.0(2)
C29-C32-C45			110.3(2)
P1-01- C1	126.62(10)		
P4-02- C23	114.87(9)		
P1-N4- C1	-	125.01(16)	
PI-N/-CI			125.1(2)
P1-N8-C26			121.7(2)
P4-N9-C23			121.8(2)
P4-N10-C48			124.6(2)
P1-O1-C1-C2	-136.26(13)		

Table S3. Selected bond lengths (Å), bond angles (°) and torsion angles (°) for compounds 4,8 and 9.

P1-O1-C1-C6	47.5(2)		
P4-O2-C23-C22	-81.44(17)		
P4-O2-C23-C24	97.18(15)		
P1-N4-C1-C2		151.6(2)	
P1-N4-C1-C6		-28.8(3)	
P1-N7-C1-C2			39.5(4)
P1-N7-C1-C6			-139.2(2)
P1-N8-C26-C27			57.2(4)
P1-N8-C26-C31			-122.5(3)
P4-N9-C23-C22			-110.7(3)
P4-N9-C23-C24			68.6(4)
P4-N10-C48-C49			-132.6(3)
P4-N10-C48-C47			46.5(4)

Figure S3. The selected bond angles of compounds 4, 8 and 9.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S4. The angles between the planes of aniline or phenol rings of compounds 4, and 8.

Figure S5. The angles between the planes of cyclotriphosphazene and aniline or phenol rings of compounds 4, and 8.

Figure S6. The angles between the planes of cyclotriphosphazene rings of compounds 4, 8 and 9.

Figure S7. The angles between the planes of aniline rings of each FDA bridges of compound **9.**

Figure S8. The angles between the planes of two fluorenylidene rings of compound 9.

Figure S9. (A) Fluorescence response of chemosensor **3** to various equivalents of Cu^{2+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of **3**-Cu²⁺ complex in THF solutions. The total concentration of **3** and Cu²⁺ was $1x10^{-2}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 325 nm.

Figure S10. The proposed interaction between chemosensor 3 and Cu^{2+} ions.

Figure S11. (A) Fluorescence response of chemosensor **3** to various equivalents of Fe^{3+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of **3**-Fe³⁺ complex in THF solutions. The total concentration of **3** and Fe³⁺ was $1x10^{-3}$ M.. The excitation wavelength was 270 nm. The monitored wavelength was 325 nm.

Figure S13. (A) Fluorescence response of chemosensor **4** to various equivalents of Cu^{2+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of **4**- Cu^{2+} complex in THF solutions. The total concentration of **4** and Cu^{2+} was $1x10^{-2}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 320 nm.

Figure S14. The proposed interaction between chemosensor 4 and Cu^{2+} ions.

Figure S15. (A) Fluorescence response of chemosensor **4** to various equivalents of Fe^{3+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of **4**- Fe^{3+} complex in THF solutions. The total concentration of **4** and Fe^{3+} was 1×10^{-3} M The excitation wavelength was 270 nm. The monitored wavelength was 320 nm

Figure S16. The proposed interaction between chemosensor 4 and Fe^{3+} ions.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

(A)

Figure S17. The proposed interaction between (A) **5** and Cu^{2+} ions and (B) **5** and Fe^{3+} ions.

Figure S18. (A) Fluorescence response of chemosensor **6** to various equivalents of Cu^{2+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of **6**- Cu^{2+} complex in THF solutions. The total concentration of **6** and Cu^{2+} was $1x10^{-2}$ M. The excitation wavelength was 270 nm. The monitored wavelength was 314 and 322 nm.

Figure S19. The proposed interaction between chemosensor 6 and Cu^{2+} ions.

Figure S20. (A) Fluorescence response of chemosensor **6** to various equivalents of Fe^{3+} . (B) The Benesi-Hildebrand graph and (C) Job's plot of **6**- Fe^{3+} complex in THF solutions. The total concentration of **6** and Fe^{3+} was 1×10^{-3} M. The excitation wavelength was 270 nm. The monitored wavelength was 314 and 322 nm.

Figure S21. The proposed interaction between chemosensor **6** and Fe^{3+} ions.

Figure S22. (A) Mass spectrum of compound 10 ESI $(m/z)[M+Na]^+$; (B) chloro pattern of compound 10; (C) computer analyzing of chloro pattern of compound 10.