Hierarchically grown CdS/α -Fe $_2O_3$ heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance

Shouwei Zhang,^{a,b} Wenqing Xu^c Meiyi Zeng,^b Jiaxing Li,^a Jinzhang Xu,^{b*} Xiangke Wang^{a*}

^a Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, 230031, Hefei, PR China.

^b School of Materials Science and Engineering, Hefei University of Technology, Hefei 230031, China

^c Department of Chemical Engineering, Environmental Engineering Program, Yale University New Haven, Connecticut 06520

*Corresponding author. E-mail: <u>xkwang@ipp.ac.cn</u>. (X. Wang) Fax: +86-551-65591310; Tel: +86-551-65592788;

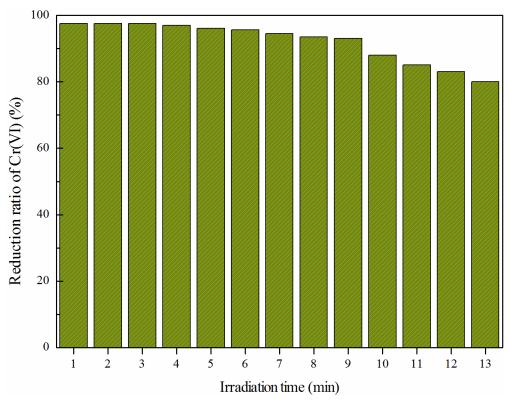


Figure S1. 13 cycles of the photocatalytic activity for reduction of Cr(VI) using CdS/α -Fe₂O₃-C as the photocatalyst under visible light irradiation.

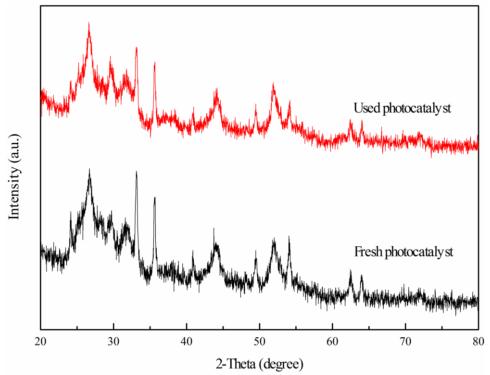


Figure S2. XRD patterns of CdS/α -Fe₂O₃-C before and after photocatalytic reduction of Cr(VI).